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Abstract— One of the biggest challenges in obtaining truly
self-managed networks is to automate the process of software
evolution, and in particular, the evolution of protocol implemen-
tations and configurations. In this paper we explore an approach
to network evolution that works inside the network software
to manage and which operates directly at the code level. We
investigate related code steering techniques in two directions:
One is the fully automatic selection of protocol service elements
where, depending on device characteristics and current operation
environment, each communication entity has to select among a
potentially wide variety of protocol implementations providing
similar services. The other direction relates to the automatic
synthesis of new protocol elements which are the result of
optimizing existing implementations for a specific context. We use
genetic programming as a tool to generate new configurations and
new code automatically. In this paper we present a framework
for injecting such code into a running environment in a non-
disruptive way and report on first exploratory results on resilient
protocol evolution.

I. INTRODUCTION

Many scenarios for future networks include cases where
explicit network management is not desired (home network
with some hundred networked gadgets), is difficult (arbitrary
mesh networks with wireless and wired links) or even is
impossible (intermittently connected sensors spread over a
wide area). Here, management should be handled by the
network itself in an autonomic way, without human inter-
vention. The network’s functional building blocks themselves
must become self-managed and must be able to organize
into a coherent network that exhibits purposeful behavior.
While an “autonomic network element” might still offer an
external management interface, in a first place it has to adapt
to changing requirements and environmental conditions and
yet be resilient. Malicious or erroneous entities could then
try to disturb its building blocks in any possible way, but
ideally, these blocks would detect and defeat attacks and
would recover and heal themselves to continue providing the
required services. In case of failures, alternative service blocks
would replace the non-functioning ones in a reactive and non-
supervised way.

Some of the environmental changes like new user goals,
new software or hardware constraints or patterns in dynamic
resource availability, can be predicted by the network software
engineers at design time and can be built into adaptive
algorithms able to steer the network to the desired operating
point. However, not all kinds of changes can be foreseen.

There will always be cases that require modifications in the
adaptive algorithms themselves: These new algorithms must be
engineered, then programmed, and redeployed in the network.
Today this process is slow and requires the effort of many
people (network managers, engineers, programmers), which is
out of scope for autonomic networks. Ultimately, protocols
and algorithms for these networks should evolve during their
own execution, with minimum service disruption.

In this paper we describe our framework for protocol
evolution based on genetic programming. We concentrate on
two research directions: the first one is to automatically select
combinations of protocol modules adapted to given network
conditions; the second is the automatic synthesis of new
protocols optimized for a specific context. The contribution
of this paper is to show the feasibility of automatic network
software selection based on service agnostic target functions.
This result is based on the introduction of competition at the
level of functional blocks and the use of genetic algorithms to
steer the selection process. We summarize our initial experi-
mental results, using simple case studies, still in a simulated,
off-line environment, but with considerations and parameters
intended to progressively detach the framework from the off-
line simulation out into the real world.

This paper is structured as follows: Section II summa-
rizes the state of the art in program and protocol evolution
techniques. Section III states our position and describes our
framework for protocol evolution. Section IV summarizes the
experimental results. Section V concludes the paper with our
outlook for this new area.

II. STATE OF THE ART

Automatic programming or program synthesis refers to any
method for automated generation of a computer program that
is able to solve a given problem expressed in a high-level form.
Examples include variations of meta-programming, deductive
program synthesis [1], and evolutionary methods such as
genetic programming.

Genetic Programming (GP) [2] evolves computer programs
automatically from random initial code, using genetic opera-
tions such as crossover and mutation, and evolution by natural
selection (“survival of the fittest”) to select the solutions that
best satisfy specified criteria. GP is typically employed when
the solution to a problem is not known or very difficult to
program by hand.
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GP applications generally rely on off-line code generation.
Once in operation, the generated code does not continue to
modify itself to adapt to changing situations. One of the
reasons for that is that genetic operations cannot guarantee
error-free code for each generated program. Another drawback
of off-line generation is that the code evolved in a simulated
environment will not necessarily work as expected in the real
world.

