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ABSTRACT

Multi-tier web services enable efficient, scalable, and com-
posable Internet services. But, as they become increasingly
complex, so too does the underlying middleware layer. During
high demand periods, some components, such as persistent
storage, become overloaded. This leads to long response times
that make the site unusable. Formulating admission control
policies for web services is a daunting and error-prone task,
because even modest-sized web sites can consist of dozens to
hundreds of request types. There is a lack of system tools and
instrumentation for operators to identify connections between
requests and their effects. Thus, we need more self-adaptive
web services that can expose these effects to the operator and
give he or she the tools to appropriately respond to overload.

We propose an approach to designing such self-adaptive
web services by relying on 1) simple statistical techniques for
uncovering request effects in multi-tier systems, 2) a black-
box approach to component monitoring, 3) a visualization
tool summarizing statistical results to facilitate human decision
making, and 4) efficient techniques for operators to invoke
admission control based on those statistical findings. We argue
that including humans in the loop compliments, rather than
detracts, from self-adaptive design goals. Additionally, we
describe ongoing work on an implementation of a web service
that embodies these mechanisms. Our approach leads to a web
service that can serve approximately 70% more requests, while
lowering the maximum request latency by over 78%.

I. INTRODUCTION AND MOTIVATION

“Web Services” are increasingly used for deploying web-
based application portals such as eBay[10] and Amazon.-
com[1]. They are commonly built using middleware, that is,
composable building blocks such as Http containers, Java-
based application “beans”, and persistent state management.
These components are distributed across tiers of servers–web,
application, and database. As web services offer newer and
more sophisticated functionality, the underlying realization of
those services in the middleware become more complicated.
Today’s web services can consist of dozens or hundreds of
request types and middleware components.

The separation and replication of components allows web
services to scale in response to new resource demand. They do

this by introducing new servers hosting the particular compo-
nent in need. Despite this scalability, flash traffic patterns can
drive a web system’s middleware component (or components)
into overload. This leads to poor performance as the system is
unable to keep up with the demands placed on it and users see
increased response times for their requests (See Figure 3(a)).
Experiments have indicated that users can tolerate roughly
eight seconds of delay before they either retry their request
or leave the site[4].

While the need for an admission control scheme is clear, for-
mulating an effective system is daunting and error-prone. This
is due to the large number of request types and middleware
components. Different requests to a web service stress different
middleware components[2], [5], [6]. It is advantageous to
preferentially throttle those requests most correlated to the
bottleneck. To do that, better visibility into the relationship
between requests and their effects is necessary. Unfortunately,
current system software and site monitoring tools do not
provide the operator with this visibility. For web services to
be more self-adaptive, they need to be more introspective,
identifying correlated effects between internal components,
so that the operator can act to shed load from overloaded
components without penalizing all users to the site.

To design such self-adaptive web services able to gracefully
respond to overload, we propose four design mechanisms: 1)
simple statistical techniques for uncovering request effects in
multi-tier systems, 2) a black-box approach to middleware
component monitoring, 3) a visualization tool summarizing
statistical findings to facilitate human decision making, and
4) efficient techniques for operators to invoke admission
control decisions based on those findings. We will also argue
that including humans in the loop compliments, rather than
detracts, from self-adaptive design goals. We present ongoing
work on a web service based on the open-source RUBiS
auction site[17] that embodies these mechanisms. RUBiS is
a web-service benchmark designed to profile the performance
of an auction site like eBay. Our approach leads to a web
service which is able to serve 70% more requests per second.
Additionally, the maximum request latency seen by the user
is reduced over 78%. These initial results show promise that
middleware-based web services can greatly benefit from more
self-adaptive design.



II. RELATED WORK

Recent large Internet sites such as Amazon.com[1] and
eBay.com[10] have adopted a 3-tier approach to designing
their sites. Examples of middleware layers include Sun’s
J2EE system[13] and BEA Logic’s WebLogic[3]. Several open
source web middleware systems have also been developed,
such as JONAS[15] and JBoss[14].

We can study the performance and operation of Java-based
middleware systems using the RUBiS system[17], a publicly
available workload generator patterned on eBay. The authors
of RUBiS showed that the mixture of requests–the workload–
plays a large role in determining system bottlenecks[2], [5],
[6].

This differs from some previous attempts to apply control
theory to operating systems and 3-tier systems, which has
assumed that requests to the system are homogeneous, that is,
affect the system in the same way. The SWIFT system[11],
[12] is a systematic approach to introducing input/output
interfaces to operating system components, which matches
well with the well defined interfaces between middleware
components. The ControlWare system[21] is a toolkit for
automatically mapping QoS requirements into simple control
loops in 3-tier systems.

