
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Design Patterns for the
Management of IP Networks

M.S. Thesis - Travail de Diplôme - Diplomarbeit

Paul E. Sevinç

Department of Electrical Engineering
Swiss Federal Institute of Technology Zurich

Supervisors:
Jean-Philippe Martin-Flatin
Dr. Marcus Brunner
Prof. Dr. Rachid Guerraoui
Prof. Dr. Bernhard Plattner February 24, 2000

ii

Abstract
The Simple Network Management Protocol (SNMP) has been the

most widely used protocol for the management of computer networks
based on the Internet Protocol (IP) for about ten years. Yet, because of
shortcomings of both technical and commercial nature, new
approaches for the management of IP networks have been proposed.
The most popular is known as Web-based management and promotes
the use of Web technologies in the management of IP networks.

In this thesis, we look at SNMP-based network management from
the point of view of software engineering. We also study one variant
of Web-based management proposed by Martin-Flatin known as the
Java Management Platform (JAMAP). Specifically, we propose design
patterns for object-oriented implementations of SNMP agents, SNMP
managers, and the protocol itself, and we discuss the architecture of
Martin-Flatin’s platform with the help of design patterns. Finally, we
study a prototype of JAMAP and make some suggestions for
improvement.
iii

Résumé
SNMP (Simple Network Management Protocol) est depuis plus de

dix ans le protocole le plus répandu pour la gestion de réseaux
informatiques basés sur IP (Internet Protocol). Mais à cause
d’insuffisances aussi bien techniques que commerciales, de nouvelles
méthodes pour la gestion de réseaux IP ont été proposées ces dernières
années. L’une d’entre elles, la gestion basée sur les technologies Web,
connaît actuellement une grande popularité.

Dans ce travail, nous considérons du point de vue génie logiciel la
gestion de réseaux basée sur SNMP et une des méthodes basées sur le
Web, proposée par Martin-Flatin. Concrètement, nous proposons des
patternes conceptuels qui se prêtent à l’implémentation orientée objet
d’agents SNMP, de gestionnaires SNMP et du protocole lui-même.
Ensuite, nous discutons l’architecture de la plate-forme de Martin-
Flatin à l’aide de patternes conceptuels. Finalement, nous étudions un
prototype (JAMAP) mettant en oeuvre cette architecture, et nous
proposons plusieurs améliorations.
iv

Kurzfassung
SNMP, das Simple Network Management Protocol, ist seit mehr als

zehn Jahren das verbreitetste Protokoll zur Verwaltung von
Computernetzwerken basierend auf IP, dem Internet Protocol. Doch
aufgrund von Unzulänglichkeiten sowohl technischer als auch
kommerzieller Natur wurden neue Ansätze zur Verwaltung von IP-
Netzwerken vorgeschlagen, wobei sich insbesondere die Web-
basierten einer grossen Popularität erfreuen.

In dieser Arbeit betrachten wir SNMP-basierte sowie Martin-
Flatin’s Ansatz für Web-basierte Netzwerkverwaltung aus der Sicht
des Software-Engineerings. Konkret schlagen wir Entwurfsmuster für
objekt-orientierte Implementationen von SNMP-Agenten, SNMP-
Manager und dem Protokoll selbst vor. Des weiteren besprechen wir
die Architektur von Martin-Flatin’s Plattform (JAMAP) mit Hilfe von
Entwurfsmustern. Und schliesslich nehmen wir uns eines Prototypen
an, welcher diese Plattform realisiert und machen einige
Verbesserungsvorschläge.
v

This M.S. thesis (travail de diplôme, Diplomarbeit) was proposed by
Jean-Philippe Martin-Flatin, who also acted as its prime advisor. An
electrical engineering student at the Swiss Federal Institute of Technology
Zurich (ETHZ), I worked on this thesis at the computer science and the
communication systems departments of the Swiss Federal Institute of
Technology Lausanne (EPFL) in the winter semester of 1999/2000.

Acknowledgments
First of all, I would like to thank my supervisors Prof. Dr. Bernhard

Plattner, Prof. Dr. Rachid Guerraoui, Dr. Marcus Brunner and especially
Jean-Philippe Martin-Flatin for entrusting me with this project.
Prof. Plattner and Dr. Brunner are from the Computer Engineering and
Networks Laboratory (TIK) at ETHZ. Prof. Guerraoui is from the
Operating Systems Laboratory (LSE) at EPFL, and Mr. Martin-Flatin is
from the Institute for computer Communications and Applications (ICA) at
EPFL.

Furthermore, I thank Dirk Riehle for his valuable pointers to pattern-
related papers and for giving me insight into the patterns community,
and Luc Girardin, Jean-Michel Reghem and Dani Seelhofer for their proof-
reading and comments. Remaining mistakes are mine.

