
Seminar at UCL, UK – 10 March 2004

Perspectives on Software
Architecture

J.P. Martin-Flatin, CERN, Switzerland
jp.martin-flatin@ieee.org

http://cern.ch/jpmf/

2J.P. Martin-Flatin -- 10 March 2004

Outline

Motivation for a new research discipline
Introduction to software architecture
Examples
More on software architecture
Research perspectives

3J.P. Martin-Flatin -- 10 March 2004

Motivation for a new Research
Discipline

4J.P. Martin-Flatin -- 10 March 2004

Problems with Software (1/2)

Most software engineers waste time and money
because they keep reinventing the wheel:
• most applications are built almost from scratch

Generation after generation, most software
engineers make the same mistakes over and over
again:
• as a community, we don’t seem to learn from our mistakes

Most software systems out there are difficult to
maintain
Software projects are often expensive:
• Almost impossible to do something decent at a low price

5J.P. Martin-Flatin -- 10 March 2004

Problems with Software (2/2)

Too many software projects fail:
• Budget overrun
• Missed deadlines
• Projects killed before software delivered to users

(customers)

Today’s software requires more flexibility
than ever before:
• Technology moves faster (languages, middleware,

components, protocols, etc.)
• Large investments still have long-term payback
• Most applications written today will need to

survive major technological changes

6J.P. Martin-Flatin -- 10 March 2004

Solution Space: Two Dimensions (1/2)

Software engineering:
• Better design:

Encourage it (education)
Facilitate it (engineering)

• More reuse:
Encourage it (education)
Facilitate it (engineering)

• Better requirements
• Better coding
• Better languages
• Better tools
• etc.

Software architecture

7J.P. Martin-Flatin -- 10 March 2004

Solution Space: Two Dimensions (2/2)

Finance:
• How to charge development cost of reusable

software?
• How to assess TCO of software?
• See Hohmann’s book

8J.P. Martin-Flatin -- 10 March 2004

Better Design (1/2)

Some designs facilitate reuse
We can learn from our mistakes:
• Study and improve poor designs
• Study good designs (best practices)

Maintenance-oriented design and coding:
• Think maintenance
• Anticipate change
• Flexibility (indirections)

9J.P. Martin-Flatin -- 10 March 2004

Better Design (2/2)

Impact of design quality on software project
costs:
• During 1st iteration of an iterative software

development process:
Increases design cost:

• More time
• Smarter people

Unpredictable effect on implementation cost:
• Some projects can get by with quick & dirty coding

Decreases debugging cost
Decreases testing cost

• During further iterations:
Decreases all costs

• Always decreases maintenance cost

10J.P. Martin-Flatin -- 10 March 2004

Reuse (1/2)

Stop reinventing the wheel:
• Develop once, reuse code many times

Stop making the same mistakes
Leverage best practices:
• Specify design once, reuse design many times

Facilitate maintenance

11J.P. Martin-Flatin -- 10 March 2004

Reuse (2/2)

Impact of reuse on software project costs:
• During 1st iteration of an iterative software

development process:
Unpredictable effect on design cost:

• How much do we reuse?
• How many reusable designs do we generate?

Unpredictable effect on implementation cost
Decreases debugging cost
Decreases testing cost

• During further iterations:
Decreases all costs

• Always decreases maintenance cost

12J.P. Martin-Flatin -- 10 March 2004

Designing Complex Applications (1/2)

OO software development process:
• No standard:

Booch/OOAD, OMT, OOSE, Catalysis, RUP

• Five phases:
Requirements + analysis (what)
High-level design (how-to, big picture)
Low-level design (detailed how-to)
Implementation
Testing + deployment

• Multiple iterations

13J.P. Martin-Flatin -- 10 March 2004

Designing Complex Applications (2/2)

Software architecture:
• During high-level design phase (big picture)
• Functional aspects vs. non-functional aspects
• Disentangle independent aspects
• Framework for dependencies between

subsystems:
E.g. if we adopt a service-oriented architecture:

• Migration from distributed objects to services
• From tightly coupled to loosely coupled subsystems

• Focus: features and capabilities

14J.P. Martin-Flatin -- 10 March 2004

Introduction to
Software Architecture

15J.P. Martin-Flatin -- 10 March 2004

Software Architecture: Definitions (1/2)

“Art of structuring complex applications
properly.”

“The nightmare of stock markets: a
long-term investment in the ability of
software to evolve without immediate ROI.”

