

Jan Coppens, Tim Wauters, Filip De Turck, Bart Dhoedt and Piet Demeester

IFIP/IEEE International Workshop onSelf-Managed Systems & Services (SELFMAN)

- CDN Architecture
- Replica Placement Algorithms
 - Reference solution by means of an ILP
 - General real-time placement heuristics
 - COCOA heuristic
- Evaluation of the placement algorithms
 - Complexity and scalability
 - Performance analysis of the RPA algorithms
 - Using Traffic Engineering for load balancing
- Conclusion and future work

- Replicate and distribute the content to the edges of the network
- Increase availability and throughput
- Decrease end-to-end delay and packet loss
- Focus on the delivery of video streams

- Layered architecture for a content distribution network
- Consists of multiple functional modules

- Layered architecture for a content distribution network
- Consists of multiple functional modules

- Reference solution by means of an ILP
 - Determines the optimal placement of a static request distribution
 - Evaluation off-line (NP-complete)
- General real-time RPA heuristics
 - Periodically replaces content in the CDN
 - Evaluation on-line

- Random replica placement
- Popularity algorithms (parallel for each server)
 - Popularity Local (pop-L) local content popularity
 - Popularity Global (pop-G) global content popularity
- Greedy algorithms (sequential execution for each content position)
 - Greedy Single (gre-S) cost of retrieving from origin
 - Greedy Global (gre-G) cost from other servers
 - Greedy All (gre-A) cost of all streams in CDN

- COCOA: Co-Operative Cost Optimization
 Algorithm
- Requires the aid of the Content Retrieval module
 - CR module determines the profit of available content or cost of missing content (real-time)
 - The COCOA RPA uses this information to make its placement decision (through monitoring module)
- Hybrid algorithm
 - Centralized content retrieval algorithm (also used with other RPA algorithms, but more intelligent)
 - Distributed replica placement

- Compare the computational complexity of the RPA heuristics
- COCOA has the same complexity as popularity local, but uses more accurate information

RPA	Requests	Topology	Process	Complexity
Random	None	None	Distributed	$O(C_sS)$
Pop-L	Local	None	Distributed	O(C _s SF)
Pop-G	Global	None	Hybrid	O(C _s SF)
Gre-S	Local	Origin	Distributed	$O(C_{\rm s}SF)$
Gre-G	All	Entire	Centralized	$O(C_{\rm s}S^3F)$
Gre-A	All	Entire	Centralized	$O(C_{\rm s}{\rm S}^4F)$
COCOA	CR Module	None	Hybrid	O(CsSF)

- Compare the computational complexity of the RPA heuristics
- COCOA has the same complexity as popularity local, but uses more accurate information

RPA	Requests	Topology	Parallelisn	omplexity
Random	None	None	Distributed	$O(C_s)$
Pop-L	Local	None	Distributed	$O(C_sF)$
Pop-G	Global	None	Hybrid	$O(C_sF)$
Gre-S	Local	Origin	Distributed	$O(C_sF)$
Gre-G	All	Entire	Centralized	$O(C_{\rm s}S^3F)$
Gre-A	All	Entire	Centralized	$O(C_{\rm s}S^4F)$
COCOA	CR Module	None	Hybrid	$O(C_sF)$

- Overhead of the average load of the algorithms to the ILP solution
- COCOA is better than pop-L and close to the gre-G placement

- Overhead of the average load of the algorithms to the ILP solution
- COCOA is better than pop-L and close to the gre-G placement

- Because of asymmetric topology and request distribution, the load is distributed unevenly over the network
- Can cause congestion in certain parts of the network (e.g. during a flash crowd)
- Traffic Engineering can be used to spread the flows over the entire CDN
 - Proactive in order to off-load core edges
 - Reactive in order to route flows round congested bottlenecks

Proactive Traffic Engineering (1)

- Using Traffic Engineering the average load increases, but the standard deviation drops
- The load on the core edges decreases:

- Novel hybrid CDN architecture and COCOA RPA
- COCOA placement algorithm
 - Nearly as scalable as popularity local
 - Close to the performance of greedy global
- Traffic engineering used to off-load the core edges
- Influence of replacements on the load of the network?
- Frequency of RPA executions?
- How can we make content retrieval distributed?