Genetic programming has been applied to evolve new
programs at run-time in domains such as evolvable hardware
and robotics. However, to the best of our knowledge, the on-
line evolution of networking protocol code has not been tried
yet. In [3] genetic algorithms are applied in a decentralized
way to evolve agents that provide network services. Their
results show that evolution can improve agent performance.
However, in their scheme, the code itself does not change.
They focus on the evolution of parameters that trigger certain
predefined behaviors.

Protocol synthesis methods [4] aim to generate a valid
protocol specification that satisfies a supplied service speci-
fication. Since these methods must guarantee error-free code,
they are still not feasible for on-line evolution.

An iterative deepening search method is proposed in [5] to
find protocol specifications that satisfy a given set of security
properties. In [6] genetic search is used to synthesize from
scratch protocol implementations expressed as communicating
finite state machines. This research is extended in [7] and
shows that relatively complex protocols can be synthesized
in this way, and in certain cases these protocols can even
outperform a reference protocol designed and validated by hu-
man beings. However in most cases the fitness of synthesized
protocols is significantly lower than the reference protocol.

III. EVOLVING COMMUNICATION PROTOCOLS

The main premise underlying our work is that software
in an autonomic network must be self-modifying. Otherwise,
humans have to cater for the software’s adaption every time a
case is encountered which was not anticipated at design time.

We envisage different levels at which self-modification of
software takes place and different time scales at which such
modifications can happen. A first step, aimed at a shorter
time scale, is the configuration of function blocks, where the
challenge consists in selecting the right combinations from
ready-made modules. This is the focus of this paper. Today,
this is mostly controlled by the standardization process and
interoperability tests. Although several systems able to dynam-
ically reconfigure software have been proposed, for instance
[8], most of these systems still rely on humans to program
exactly what kind of reconfiguration should be performed
under which circumstances. In the future we imagine that a
network “settles” by itself on different protocol sets without
having humans to intervene. At a longer time scale, self-
modification can be extended down to the level of single
instructions where the autonomic network has the power to
create new implementation variants, instead of just configuring
coarse grained functional blocks.

A. Resilience and Competition

For such a self-managing process to work we need a modus
operandi that permits adaption (medium time scale) as well as
evolution (long term). Adaption relates to the configuration of
existing functionality while evolution refers to the modification
of old and generation of new functions. We believe that two
attributes of such a system are key for its viability: resilience
and competition. Inherent resilience is needed, otherwise there
is a risk that (malicious or erroneous) function blocks can
be inserted that disrupt the network’s operation. The second
attribute is competition: the autonomic network operates in a
constant optimization mode where best suited code variants
are selected.

B. Software Hardening and Genetic Programming

We have started to explore the feasibility of self-modifying
communication software by demonstrating protocol resilience,
where protocol implementations can survive the removal of an
arbitrary code line [9]. In the current paper we explore genetic
programming for modifying, recombining and erasing protocol
modules. Other machine learning methods or heuristics could
also be envisaged [5]. However, plain genetic programming
lends itself for our project because it is agnostic to the
functions adapted, and naturally extends to the finer grained
code evolution that enables long-term synthesis and evolution.

The execution environment for the protocol software should
be amenable to genetic programming. Section III-E explains
our choice of the Fraglet model [10] for this purpose.

C. A Framework for Automated Code Steering

Ideally, a software environment for an autonomic network
would feature continuous adaption and evolution: Alternative
code variants would co-exist in parallel with the currently
best selection of protocol implementations. In terms of code
steering, there would be a mechanism in place for on-line eval-
uation and selection of the alternatives. This on-line evolution
would be a continuously ongoing process that is decentralized
and asynchronous, working on each node and many levels
inside the graph of functional modules.
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Fig. 1. Conceptual framework for automatic protocol evolution

Figure 1 shows a conceptual model of how resilience and
competition work together to enable the automatic evolution
of protocol implementations and configurations. Applications
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(or any client protocol) delegate service provisioning to a
resilient protocol implementation, and from time to time or in
parallel give a chance to test candidates. Based on their per-
formance, new service implementation variants can increase
their chance to be selected a next time. Service variations
do include different ways of combining sub-services. Because
the evaluation and selection mechanism takes into account
the overall performance of a service implementation, it will
give preference to the service with the most optimal internal
composition and configuration of sub-services.