16J.P. Martin-Flatin -- 10 March 2004

Software Architecture: Definitions (2/2)

Shaw & Garlan:
“As the size and complexity of software systems
increase, the design and specification of overall
system structure become more significant issues
than the choice of algorithms and data structures of
computation. Structural issues include the
organization of a system as a composition of
components; global control structures; the protocols
for communication, synchronization, and data
access; the assignment of functionality to design
elements; the composition of design elements;
physical distribution; scaling and performance;
dimensions of evolution; and selection among
design alternatives. This is the software architecture
level of design.”

17J.P. Martin-Flatin -- 10 March 2004

Main Concerns in Software Architecture

Distribution
Scalability:
• Bottlenecks
• Performance

Flexibility:
• At a given time: heterogeneity, interoperability, portability
• Over time: evolvability, modifiability

Robustness
Security
Synchronization
Data access
Integration

18J.P. Martin-Flatin -- 10 March 2004

Is It New?

No:
• Experienced software engineers have been doing

this implicitly for years

Yes:
• Documenting best practices is new
• Teaching best practices is new
• Learning from others’ mistakes is new
• Using complex software everywhere is new:

Used to be confined to scientific community

• Designing very flexible software is new

19J.P. Martin-Flatin -- 10 March 2004

What Should Software Architects Do?

Features:
• Fulfill requirements in due time within budget

Capabilities:
• Anticipate change:

Prepare for e-business

• Make trade-offs
• Isolate independent concerns

20J.P. Martin-Flatin -- 10 March 2004

Anticipate Change (1/2)

Among all the subsystems that constitute my
application, where do I expect to add more
functionality in the future?
• e.g., plug-ins for Web browsers

What new demands do I expect from my users?
Will my software always run on the same OS,
using the same middleware and the same
component technologies?
Will the communication protocols change?
Will the data format change?
Will the database technology change?

21J.P. Martin-Flatin -- 10 March 2004

Anticipate Change (2/2)

Will the security requirements or technologies
change?
Which subsystems do I need to change if the
load increases 10, 100 or 1000 times?
• Where are the bottlenecks of my software?

Which subsystems do I need to change to make
my application fault tolerant?
• Do I have to break everything?

How long will it take a new developer to
understand the architecture of my software?

22J.P. Martin-Flatin -- 10 March 2004

Examples of Anticipated Changes (1/2)

So you thought these were details?
• Y2K
• VAT rates
• International unit system vs. U.S. units
• Key length for SSL encryption

Java vs. C#:
• Tightly coupled distributed systems: dead?

Components:
• CORBA/CCM vs. J2EE vs. .NET vs. ???

23J.P. Martin-Flatin -- 10 March 2004

Examples of Anticipated Changes (2/2)

Service discovery:
• Web Services vs. CORBA vs. LDAP vs. Jini vs. ???
• Via traders?

Data access:
• RDBMS vs. OODBMS vs. KBMS

Application-domain specific communication
protocols vs. one-size-fits-all HTTP
Application-domain specific data
representation/encoding vs. XML
In hospitals, patient files will include image
formats that do not exist today (MPEGx)

24J.P. Martin-Flatin -- 10 March 2004

Prepare for E-Business

Software written today should prepare for B2B/B2C:
• Wherever we require interactive input, we should allow for

XML-based input
• Tomorrow XML may be replaced with another technology

E.g., online retail software:
• Most subsystems should ignore how orders are placed
• Orders may be taken by:

Frontdesk officer
Telephone
Web (B2B, B2C)
Letter
Fax
etc.

25J.P. Martin-Flatin -- 10 March 2004

Make Trade-Offs (1/2)

Which of my subsystems need to be
tightly coupled? Which ones need to be
loosely coupled?
Will administrators control my
application via:
• high-level configuration mechanisms

(policies, goals)
• low-level ones (CLI)
Should the physical distribution of my
subsystems be totally free or partially
constrained?

26J.P. Martin-Flatin -- 10 March 2004

Make Trade-Offs (2/2)

Business aspects that influence
architecture:
• For which subsystems should I purchase

COTS software? For which ones do I need
ad hoc developments?

