

Web-Based Network Management: From Pull to Push

University of Twente January 22, 1999

Jean-Philippe Martin-Flatin Swiss Federal Institute of Technology, Lausanne Institute for computer Communications and Applications

martin-flatin@epfl.ch http://icawww.epfl.ch/~jpmf/

Outline

- Pre-Web Network Management Platforms
- Problems
- Web-Based Management
- Pull Model
- Push Model
- Future Research
- Q&A

Network Management Platforms

- OSI:
 - 5 SMAs (FCAPS)
- IP:
 - 3 core functions (mandatory):
 - network monitoring
 - data collection
 - notification handling
 - other functions (optional): configuration, ACLs, billing...
 - SNMP management framework (SNMPv1, SNMPv2c, SNMPv3)
 - Examples: HP OpenView, Cabletron Spectrum, IBM Netview, Sun Solstice...

IP NMPs: 3 Core Functions

- Network monitoring:
 - detect faults in network devices and links:
 - reactive w.r.t. network faults
 - proactive w.r.t. complaints from users/customers
- Data collection:
 - gather data to build daily, weekly and monthly reports:
 - proactive in the longer term
- Notification handling:
 - quick
 - react to events generated by agents (SNMP notifications)
 - react to events generated by the manager (event correlator)

Regular Management

- Ongoing network monitoring or data collection
- Automated
- 2 modes:
 - attended mode: operators gazing at GUIs (red-icon syndrome)
 - unattended mode: automated correlation, alarms (pager, email, telephone, siren...)
- Medium-sized to large networks

Ad Hoc Management

- Troubleshooting or configuration
- Manual
- Always attended mode: administrators and/or operators
- All networks
- Replaces regular management in small networks

Pre-Web NMPs: SNMP Management Framework

- Manager/agent paradigm
- Polling for data collection & network monitoring
- Unsolicited push for notification delivery
- SNMP communication protocol
- SMIv2 (ASN.1)
- BER encoding
- MIBs (generic, vendor-specific)
- ...

Pre-Web NMPs: Market Evolution

- Once upon a time, there were open systems [...]:
 - generic network equipment
 - generic management
- Market segmentation
- From generic MIBs to vendor-specific MIBs
- From generic management GUIs to vendor-specific management GUIs (add-ons)
- For customers, openness guaranteed by:
 - SNMP management framework
 - SNMP protocol

A Simple Model of Pre-Web NMPs

Data Collection

Network Monitoring

Web-Based Network Management

Swiss Federal Institute of Technology, Lausanne

CA Institute for computer COM Communications and Applications

Report Generation

Notification Delivery and Event Handling

Ad Hoc Management

Problems with Pre-Web NMPs (1/2)

- NMP vendors:
 - no problem, it's big bucks time!
- Customers:
 - NMPs are too expensive (hardware and software):
 - dedicated hardware for network management
 - limited support for third-party RDBMSs
 - need for Unix expertise to maintain existing platforms:
 - cost to migrate to Windows is too high
- Network equipment vendors:
 - the support of many device-specific add-ons for many NMPs and many OSs is too expensive

Problems with Pre-Web NMPs (2/2)

- Customers and network equipment vendors:
 - poor time-to-market for add-ons:
 - several months after hardware release if large market share
 - never if small market share:
 - startup companies need to resort to separate NMPs
 - versioning:
 - version mismatch between the add-on (NMP) and the MIBs (devices) while a vendor-specific MIB is gradually upgraded in a network:
 - update the NMP manually, device by device (no MIB-discovery protocol)
 - do not use new features of a MIB until all devices have been upgraded

Software Engineering Problems with Pre-Web Network Management (1/2)

- Protocol efficiency:
 - poor efficiency of BER encoding [Mitra 1994]
 [Neufeld and Vuong 1992]:
 - addressed by PER (Packed Encoding Rules) in OSI
 - SMIv1 and SMIv2 mandate BER encoding for all SNMP frameworks
 - poor efficiency of SNMP:
 - no efficient table retrieval mechanism --> repeated message exchanges
 - in varbind lists, OIDs take much more space than values

Software Engineering Problems with Pre-Web Network Management (2/2)

- Security:
 - lack of secure SNMP get or set in SNMPv1 and SNMPv2c
 - SNMPv3: just released, still to show its acceptance in the field
 - VPNs: need expensive encryption hardware to manage remote subsidiaries
 - firewalls: UDP relays are complex to set up and maintain [Chapman and Zwicky 1995]
- TCP vs. UDP
 - in theory, both OK to transport SNMP; in practice, only UDP
 - important SNMP notif. are lost for silly reasons (e.g. buffer overflow)
 - some mgmt data is more important than user data (e.g. heartbeats)