Our current implementation of the model of Figure 1 is still
limited to off-line evolution, i.e. to the case of synchronous
evaluation and selection, so there are no concurrent services
yet. However we plan to progressively detach it from the off-
line sphere in favor of the long-term goal of on-line evolution.

D. Genetic Programming Set-up for Protocol Evolution

Genetic Programming is used to evolve computer programs,
which in our case correspond to communication protocols
or protocol structures. Each program is an individual in a
GP population. Each individual or program is regarded as
genetic material in an evolutionary plan. In our case, an
individual could correspond to a configuration of protocols to
be evaluated (e.g. forming a protocol stack or other arbitrary
protocol structure). In the simplest case, the configuration
corresponds to a single protocol, which is the starting case
we consider for this paper. The metaphor for the code is the
genotype, which encodes the functioning of an individual and
is manipulated through genetic operations. In our case, the
protocol genotype is divided into modules, that make up the
“genes” of the individual.

The population evolves from one generation to the next by
the use of well-known genetic operators such as crossover,
mutation, and cloning. Cloning simply produces an identical
copy of an individual. Crossover combines the genetic material
of two individuals by swapping a segment of the first one with
a segment of the second one. Mutation randomly modifies
a small portion of an individual. The way in which genetic
operators are combined to produce new individuals determines
the speed of the search and extent of the search space explored
as the GP run progresses. The general rule is to submit the best
individuals of the population to crossover, and apply mutation
with a small probability.

The crossover operator in our set-up is a simplified imple-
mentation of the genetic concept of homologous recombina-
tion. Homologous recombination states that the exchange of
genetic material can only occur between functionally compat-
ible DNA segments, and is only triggered when the two DNA
strands are completely aligned. This form of recombination
preserves gene functionality, promotes genetic stability, and
increases the probability of producing viable offspring. In our
set-up, crossover may only occur at gene (module) bound-
aries and between functionally equivalent modules. Modules
are identified by a name, and crossover operations are only
allowed to exchange modules with identical names.

The fitness measure is the performance of the protocol as
perceived by the applications. They reward correct behav-
ior and punish incorrect one when detected. For instance,

the score of an individual is incremented when it performs
the correct operation (e.g. successfully delivering a packet),
and it is decremented when an error is detected (e.g. an
acknowledgment is issued for a data item that has never been
actually received). Resource consumption, in terms of memory
occupied by the genotype, is proportionally penalized.

The GP algorithm used follows a fairly standard tournament
selection mechanism, in which a number of individuals is
selected for a tournament. The winning individuals and/or their
descendants replace the losing ones.

E. Fraglets

The Fraglet paradigm [10] has been proposed as part of
our search for feasible ways to achieve automated synthesis of
protocol implementations. It is an instance of Gamma systems
[11], a chemical model where “molecules” interact with each
other or undergo some internal transformation. A fraglet is
a string of symbols [s; : so Sp | representing
data and/or protocol logic. It is a fragment of a distributed
computation, that may be carried in packets or stored inside
a network node. The fraglet processing engine continuously
executes tag matching operations on the fraglets in the store,
in order to determine the actions that should be applied to
them. The fraglet instruction set contains two types of actions:
transformation of a single fraglet, and “chemical reaction”
between two fraglets. The instruction set is described in [10],
[9], along with examples of processing and protocol functions.

The fraglets model has many relevant properties that must
be highlighted in connection with automated protocol synthe-
sis and evolution. First of all, any string of symbols is a valid
fraglet, therefore fraglets can be split at arbitrary places and
merged with other fraglets to produce different code. A second
property is the ability to express code and data in a uniform
way. Code is manipulated just like any other form of data, and
it is easy to express rules that generate and delete code from
the running pool. A third aspect is the ability to express code
mobility in a natural way: any fraglet can be regarded as either
a set of packet header tags that can be processed by a header
processing engine, or as a program fragment that is executed
at a given node. This facilitates the dynamic deployment of
new code logic.