Considerable work has been applied to correlation analysis
of web services both in research literature and in the form
industrial best practices. The SLIC project at HP Labs[7]
attempts to identify which components are responsible for
web service SLO violations by fine-grained monitoring and
instrumentation. Our work is complementary. We differentiate
requests so that control theory controllers have finer grained
actuation opportunities with macro-level observations. The
Performance Management project at IBM has explored using
control theory and statistical monitoring to detect and adapt
to unexpected traffic surges[16], [8]. Our work has focused
on black-box approaches to middleware systems that avoids
fine-grained instrumentation code. However if additional infor-
mation is available, our system would benefit from the above
mentioned techniques.

The visualization of structured data, including web data,
has been studied in [9], [19], [20]. Our work attempts to use
visualization techniques to show the weight of various requests
in terms of their correlation with bottlenecks with little system
or component knowledge.

III. OVERLOAD AVOIDANCE IN SELF-ADAPTIVE WEB
SERVICES

Overload occurs when the load placed on a web service
exceeds its ability to serve requests. Flash traffic and sudden
load spikes operate at timescales faster than operators can
upgrade their system. Overload mitigation strategies can be
used, at least temporarily, during this time. Load shedding
often takes the form of HTTP-level admission control, in the
form of status code 503 TOO BUSY responses to the user.
However, this adversely affects all traffic to the site, even
when the bottleneck is driven by a small population of requests

(about 15%, in our RUBiS emulation). This motivates the need
for selective admission control.

In selective admission control, we first throttle back requests
contributing to the overload, while leaving all other requests
unaffected. In our implementation, the bottleneck was the
database’s CPU, and the two contributing requests involved
searching for items.

Problem statement: Given a system bottleneck component
C, identify those requests correlated with C. The data used for
that purpose should be collected with minimal disruption to
the system. Once identified, reduce the number of correlated
requests until the system is no longer overloaded.

We now outline the four mechanisms of our approach in
more detail.

A. Uncovering Request Effect through Correlations

When a request arrives to the web server, it may invoke
processing in one or more Java components in an application
tier. In turn, these either access the database, or return a result
directly to the user. While logging and status information is
available on each of the servers hosting these tasks, there are
no good system tools for understanding crosscuts through the
layers. Given the large number of possible crosscuts, we need
a more sophisticated way of looking through the large amount
of data collected at each point to discern correlations between
components.

To find which requests are correlated with our bottleneck,
we make use of 1) the Apache web logs collected from the
web tier, and 2) the CPU load average as reported by the
sysstat[18] tool. Our choice of these systems-level metrics
is explained in Section III-B. We chose to use Pearson’s
Correlation Coefficient to find the relationship between request
type and CPU load, because it is efficient and simple to
calculate. For that statistical technique, we processed the logs
as follows:

1) Divide the Apache web log into time intervals tint. (We
chose tint = 1s)

2) For each interval, count the number of each request type.
3) Form an n by m matrix M where n is the number of time

intervals, and m is the number of request types. Element
(i,j) of M represents the number of requests of type j
that arrived in time period i.

We then find the correlation between columns of this matrix
and the vector of CPU load from the database (This technique
can be used for other bottlenecks such as disk I/O). The result
is shown in Figure 1. The request types highlighted in bold are
those significant (to the α = 0.05 level) and positive. These are
the candidate request types that should undergo admission con-
trol. We found the results surprising, since before performing
the analysis we expected more of the requests to be correlated
with database CPU load, for example BrowseCategories.php
(which returns more results than SearchItemsByCategory.php).
In fact, the requests identified by our algorithm represent a
small fraction of the total requests, yet account for a large load
on the database. We have studied more complicated statistical
modeling techniques, such as stepwise regression, however



Request Type P-value Coefficient
BrowseCategories.php 0.1747 -0.0350
BrowseRegions.php 0.0926 -0.0434
SearchItemsByCategory.php 0.0000 0.5654
SearchItemsByRegion.php 0.0034 0.0756
AboutMe.php 0.7702 0.0075
RegisterUser.php 0.4876 -0.0179
SellItemForm.php 0.4891 0.0179
RegisterItem.php 0.8767 0.0040
ViewItem.php 0.0953 -0.0431
PutComment.php 0.5157 -0.0168
ViewUserInfo.php 0.4646 -0.0189
PutBidAuth.php 0.8641 -0.0044
PutBid.php 0.2566 -0.0293
BuyNowAuth.php 0.9710 -0.0009
BuyNow.php 0.1206 0.0401
ViewBidHistory.php 0.9741 -0.0008

Fig. 1. Request effects on the system bottleneck as discovered by Pearson’s
correlation coefficient. Highlighted entries are statistically significant and have
positive correlations. We choose these requests as candidates for selective
admission control.

simple pairwise correlation are sufficient to uncover request
effect in our system.