Web-Based Management

- What is it?
- What can Web technologies bring to pre-Web NMPs?
- Early solutions: HTML pages
- Today: pull model
- Tomorrow: push model
- Near future: mobile code (mgmt tasks delegated to agents)

What is Web-Based Management? (1/2)

- Marketing answer = WBEM
 - today, CIM schema but little Web [Thompson 1998]
- Proposed technical answer = integrated network, systems and service management based on Web technologies:
 - HTML forms
 - Java applets, servlets and applications
 - JDBC
 - Java RMI and Object Serialization
 - Java IDL
 - ••••
- This talk = Web-Based Network Management

What is Web-Based Management? (2/2)

- Distribution in Java:
 - HTTP
 - sockets
 - RMI
 - Java IDL (CORBA)
 - \blacksquare telecoms = yes
 - Internet = no
- Typically:
 - applet to servlet: HTTP or sockets
 - applet to Java application: sockets or RMI

What can Web technologies Bring to Pre-Web NMPs?

- Get rid of the NMP
- Reduce network overhead of management data
- Reduce development costs of add-ons
- Reduce time-to-market of add-ons
- Put small and large equipment vendors in fair competition
- Simplify management of remote subsidiaries across a firewall
- Improve support for third-party RDBMSs

• ...

HTML Pages

- Secondary tasks:
 - automate and standardize problem reporting (helpdesk)
 - put daily, weekly and monthly reports online (paper-free office policy)
 - online help for network troubleshooting:
 - administrators write symptom-driven HTML pages for operators, with pointers to online vendors' documentation
 - user-friendly access to management scripts (Perl, Tcl/Tk) and programs (ping, traceroute, netstat)

HTML-Based CLI

- Mapping between URLs and command line interface:
 - e.g. on Cisco routers [Bruins 1996]:
 - http://routername/exec/show/interface/ethernet0/
 - show interface ethernet0
 - generated via HTML forms, or embedded in symptom-driven HTML pages

Pull vs. Push

- Newspaper metaphor:
 - buy it everyday from the same newsdealer
 - receive it everyday by postal mail
- Pull model:
 - request/response paradigm
 - data transfer initiated by the manager
 - e.g., data polling in pre-Web NMPs (network monitoring and data collection)
- Push model:
 - publish/subscribe/distribute paradigm
 - parallel and independent data transfers initiated by agents
 - e.g., SNMP notifications in pre-Web NMPs

Pull Model

- Ad hoc management:
 - vendor-specific management GUIs coded as applets
 - HTTP together with SNMP
 - HTTP instead of SNMP
 - generic management GUIs coded as applets
- Regular management:
 - all GUIs coded as applets
 - data polling based on HTTP

HTTP Together With SNMP (1/3)

- [Bruins 1996]
- Device-specific management GUI (add-on) coded as an applet
- Management data transferred via SNMP
- Ad hoc management

HTTP Together With SNMP (2/3)

HTTP Together With SNMP (3/3)

HTTP Instead of SNMP (1/3)

- [Wellens and Auerbach 1996]
- Device-specific management GUI (add-on) coded as an applet
- Management data transferred via HTTP
- Ad hoc management

HTTP Instead of SNMP (2/3)

HTTP Instead of SNMP (3/3)

Generic GUIs Coded as Applets

Pull Model

- Ad hoc management:
 - vendor-specific management GUIs coded as applets
 - HTTP together with SNMP
 - HTTP instead of SNMP
 - generic management GUIs coded as applets
- Regular management:
 - all GUIs coded as applets
 - data polling based on HTTP

Web-Based Ad Hoc Mgmt & Pre-Web Regular Management

ICA Communications and Applications

Web-Based Network Management

All GUIs Coded As Applets

J.P. Martin-Flatin

Web-Based Network Management

The Push Model

- 3 phases:
 - publish
 - subscribe
 - distribute

Publication and Subscription Phases

Distribution Phase for Network Monitoring and Data Collection

Swiss Federal Institute of Technology, Lausanne

ICA Communications and Applications

Web-Based Network Management

J.P. Martin-Flatin

Distribution Phase for Notifications

Issues

- Positions of client and server now reversed:
 - transfer of management data initiated by the agent
 - client side of the persistent connection still on the manager side
 - we want the server to initiate a transfer in a client/server architecture!
- Firewalls: HTTP vs. sockets vs. RMI
- Timeout of the persistent connection

- Advantages:
 - bi-directional
 - simple to implement
- Drawbacks:
 - persistent connection is instable if socket timeout < push period
 - robustness: notifications delivery by the agent depends on a persistent connection created by another entity (the manager)
 - firewalls: require specific settings (UDP or TCP)

