

The DataTAG Project

http://www.datatag.org/

Universiteit van Amsterdam

Presentation at University of Twente, The Netherlands 17 September 2002 J.P. Martin-Flatin and Olivier H. Martin CERN, Switzerland

Project Partners

- EU-funded partners: CERN (CH), INFN (IT), INRIA (FR), PPARC (UK) and University of Amsterdam (NL)
- U.S.-funded partners: Caltech, UIC, UMich, Northwestern University, StarLight
- Associate partners: SLAC, ANL, FNAL, Canarie, etc.
- Project coordinator: CERN
 - contact: datatag-office@cern.ch

Budget of EU Side

- EUR 3.98M
- Funded manpower: 15 FTE/year
 - 21 FTE recruited
- Start date: January 1, 2002
- Duration: 2 years

Three Objectives

- Build a testbed to experiment with massive file transfers across the Atlantic
- High-performance protocols for gigabit networks underlying data-intensive Grids
- Interoperability between several major
 Grid projects in Europe and USA

- Provisioning of 2.5 Gbit/s transatlantic circuit between CERN (Geneva) and StarLight (Chicago)
- Dedicated to research (no production traffic)
- Multi-vendor testbed with layer-2 and layer-3 capabilities:
 - Cisco
 - Alcatel
 - Juniper
- Testbed open to other Grid projects
- Collaboration with GEANT

2.5 Gbit/s Transatlantic Circuit

- Operational since 20 August 2002 (T-Systems)
- Delayed by KPNQwest bankruptcy
- Routing plan developed for access across GEANT
- Circuit initially connected to Cisco 76xx routers (layer 3)
- High-end PC servers at CERN and StarLight:
 - SysKonnect GbE
 - can saturate the circuit with TCP traffic
- Layer-2 equipment deployment under way
- Full testbed deployment scheduled for 31 October 2002

Why Yet Another 2.5 Gbit/s Transatlantic Circuit?

- Most existing or planned 2.5 Gbit/s transatlantic circuits are for production
 - not suitable for advanced networking experiments
- Need operational flexibility:
 - deploy new equipment (routers, GMPLS-capable multiplexers),
 - activate new functionality (QoS, MPLS, distributed VLAN)
- The only known exception to date is the Surfnet circuit between Amsterdam and Chicago (StarLight)

Major R&D 2.5 Gbit/s circuits between Europe & USA

Network Research

DataTAG Activities

- Enhance TCP performance
 - modify Linux kernel
- Monitoring
- QoS
 - LBE (Scavenger)
- Bandwidth reservation
 - AAA-based bandwidth on demand
 - lightpath managed as a Grid resource

TCP Performance Issues

- TCP's current congestion control (AIMD) algorithms are not suited to gigabit networks
 - Iong time to recover from packet loss
- Line errors are interpreted as congestion
- Delayed ACKs + large window size + large RTT = problem

17 September 2002

Responsiveness

Capacity	RTT	# inc	Responsiveness
9.6 kbit/s	40 ms	1	0.6 ms
10 Mbit/s	20 ms	8	150 ms
622 Mbit/s	120 ms	~2,900	~6 min
2.5 Gbit/s	120 ms	~11,600	~23 min
10 Gbit/s	120 ms	~46,200	~1h 30min

Research Directions

- New fairness principle
- Change multiplicative decrease:
 - do not divide by two
- Change additive increase
 - binary search
 - local and global stability
- Caltech technical report CALT-68-2398
- Estimation of the available capacity and bandwidth*delay product:
 - on the fly
 - cached

Grid Interoperability

17 September 2002

• Interoperability between European and US Grids

- Middleware integration and coexistence
- GLUE = Grid Lab Uniform Environment
 - integration & standardization
 - testbed and demo
- Enable a set of applications to run on the transatlantic testbed:
 - CERN LHC experiments: ATLAS, CMS, Alice
 - other experiments: CDF, DO, BaBar, Virgo, Ligo, etc.

Relationships

Interoperability Framework

Status of GLUE Activities

Resource discovery and GLUE schema

- computing element
- storage element
- network element
- Authentication across organizations
- Minimal authorization
- Unified service discovery
- Common software deployment procedures

Resource Discovery and GLUE Schema

Computing Resources Structure Description

Future GLUE Activities

- Data movement:
 - GridFTP
 - replica location service
- Advanced authorization:
 - cross-organization, community-based authorization

• iGrid 2002

- US16 with University of Michigan
- US14 with Caltech and ANL
- CA03 with Canarie
- IST 2002
- ♦ SC 2002

Gigabit testbed for data-intensive Grids:

- Layer 3 in place
- Layer 2 being provisioned
- Modified version of TCP to improve performance
- Grid interoperability:
 - GLUE schema for resource discovery
 - Working on common authorization solutions
 - Evaluation of software deployment tools
 - First interoperability tests on heterogeneous transatlantic testbeds