Lausanne, February 24, 2000

Paul E. Sevinç
vi

vii

Table of Contents

1. Introduction 1

1.1. Background 1

1.2. Objective 1

1.3. Outline 2

2. Software Engineering 3

2.1. Patterns and AntiPatterns 3

2.1.1. Pattern 3

2.1.2. Software Patterns 4

2.1.3. Example: Model-View-Controller 4

2.1.4. More on Patterns 5

2.1.5. AntiPattern 5

2.1.6. Example: Blob 6

2.2. Frameworks 7

2.2.1. Framework 7

2.2.2. Example: Model-View-Controller 8

2.2.3. Application Framework 8

2.2.4. Library vs. Framework 8

2.2.5. Patterns and Frameworks 9

3. Network Management 10

3.1. General Issues 10

3.1.1. Monitoring & Control 10

3.1.2. Entities 11

3.1.3. Push vs. Pull 12

3.2. Simple Network Management Protocol 12

3.2.1. Fundamental Axiom 12

3.2.2. Management Information 13

3.2.3. Information Exchange 13

3.3. Web-based Network Management 14

3.3.1. Entities 14

3.3.2. Subscription 16

3.3.3. Monitoring and Data Collection 17

3.3.4. Notification Handling 17
viii

4. Patterns and AntiPatterns in SNMP-based Network Management 18

4.1. Design Patterns 18

4.1.1. Adapter 19

4.1.2. Proxy 21

4.1.3. Bridge 22

4.1.4. Whole-Part and Composite 22

4.1.5. Facade and Wrapper Facade 24

4.1.6. Layers 26

4.1.7. Iterator 28

4.1.8. Mediator 29

4.2. AntiPatterns 29

4.2.1. The Blob 29

4.2.2. Golden Hammer 30

4.2.3. Design by Committee 31

4.2.4. Reinvent the Wheel 31

5. A Patterns View of JAMAP 32

5.1. The Big Picture 32

5.2. Information Flow 34

5.3. Servlets Patterns 37

5.3.1. Singleton 37

5.3.2. Decorator 38

5.3.3. Strategy 39

5.3.4. Builder 40

5.4. Command Pattern 41

5.5. Continuous Obsolescence AntiPattern 42

6. Analysis of the JAMAP Prototype 43

6.1. Distributed Network Management Platform 43

6.2. Agent 45

6.3. Manager 47

6.4. Analysis of the Design 48

6.5. Analysis of the Implementation 49
ix

7. Conclusion 51

7.1. Summary and Contributions 51

7.2. Benefits for the Student 51

7.3. Future Work 51

Appendix A: Project Description 53

References 56
x

1

1. Introduction

1.1. Background

Within a decade, computer networks have become an integral part of everyday life.
They are more and more the basis for private, academic, commercial, and
governmental information exchange and service provision. Yet merely setting up a
network and hoping for the best will not do. In order to continuously provide the
services their users can realistically expect, computer networks need to be managed.

The difficulty of managing a network not only stems from the size of the network.
Other reasons include its heterogeneity, the scalability of the management platform,
and security considerations. Without adequate tools, the network management staff
cannot fulfill its tasks.

The current standard for the mangement of IP networks, the Simple Network
Management Protocol (SNMP), has serious drawbacks of both technical and commercial
nature [19, 27]. Suggestions for new approaches exist and seem to favor the use of Web
technologies [10, 28]. The Java platform is gaining momentum in this arena as well [49].

Just as the Internet was becoming pervasive, design patterns became an essential
tool in software engineering. In addition to previously unpublished design patterns,
the patterns community is very interested in variants of and in new uses for published
design patterns.

In particular, there is a trend towards the development and documentation of
computer-network protocols and distributed systems based on design patterns [17, 18,
24, 42] that should not be ascribed to fashion or hype. We support this trend by
demonstrating that design patterns can be put to good use in network-management
software.

1.2. Objective

The first goal of this thesis is to propose design patterns suitable for object-oriented
implementations of SNMP-compliant network-management software, including the
protocol itself. In accordance with the original project description (see Appendix A),
these propositions are based on Gamma et al.’s Design Patterns [16]. Additionally, we
consulted Buschmann et al.’s A System of Patterns [6] as well as a few other publications.

The second goal is to identify antipatterns based on Brown et al.’s AntiPatterns [5].
The idea is not to study actual implementations, but to find antipatterns by taking a
high-level look at the models underlying SNMP-based and Web-based network
management.

The third goal is to improve the architecture of JAMAP (short for JAva
MAnagement Platform) by (i) documenting it in terms of design patterns, and (ii)
making suggestions for changes. JAMAP is a proposal for a Web-based network
management platform. A prototype has been developed in the course of an earlier M.S.
thesis [4, 30]. It exchanges data based on the push model [13, 29] and makes use of Web
and Java technologies.