Java RMI (1/2)

Distribution via Java RMI for notification delivery

Distribution via Java RMI for data collection and network monitoring

Java RMI (2/2)

- Advantages:
 - bi-directional association between RMI client and RMI server (sockets underneath)
 - elegant design (fully OO network management)
- Drawbacks:
 - requires a full JVM in agents
 - RMI implementations are slow, and thus not scalable
 - firewalls: how to control ports used by RMI clients? (supposedly transparent to the application)

- Infinite number of MIME parts [Netscape 1995]
- Advantages:
 - simple to implement
 - firewalls: no change or minor change (assuming Web access)
- Drawbacks:
 - need to control the HTTP server timeout (Apache: OK)
 - need to control the operating system timeout (patch kernel: not OK!)

- Advantages:
 - simple design: client and server on the good side
 - robustness: the agent can reconnect immediately in case of timeout, it does not have to count on the manager
 - firewalls: no change or minor change (assuming Web access)
- Drawbacks:
 - security: connection created by external agent, not internal manager

The Collapsed NMP

ICA Communications and Applications

Web-Based Network Management

Many Problems Have Been Solved (1/4)

- Customers:
 - platforms are too expensive (hardware and software)
 - no need for dedicated hardware
 - less expensive software (small collection of applets and scripts)
 - capitalize on previous investment (e.g., use existing RDBMS)
 - limited support of third-party RDBMS vendors
 - no need for peer-to-peer agreement, use JDBC instead
 - need for Unix expertise to maintain existing platforms:
 - Image with the matter of t
 - migration cost from/to any platform is minimal
 - GUIs and Java applications are platform independent

Many Problems Have Been Solved (2/4)

- Network equipment vendors:
 - the support of many device-specific add-ons for many NMPs and many OSs is too expensive:
 - single applet
- Customers and network equipment vendors:
 - poor time-to-market for add-ons:
 - zero time-to-market, whatever the market share
 - access to integrated network management for startup companies
 - versioning:
 - MIBs and applets upgraded together, device by device

Many Problems Have Been Solved (3/4)

- Protocol efficiency:
 - poor efficiency of BER encoding
 - **BER** encoding no longer used
 - poor efficency of SNMP
 - SNMP as a communication protocol is replaced with HTTP
 - more management data per packet with push or RMI
 - management data can be compressed (gzip)
 - with RMI, no MIB variables anymore (higher level of abstraction)

Many Problems Have Been Solved (4/4)

- Security:
 - management of VPNs: HTTP security may be used instead of encryption boxes
 - still weak security
 - at least better than community string
 - firewalls: HTTP simpler than SNMP
- TCP vs. UDP:
 - HTTP makes it possible to use TCP to transfer management data
 - reliable transport layer for SNMP notifications:
 - important notifications are no longer lost for silly reasons
 - still no guarantee of delivery

Bonus

- Redundant managers are simple to support with push:
 - one step toward fault-tolerance

New Problems

- NMP vendors:
 - loss of revenue
 - is a market of generic applets sustainable?
 - need to find niche markets:
 - fault tolerance
 - large networks where scalability is stretched to the limits
 - real-time networks where responsiveness and speed are stretched to the limits
- Known problems:
 - clock synchronization
 - need to control timeout values
- Potential problem (to be investigated):
 - Java is slow (e.g. JDBC) --> impact on scalability?

Future Research: Implementation of the Push Model

- Demonstrate the feasibility of Web-based network management
- Develop a network management application in Java that implements the push model:
 - Sun's JMAPI and Java DMK (M-beans)
 - AdventNet's SNMP package
 - EmbeddedJava
- Compare the performances of pull- and push-based management
- Investigate the issues of scalability and performance
- Prototype: IP routers of Lightning (and others?)

Related Publications

J.P. Martin-Flatin. *The Push Model in Web-Based Network Management*. Technical Report SSC/1998/023, version 3, SSC, EPFL, Lausanne, Switzerland, November 1998. Submitted to *ACM Computer Communication Review*, December 1998.

J.P. Martin-Flatin. *Push vs. Pull in Web-Based Network Management*. Technical Report SSC/1998/022, version 3, SSC, EPFL, Lausanne, Switzerland, November 1998. Accepted for publication in *Proc. 6th IFIP/ IEEE International Symposium on Integrated Network Management (IM'99)*, Boston, MA, USA, May 1999.

J.P. Martin-Flatin. *IP Network Management Platforms Before the Web*. Technical Report SSC/1998/021, version 2, SSC, EPFL, Lausanne, Switzerland, December 1998.