B. Black-box Component Monitoring

Self-adaptive systems rely on sufficient self-monitoring to
drive statistical inference algorithms, however that monitoring
should be as minimally invasive as possible. There are at least
three motivations driving this requirement:

1) Fear of disrupting a running service. When we dis-
cussed implementing our approach on a large, political
web log, the operator responded by saying: “My concern,
obviously, is that (the site) isn’t a laboratory project, but
a real world application that must maintain as high an
up-time as possible. So I’d be wary of experimenting
in a way that would potentially compromise service.”
Thus, we base our statistical analysis on data that is
easily accessible and routinely collected (web logs and
sysstat measurements). Additionally, instrumenting oper-
ating systems components like file systems and system
call interfaces is very system-specific, and requires expert
knowledge. Since hardware and software changes are of-
ten frequent events, such low-level instrumentation code
would need to be rewritten each time a component is
upgraded or changed.

2) Rapidly changing services. A fact of the web today is
that it undergoes rapid change. Both the capabilities of
the site change, as well as the traffic patterns arriving
to it. A large web site likely upgrades hardware and
software components on a regular basis. Operators will
resist invasive monitoring and instrumentation that has to
be replicated whenever system components are upgraded.
By treating each component as a black box, we do
not modify individual system components (such as the
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Fig. 2. This visualization shows the requests identified by our system as
candidates for selective admission control. Additionally, the graph shows their
percentage of the total number of requests. Operators can use this information
to judge how proposed changes will affect the system.

filesystem, O/S system calls, or other hooks). This makes
our approach more portable as well as less invasive.

3) Distributed ownership of components. Depending on
the nature of the service, responsibility for the site might
be partitioned between several system operators. For ex-
ample, a content group might write enterprise Java beans
for a new service, while a different group maintains the
application container. Coordinating monitoring operations
between these can be difficult. By focusing on high-level
component monitoring, different groups do not have to
coordinate software upgrades and system modifications.
Additionally, it may be impossible to instrument compo-
nents that are not open-source.

As our results in Section IV, high-level measurements are
often sufficient for identifying correlations and request effect
that can greatly improve running systems.

C. A Visualization Tool for Automatic Overload Mitigation

We advocate an approach for building self-adaptive web
services in which the operator plays an important role, and
remains “in the loop”. By better visualizing underlying con-
nections between components and load, operators become
better decision makers than they would become otherwise.
We revisit the three motivations from the previous section and
show how better visualization addresses them:

1) Fear of disrupting a running service. Like all large
systems, web sites are built up and tweaked over time.
Operators are resistant (to put it mildly!) to turning con-
trol over their sites to automatic systems. Instead, we see
that systems can become self-adaptive by presenting op-
erators with relevant information needed to diagnose and
pinpoint performance problems as well as suggestions
for how to proceed. This allows operators to incorporate



these observations in planning and managing the service.
In addition to acting as a useful systems management
tool, taking this approach increases the likelihood of
adoption. Once operators feel more comfortable with the
tool, it can be made more automatic.

2) Rapidly changing services. A fully-automatic approach
to system optimization would have to capture information
about which requests are important, which parts of the
web service have preference over other parts, and so on.
In dynamic systems, these factors change rapidly. Some-
times important customers or products should get priority
over others (e.g., those that pay more get more). Rather
than formalizing these relationships in our algorithm, we
use the visualization tool as a way for operators to make
decisions that respect these site-specific preferences. If
they want to implement the recommendations, or just
part of the recommendations, they can choose to do so.
Again, as the tool is used more often, some admission
control decisions might be programmed to take effect
automatically without operator involvement.

3) Distributed ownership of components. Because modern
web services are distributed across middleware compo-
nents and servers, identifying the effect of requests on
resources can not be done at a single point, or within
one administrative group (in multi-group management
environments). So while the database manager might
know that the CPU becomes overloaded weekday af-
ternoons, it is the web site operator who realizes that
load to a particular Java component peaks at that time.
By visualizing request effect through the system, these
observations can be correlated into one display that gives
more insight to the system’s operation.