• Initial development costs vs. maintenance
costs

•Business process reengineering vs.
incremental architectural changes:

Revolution vs. evolution

• Perfect architecture vs. time-to-market

27J.P. Martin-Flatin -- 10 March 2004

Isolate Independent Concerns

Data representation and communication
protocols
Security and communication
Hide component technology:
• Within an application, functionality (business

model) is independent of CORBA/CCM, J2EE, .NET

Hide middleware technology:
• When two distant entities communicate, they

should be ignorant of the technology used to
transfer data between them

28J.P. Martin-Flatin -- 10 March 2004

Examples

29J.P. Martin-Flatin -- 10 March 2004

SNMP

Protocol to transfer mgmt data between
agents (managed entities) and managers
(smart part of mgmt application)
Monitoring of network devices
No clear separation of concerns:
• Application-level protocol
• Data transfer protocol
• Security
• Representation of data in transit
• Modeling of data

30J.P. Martin-Flatin -- 10 March 2004

Event-Based Systems

Heterogeneous event formats
Heterogeneous middleware to exchange
events
My XSD is better than yours
Translation can cause semantic loss
Best practices call for:
• Self-describing events
• Ontologies
• Separate data semantics aspect from

communication aspect

31J.P. Martin-Flatin -- 10 March 2004

Globus Toolkit

Today’s de facto standard middleware for Grids
Good practices:
• Components
• Versioning
• Auto-discovery of platform
• Simple configuration: Makefile parameters are automatically

propagated across code tree
• Leverage well-known tools: GridFTP extends FTP

Bad practices:
• Reinvent the wheel: GNU software ignored
• GridFTP 2.4 assumes TCP underneath. When SCTP

appeared, GridFTP 2.4 would not work over SCTP. Required
a complete reengineering GridFTP 3.0.

32J.P. Martin-Flatin -- 10 March 2004

Grid Applications (1/2)

Good practices:
• Avoid design by committee and over-engineering

antipatterns
• Code and test on real platforms
• Create a user community and share experience

Bad practices:
• Reinvent the wheel:

GGF invented Grid services, began specifying OGSI, and
then realized that Web services did 95% of what they
needed
GGF has shadow WGs/RGs for many IETF, IRTF and
DMTF WGs/RGs

33J.P. Martin-Flatin -- 10 March 2004

Grid Applications (2/2)

Bad practices (cont’d):
• Code first, design afterward:

OGSA (arch) confused with OGSI (API)
OGSA/arch began several years after the other WGs
Scalability issues ignored until they showed up in
practice (e.g., LDAP bottlenecks)
Impact of heterogeneity on Grid application design was
underestimated

• Poor skill matching:
Application domain experts cannot be turned into
software engineering experts overnight
Expertise in MPP systems is not expertise in architecting
worldwide Grid applications

34J.P. Martin-Flatin -- 10 March 2004

More on Software Architecture

35J.P. Martin-Flatin -- 10 March 2004

Architectural Views (1/3)

Different views support different goals and
uses
Different people involved in a software
project are interested in different views
Clements et al.:
• Layered view: tells you about your system’s

portability
• Deployment view: lets you reason about your

system’s performance and reliability

36J.P. Martin-Flatin -- 10 March 2004

Architectural Views (2/3)

Kruchten:
• Logical view:

Behavioral requirements (services that the system
should provide)

• Process view:
Concurrency, distribution, system integrity, fault
tolerance

• Development view:
Identification of software units that can be developed by
different people/teams, cost evaluation, planning, reuse,
portability, security

• Physical view:
System’s availability, reliability, performance, scalability

37J.P. Martin-Flatin -- 10 March 2004

Architectural Views (3/3)

Hofmeister et al.:
• Conceptual view:

Functionality of system mapped to components and
connectors

• Module view:
Components and connectors mapped to subsystems and
modules

• Execution view:
Modules mapped to elements provided by runtime
platform and hardware
Performance, recovery, concurrency, replication

• Code view:
Deployment, versioning

38J.P. Martin-Flatin -- 10 March 2004

Components and Connectors (1/2)

Building blocks of the conceptual view
A component is a group of objects that
belong together:
• Coarser grained than a Java bean
• Examples:

Client
Server
Database
Layer in hierarchical system

• To allow for composition, a component can be a
subsystem of arbitrary size

39J.P. Martin-Flatin -- 10 March 2004

Components and Connectors (2/2)

A connector mediates interactions between
components:
• Two main functions:

Coordination
Data exchange

• Examples:
RPC call
Client-server protocol
Database access protocol
LDAP
Asynchronous event multicast

40J.P. Martin-Flatin -- 10 March 2004

Architectural Patterns

Two books:
• POSA1 by Buschmann et al.
• POSA2 by Schmidt et al.

