

Advanced Network Architecture Research Group http://www.anarg.jp

Biologically Inspired Adaptive Multi-Path Routing in Overlay Networks

<u>Kenji Leibnitz</u>, Naoki Wakamiya, Masayuki Murata

{leibnitz,wakamiya,murata}@ist.osaka-u.ac.jp

IFIP/IEEE International Workshop on Self-Managed Systems & Services (SELFMAN 05)

Outline of the Talk

- Introduction
- Multi-Path Routing in Overlay Networks
- Biological Model
- Numerical Examples
- Conclusion and Outlook

Introduction

- Biologically-inspired models applied for telecommunication networks
- Perhaps not optimal in performance, but very robust
- Examples are *swarm intelligence*, *ant-based routing*
- This work is based on a model for *E. coli* cells to adapt to changes in the availability of a nutrient [13]
- [13] A. Kashiwagi, I. Urabe, K. Kaneko, and T. Yomo, "Adaptive response of a gene network to environmental changes by attractor selection"

Multi-Path Routing

- No explicit knowledge of network topology
- primary and secondary paths with transmission rates m_i
- Inline measurement of path metrics (e.g. RTT)
- Time intervals:
 - T_M for measurements
 - T_R for routing updates

Selfish Routing

- Overlay routing is "selfish"
 - flows try to maximize their performance
 - global system stability is neglected
- Adding restraint improves performance [1], e.g.
 - randomization in path selection
 - route changes with hysteresis threshold
 - increased time between route changes
- [1] M. Seshadri and R. Katz, "Dynamics of simultaneous overlay network routing", Technical Report, UCB

Routing Algorithm Sketch

- Set up *M* routes, set initial *m_i* (output values), *i*=1,...,M
- Every measurement window T_M evaluate the metrics ℓ_i (input values)
- Perform attractor-selection algorithm using m_i and ℓ_i
- After every route update window T_R , update the selection of paths *i* using m_i

Attractor Selection Model

- System described by its dynamic behavior
- Attractors are stable states to which system converges (e.g. Lorenz attractor)
- Transitions are noisedriven but controlled by an activity term

Attractor Selection Concept

- Solution = "rubber" ball permanently in motion
- "Gravity" pulls the solution downward (attraction)
- Activity influences noise (= height of jumps)

External Influence

- Simulated Annealing: noise is reduced over time
- Attractor Selection: noise is varied depending on how well the currently found solution is useful

- Dynamic system is controlled by activity $\boldsymbol{\alpha}$
- If $\alpha = 0$, systems acts like random walk, otherwise it converges to attractors
- Attractor locations are entirely defined by the differential equations themselves

Principle of Attractor Selection

Example for Routing Scenario

Robustness against Path Removal

Conclusion and Outlook

- Path selection scheme based on biological attractor selection model
- Parameters of the model are chosen such that selfishness is reduced
- In the future:
 - different mappings of path metrics
 - symbiosis between interacting flows
 - application to ad-hoc/sensor networks