In our system, the visualization capability is still under
development. However Figure 2 gives an example of the type
of information we expect it to convey. The pie chart shows the
percent of traffic that is correlated to our bottleneck. Within the
correlated slice, specific request types are enumerated. From
this simple graph, an operator can see which requests would
be affected by selective admission control, as well as what
percent of the total traffic they represent. The operator might
choose to implement the policy as given, or they might choose
a subset of the correlated requests. The next section outlines
how their decision would be implemented in the network itself.

D. Effective Actuators for Admissions Control

Once a subset of the requests are identified as candidates
for selective admission control, the operator needs a way to
reduce the rate at which they arrive. This can be done at the
HTTP level through 503 TOO BUSY status messages, or at
the network level through bandwidth shaping. We chose to
implement the throttling at the network level, since that did
not involve modifying the web tier. The specific actions taken
in our system are described in Section IV.

To tie together the visualization tool and the actuators for
admission control, we envision an interface in which each
request type is listed, along with its likelihood of relieving

the noticed bottleneck based on our statistical findings. Such
a display resembles a ”top talkers” graph. In Figure 2, they
would be able to select requests identified by the bar graph.
Once selected, new filters could be sent to the webserver (in
the case of HTTP-based throttling), or to the network appliance
(for network-level throttling). In either case, the operator
would have a tactile way to see the effect of their choice
on both the bottleneck and the arriving traffic. Extending the
visualization capabilities of our system to include this interface
is ongoing work.

IV. INITIAL RESULTS

We have deployed a web service based on the RUBiS
auction site that embodies the four mechanisms outlined in this
paper. Our testbed consists of an IBM BladeCenter populated
with twelve HS20 server blades. Each blade has two 3.06 GHz
Xeon processors, 1.5 GB of RAM, and two 40 GB IDE hard
drives. Additionally, each blade has two BroadCom gigabit
Ethernet adapters connected via passive backplane to two
Nortel Layer 2-7 Gigabit Switches. The Nortel switches can
perform deep packet inspection to identify HTTP request types
(based on URL pattern matching) at gigabit rates and assign
VLAN tags to packets that should be subject to admission
control. To perform the bandwidth throttling, we use the Linux
Traffic Control (tc) extensions to reduce the rate of correlated
requests from 3.5 Mbits/sec to 1.0 Mbit/sec.

As Figures 4 and 3(b) show, performing this selective
admission control greatly improves the performance of the
web service for users who are not causing bottlenecks. In our
deployment, the number of requests per second went from 462
to 782. This gain is possible because the number of heavy
requests (those correlated with the bottleneck) allowed per
unit time is reduced. Therefore, it will take longer to search
for a series of several items. This is highlighted in the longer
average session time (872 seconds vs 670 seconds), since each
session consists of a set of subsequent searches, among other
operations. As the positive effect on number of requests per
second as well as the maximum request time show, such a
reduction provides a great benefit to the user experience seen
by many of the visitors to the site.

V. CONCLUSION AND FUTURE WORK

We have proposed an approach to building self-adaptive web
services based on four design mechanisms: 1) simple statistical
techniques for uncovering request effects in multi-tier systems,
2) a black-box approach to component monitoring, 3) a
visualization tool for summarizing statistical findings, and 4)
efficient techniques for invoking admission control decisions.
We are in the process of building an auction web service
embodying these mechanisms, and the results are promising:
over a 70% increase in pages served per second, and over
a 78% decrease in the maximum latency seen by users to
the site. We are encouraged by these results, as they show
the promise in building and deploying more self-adaptive web
services.
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(a) Distribution of request times on a stock RUBiS deployment with 3500
concurrent clients.
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(b) With selective admission control, the distribution of request times is much
lower for more request types. The two outlier lines represent the requests we
are throttling

Fig. 3. Distributions of request times for (a) stock RUBiS and (b) RUBiS with selective admissions control. Selective admission control allows more ”smaller”
requests to complete by reducing the number of ”larger” requests per unit time. This means that the web server can server larger number of requests in total,
since only the users correlated with the bottleneck are affected

Scenario Total Requests Correlated URLs Requests / Sec Avg. Session Time (s) Max. Request Time (s)
Stock 756,137 112,521 (14.9%) 462 670 s 154.7 s

Selective Adm. Control 1,143,264 105,964 (9.3%) 782 872 s 32.7 s

Fig. 4. Performance measurements for a stock deployment and one that utilizes selective admission control. Both measurements represent 30 minutes of
elapsed time with 3500 concurrent clients. A session represents a series of operations on the auction site, such as searching for items, bidding on them,
completing the sale, and leaving feedback
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