A fourth property of the fraglet environment stems from its
roots in Gamma systems: it enables programs to be expressed
in a highly parallel way that is very close to their specification,
without artificial sequentiality constraints. This is relevant for
automated program synthesis and evolution, in two ways: first,
this parallelism can be used to produce resilient programs as
shown in [9], which tolerate the loss of parts of their code
stream, due to fallback alternatives running in parallel. This
can be used to diminish the impact of malfunctioning code.
Secondly, the fact that programs are relatively compact and
close to their specification could open up potential avenues
for deterministic synthesis techniques based on specification.

IV. SUMMARY OF EXPERIMENTS

We have performed a few experiments using the fraglet
environment to verify whether software configurations can
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adapt to their environment, by the mere application of generic
and service agnostic GP methods. A simple case is considered
where a reliable delivery service must be provided over differ-
ent channel characteristics. The task is to transmit all packets
from the client application, with acknowledgment of correct
delivery. Two types of underlying transmission channels are
considered:

o Perfectly reliable channel: In this case, the protocol does
not need to retransmit packets. A simple implementation
of this is the confirmed delivery protocol (CDP) presented
in [10].

o Unreliable channel: In this case, the protocol must re-
transmit lost packets. A reliable delivery protocol (RDP)
has been implemented for this purpose. It takes an input
payload from the application, sends it to the destination,
stores a copy locally, and sets a waiting timer. When the
timer expires, and the corresponding local copy of the
information is still stored, the packet is retransmitted.
When an acknowledgment is received, the local copy
is destroyed; this cancels any pending retransmissions
scheduled for the item.

Both CDP and RDP are very simple protocols able to
handle only one packet at a time. But they suffice to illustrate
the concepts of evolutionary protocol module selection, code
adaptation and re-adaptation.

The quantitative results of the experiments are reported in
detail in [12]. We summarize their qualitative aspects below.

A. Adaptation

The goal of this experiment is to verify whether a mixed
population of protocols is able to adapt to a given environment.
Two identical instances of a mixed population consisting of
CDP and RDP variants are created. One is inserted into a
lossy channel environment and the other into a non-lossy one.

Figure 2 shows the adaptation of the initially mixed popula-
tion to the lossy environment (the non-lossy one is omitted due
to space constraints). The upper part shows the absolute fitness
scores, and the lower part shows the percentage of high and
low-score individuals. A high-score individual is an individual
that has achieved a score equivalent to at least 80% of the best
score from its generation. A low-score one scores less than
40% of the best of its generation. In this experiment, the best
individual is also the optimum (hand-designed), and the GP
selection process succeeds to keep it in the population through
the successive generations.

The population on the non-lossy channel (not shown) starts
with a low average score, but after a few generations most
of the individuals have a score close to the best. After four
or five generations the retransmission code is eliminated, and
at the end of the experiment the surviving individuals are all
instances of CDP.

In the lossy case (Fig. 2), after roughly 15 generations,
more than 80% of the population is made up of high-score
individuals. The retransmission code spreads very quickly
through the entire population on the lossy channel: all the
individuals contain it after the first couple of generations, and
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Fig. 2. Absolute scores and percentage of high/low scores for the lossy
environment

at the end of the experiment all individuals are variations of
RDP.

In both lossy and non-lossy cases, mutations are mostly
responsible for the recurrence of low-performance individuals,
even after these have been eliminated by the fitness selection
process. The purpose of mutations is to introduce genetic
variability. However, it is well known that most mutations
are harmful. In our case, mutations are kept in the system
in order to test its capacity to produce new code, and its
resilience to potentially disrupting code. The production of
new useful code has not been verified in such short runs. On
the other hand, the fact that the system can still adapt in spite
of harmful mutations is an indication that resilience at the
population level is possible even with a relatively high rate
of mutation. However this system is obviously not perfect.
There are still clients affected by low-performance individuals.
Resilience is not achieved at the individual level. Furthermore,
as it adapts, the population loses genetic variability, which
hinders its capacity to readapt. This problem is also present
in nature, when genetic variability is lost in small populations
adapted to a fairly stable environment.