41J.P. Martin-Flatin -- 10 March 2004

Broker (1/2)

A useful pattern for service discovery :

brokerclient

Amazon

Book
pool

Find best
deal for

purchasing
book xyz

42J.P. Martin-Flatin -- 10 March 2004

Broker (2/2)

Several metrics:

brokerclient

print
server

print
server

Print ASAP
close to my

office

43J.P. Martin-Flatin -- 10 March 2004

Client-Dispatcher-Server

Location transparency in nomadic
computing:

base
station

roaming
client

fixed
server

44J.P. Martin-Flatin -- 10 March 2004

Architectural Styles

Old name for architectural patterns
Objective: build catalogs of alternatives for
solving a given architectural problem
Can be mapped to components+connectors
Clements et al.:
• Pipes and Filters
• Shared Data (database, knowledge base)
• Publish-Subscribe
• Client-Server
• Peer-to-Peer
• Communicating Processes

45J.P. Martin-Flatin -- 10 March 2004

Research Perspectives

46J.P. Martin-Flatin -- 10 March 2004

Automation: One Step Beyond (1/2)

Software development automation: from
models to code
Step 1: automate coding:
• From assembling low-level design patterns

(“mental building blocks”) to assembling pieces of
code

Step 2: automate low-level design:
• From assembling high-level design patterns to

assembling low-level design patterns

47J.P. Martin-Flatin -- 10 March 2004

Automation: One Step Beyond (2/2)

Step 2 (cont’d):
• Architecture Description Languages:

Medvidovic and Taylor, IEEE TSE, Jan 2000

• Model-Driven Architecture:
Platform-Independent Model (business model)
Platform-Specific Model
Automate transformation PIM PSM

• UML 2.0
• Aspect-oriented programming
• Generative programming:

Ultimate for service discovery

48J.P. Martin-Flatin -- 10 March 2004

Self-Managed Systems

top-level
manager

sub-level
manager

self-managed
system

49J.P. Martin-Flatin -- 10 March 2004

SOA for Integrated Management

IM = integrate management of networks, systems,
applications and services + customer care/helpdesk
SOA-IM = evolution of WIMA
From tight coupling (OIDs in SNMP) to loose
coupling (Web Services)
Service discovery in very heterogeneous and
changing environments:
• Platform independence
• Middleware independence
• Component independence
• Data model independence
• Protocol independence

50J.P. Martin-Flatin -- 10 March 2004

Architecture of Grid Software

Analyze existing Grid applications
Identify and document architectural issues:
• Especially scalability issues

Produce a set of architectural antipatterns
for Grids
Produce a catalog of architectural patterns to
help software engineers design Grid
applications
Input to GGF OGSA WG

51J.P. Martin-Flatin -- 10 March 2004

Further Reading

<http://www.sei.cmu.edu/architecture/bibliography.html>

Technical aspects:
• L. Bass, P. Clements and R. Kazman, Software Architecture in

Practice, 2nd Edition, Addison-Wesley, 2003.
• M. Shaw and D. Garlan, Software Architecture: Perspectives on

an Emerging Discipline, Prentice-Hall, 1996.
• P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.Little,

R. Nord and J. Stafford, Documenting Software Architectures:
Views and Beyond, Addison-Wesley, 2002.

• C. Hofmeister, R. Nord and D. Soni, Applied Software
Architecture, Addison-Wesley, 2000.

Business aspects:
• L. Hohmann, Beyond Software Architecture: Creating and

Sustaining Winning Solutions, Addison-Wesley, 2003.

	Perspectives on Software Architecture
	Outline
	Motivation for a new Research Discipline
	Problems with Software (1/2)
	Problems with Software (2/2)
	Solution Space: Two Dimensions (1/2)
	Solution Space: Two Dimensions (2/2)
	Better Design (1/2)
	Better Design (2/2)
	Reuse (1/2)
	Reuse (2/2)
	Designing Complex Applications (1/2)
	Designing Complex Applications (2/2)
	Introduction toSoftware Architecture
	Software Architecture: Definitions (1/2)
	Software Architecture: Definitions (2/2)
	Main Concerns in Software Architecture
	Is It New?
	What Should Software Architects Do?
	Anticipate Change (1/2)
	Anticipate Change (2/2)
	Examples of Anticipated Changes (1/2)
	Examples of Anticipated Changes (2/2)
	Prepare for E-Business
	Make Trade-Offs (1/2)
	Make Trade-Offs (2/2)
	Isolate Independent Concerns
	Examples
	SNMP
	Event-Based Systems
	Globus Toolkit
	Grid Applications (1/2)
	Grid Applications (2/2)
	More on Software Architecture
	Architectural Views (1/3)
	Architectural Views (2/3)
	Architectural Views (3/3)
	Components and Connectors (1/2)
	Components and Connectors (2/2)
	Architectural Patterns
	Broker (1/2)
	Broker (2/2)
	Client-Dispatcher-Server
	Architectural Styles
	Research Perspectives
	Automation: One Step Beyond (1/2)
	Automation: One Step Beyond (2/2)
	Self-Managed Systems
	SOA for Integrated Management
	Architecture of Grid Software
	Further Reading