2

1.3. Outline

Chapter 2, Software Engineering, first introduces patterns and antipatterns and
presents two examples, the Model-View-Controller pattern and the Blob antipattern. It
then defines the term framework as used in software engineering.

Chapter 3, Network Management, discusses the general concepts and terminology
of network management. It also gives an overview of SNMP and of an instance of
Web-based network management.

Chapter 4, Patterns and AntiPatterns in SNMP-based Network Management,
presents ten design patterns and four antipatterns, and explains how they relate to
SNMP.

Chapter 5, A Patterns View of JAMAP, characterizes the architecture, that is the
high-level design, of JAMAP in terms of design patterns and antipatterns.

Chapter 6, Analysis of the JAMAP Prototype, reviews the current JAMAP
prototype and makes some suggestions for improvements. Whenever possible, the
suggestions are justified with the help of design patterns or antipatterns.

Chapter 7, Conclusion, briefly summarizes this thesis and its contributions, lists the
benefits for the student, and proposes follow-up projects for the future.

3

2. Software Engineering

Reuse is a key objective of software engineering. Software developers learn to reuse
code (i.e., implementation) from the very beginning. Beyond implementation, they can
profit from the experience that other developers gained during analysis and design
phases of software projects. Indeed, part of this experience can be captured and passed
on by patterns. In object-oriented programming, the desire to have both design and
code reuse leads to the notion of frameworks.

In the remainder of this chapter, we give definitions of pattern, antipattern, and a
few other pattern-related terms in the context of software engineering. We also define
the terms framework and application framework, compare frameworks to procedure
and class libraries, and discuss the relationship between patterns and frameworks.

2.1. Patterns and AntiPatterns

Based on his Ph.D. thesis, Erich Gamma in 1994 published the book Design
Patterns [16] together with Richard Helm, Ralph Johnsson and John Vlissides1. This
publication triggered intensive research in patterns for software engineering and other
computer science & engineering disciplines that continues unabated today.

Gamma et al. were not the first to publish software-engineering patterns, though.
Ward Cunningham and Kent Beck in 1987 presented their paper Using Pattern
Languages for Object-Oriented Programs [8] at OOPSLA ‘872.

Cunningham and Beck were inspired by Christopher Alexander. In the 1970s,
Alexander developed a pattern language for architecture [1]—the “house-building”
discipline, that is, not software or computer architecture!

For more on the history of patterns, see Appleton [3]. For somewhat different
definitions than the following, see Riehle and Züllighoven [39].

2.1.1. Pattern

Patterns are schematic, proven solutions to recurring problems. Basically, patterns
are characterized by a name, a problem description, and a problem solution [36]. A
well-known name allows us to concisely refer to a specific pattern. It is certainly easier
to talk about "the Model-View-Controller pattern" (see Section 2.1.3.) than about "the
pattern that consists of three classes which...". The problem description tells us in what
situations the respective pattern is applicable. It includes conditions that must be met
before and risks taken when applying the pattern. The problem solution explains how
we can solve the problem. It typically does so by abstracting from an example.

"schematic" refers to the fact that—especially in books—patterns are usually
documented based on some template. For example, Gamma et al. [16] always start with
the name of a pattern, followed by its intent, an alias (possibly none or more than one),
a motivational example, the structure of the pattern, etc. "recurring" refers to the

1. These four authors are also know as the Gang of Four.
2. OOPSLA is the annual ACM SIGPLAN conference on Object-Oriented Programming,

Systems, Languages, and Applications.

4

condition that a pattern must have been observed more than twice, otherwise it cannot
be called a pattern yet.

2.1.2. Software Patterns

If we think of software development as simply an iteration of analysis, design, and
implementation, we can define design pattern as a schematic, proven solution to a recurring
software design problem. Even though this very intuitive definition is the one we adopted
in this thesis, we do not want to conceal that Buschmann et al. (and other authors) make
a finer distinction [6, pp. 12-14]:

"An architectural pattern expresses a fundamental structural organization
schema for software systems. It provides a set of predefined subsystems, specifies
their responsibilities, and includes rules and guidelines for organizing the
relationships between them."
"A design pattern provides a scheme for refining the subsystem or components of
a software system, or the relationships between them. It describes a
commonly-recurring structure of communicating components that solves a
general design problem within a particular context [16]."
"An idiom is a low-level pattern specific to a programming language. An idiom
describes how to implement particular aspects of components or the relationships
between them using the features of the given language."

These pattern categories are orthogonal to problem categories (e.g., patterns for access
control). Gamma et al. [16] and Mössenböck [36], on the other hand, subdivide
patterns3 dependent on their purpose4 (e.g., such for object creation) and their scope
(class vs. object).