B. Re-adaptation

In this experiment we investigate the capacity of a popula-
tion to readapt to an environment different from the one where
it has originally evolved.

We inject a population evolved in a lossy environment
into a non lossy one and vice-versa. The results (graphs
not shown for conciseness) clearly show that the population
cannot readapt. The lost retransmission modules cannot be
recreated in such a short time by genetic operators only.
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Crossover only recombines existing modules, and mutations
of individual symbols is simply a too slow and randomized
process. The search space for the solution is far too vast,
spanning all the combinations of about 30 symbols at around
200 positions. Nevertheless, if we inject a single optimally
adapted individual in the population, it instantly redeploys and
the entire population readapts after a few generations.

C. Discussion

We can extract several lessons from these early experiments.
We first discuss the aspects related to genetic operators and
other GP parameters. We then discuss future issues of re-
silience and on-line evolution.

We have modeled homologous recombination which is gen-
erally overlooked in classical GP. By restricting crossover to
functionally compatible genes only, we have a high probability
of producing viable individuals. In a few earlier experiments
we had tried crossover at arbitrary points, and the result was
the well-known GP phenomenon of intron bloating [2]. This
phenomenon is the accumulation of useless code in individ-
uals, leading to populations of individuals with very large
genotypes, containing portions of code that serve no functional
purpose, analogous to junk DNA in living organisms. These
junk portions however protect the individual from destructive
crossover operations, as the probability of crossover points
falling inside an intron — and therefore not breaking existing
useful functionality — increases with the percentage of introns
in the individual. As soon as we introduced homologous
recombination, the intron growing problem disappeared.

However, homologous recombination in a limited popula-
tion of simple individuals with few genes, as shown in the
experiments, leads to low genetic variability, and after a few
generations most of the variability is lost.

Mutation is usually regarded as the main source of genetic
variability in GP populations [2]. However, the benefits of
mutation can only be observed at the very long run, since
most mutations are lethal. In our short-run experiments, we
have not been able to observe really productive mutations. We
have to interpret these very preliminary results with caution;
nevertheless, they seem to indicate that new, more intelligent
techniques for evolving populations of genetic protocols need
to be devised to make on-line evolution a reality.

Fitness evaluation still has a centralized component in
our current set-up. This prevents the propagation of cheat
programs, e.g. programs that lie about transmitted or acknowl-
edged packets. Decentralized fitness evaluation is a non-trivial
issue. Perhaps redundancy and reputation mechanisms could
be combined to provide a safe and reliable way to evaluate
the behavior of protocols at run-time.

We are starting to investigate how to add resilience at
the level of individuals, as opposed to the level of entire
populations as described in the experiments above. The idea is
to combine our previous resilience work [9] with genetic pro-
gramming, by modelling each protocol as tuples of redundant
genetic code, analogous to chromosome pairs. This should
in principle improve resilience, and help preserving genetic
variability in small populations.

V. CONCLUSIONS AND OUTLOOK

In this paper we propose an intrinsic approach to the
automated evolution of network software that can be used for
self-deployment, self-configuration of functional modules and
even automatic synthesis of protocol implementations. These
are important elements of future self-managing, autonomic
networks in which protocol code must be self-modifying.
We argue that automated protocol evolution becomes feasible
if the networking code is resilient such that we can have
competing protocol variants running in parallel.

We have carried out adaption experiments using genetic
programming to evolve code fragments based on a chemical
execution model for protocols. These early experiments show
that a system can automatically and gradually evolve depend-
ing on the environment it is confronted with, provided that a
minimum variability of code instances is kept.

A more complex task, that has yet to be demonstrated, is
an on-line version where software evolution is a continuous
activity. Our experiments have provided some insights on the
obstacles that have to be overcome before this objective can be
realized. For instance, fitness evaluation in a decentralized and
competitive environment is a non-trivial issue. Furthermore,
we still lack a solution for keeping variability and recreating
lost code fragments that suddenly become useful. A fundamen-
tal issue is how to improve genetic operators to obtain clever
program transformation functions able to evolve genuine new
code suited for unforeseen situations.
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