Different templates exist to document software patterns [5, 6, 16, 39]. Usually, the
structure of a design pattern is depicted by a complete diagram while the
implementation only shows the most important interfaces and some code snippets
(possibly in pseudo-code). The diagram is not necessarily a class diagram, even though
the term design pattern is often implicitly associated with object-oriented
programming. We do not approve of this implication. Design patterns address
architectural issues independent of a specific paradigm. (The computational issues are
addressed by algorithms and data structures [3, 6].)

2.1.3. Example: Model-View-Controller

Before we give more definitions, we discuss an example. In Section 2.2.2., we will
consider the Model-View-Controller framework. Here, we consider the
Model-View-Controller pattern.

3. They use the terms pattern and design pattern interchangeably. Many authors do that when
their article, paper, or book is about one kind of pattern only, and so will we.

4. in principle the same as, but coarser-grained than, Buschmann et al.’s [6] pattern categories

5

The Model-View-Controller (MVC) is often used for graphical user interface (GUI)
elements (see Section 2.2.2.) and documents. Models represent information, views
present information, and controllers interpret user manipulation [50] (see Figure 2-1).

Consider an HTML document. The model is the hierarchy of tags with the
embedded content. If we open the HTML file in a browser, hyperlinks appear
underlined (view) and can be activated (controller). If we open the same file in a text
editor, we see the actual <a> tag (view), but we cannot activate the hyperlink even
though we can edit it (controller).

The general problem is allowing several consistent views with different behavior on
the same information. (In the HTML example, the views are not consistent until the
user manually saves the file and reloads it.) The solution is to have models manage the
information. Controller-view pairs subscribe to the model and are notified when it
changed. For simplicity, they are even notified if they changed it themselves. How
exactly they are paired and whether the controller or the view updates the model are
implementational details.

As in the HTML example, one model can have more than one controller-view pair
associated with it. But a controller-view pair belongs to exactly one model (see
Section 5.2. for variants).

2.1.4. More on Patterns

A pattern catalog is a collection of patterns. The patterns in a catalog are usually
documented based on the same template and organized in broad categories.

A pattern system is a pattern catalog in which the interrelationships between the
patterns are made explicit. This goes beyond the mere mention of related patterns.

A pattern language is a pattern system with rules to combine the patterns into a larger
whole. One can think of the patterns as the terminal symbols and of the combination
rules as the syntax of the language.

2.1.5. AntiPattern

If patterns show how to do things right, then antipatterns show how to do them
wrong. Antipatterns document common mistakes made by software engineers.
Basically, antipatterns are characterized by a name, a problem description, a bad
problem solution, symptoms caused by the bad solution, and a refactored problem
solution (see Figure 2-2 right). The name and the problem description have the same
purpose as for patterns. The bad problem solution may compile and run correctly, but it
is not elegant, difficult to document and understand, or hard to maintain. A list of
symptoms helps us spot an antipattern. The refactored problem solution shows how to

Figure 2-1: Components of the MVC [36]

keyboard
mouse

Controller View screen

Model

6

better solve the problem. Ideally, putting together the problem description and the
refactored solution under a different name should yield a pattern.

In software development, antipatterns are useful both when developing a new
software system and when extending an existing one. In the former case, we learn from
our and other people’s mistakes in order to avoid them. In the latter case, we identify
those parts of the software system that have to be refactored before adding new
functionality.

2.1.6. Example: Blob

The Blob antipattern [5] is also known as the God Class problem [38]. Riehl [38]
distinguishes the behavioral form and the data form.

In the behavioral form, one class performs most of the work while the remaining
classes are rather trivial (see Figure 2-3 left). A better design would reassign the
responsibilities (see Figure 2-3 right).

In the data form, one class encapsulates most of the data and provides accessor (i.e.,
get) and mutator (i.e., set) methods while the other classes perform the computations

Figure 2-2: Pattern vs. AntiPattern [5]

Figure 2-3: Behavioral Form

Solution

Benefits

Related Solutions

Consequences

Context & Forces

Context & Causes

AntiPattern Solution

Symptoms & Consequences

Benefits

Related Solutions

Consequences

Refactored Solution

bad solution refactored solution

The bigger the rectangle, the more
work is performed by that class.

7

on these data (see Figure 2-4 left). A better design would group related data and
methods (see Figure 2-4 right).

2.2. Frameworks

The term framework can be confusing because it has a different meaning in network
management and in software engineering. In this thesis, we define and use it solely in
the latter context. Issues such as composition vs. inheritance, black-box vs. white-box
reuse, or component frameworks [50, 51] are beyond the scope of this thesis.

2.2.1. Framework

A framework defines a customizable, object-oriented architecture and provides its
implementation. It consists of cooperating classes and features hot spots [36] or plug
points [9] that make customization possible in the first place (see Figure 2-5). Hot spots

are abstract or at least non-final classes. Within factory, template and hook methods
[16] and by means of polymorphism, the framework invokes the methods on the
subclasses of the hot spots (see Figure 2-65). But it maintains overall control and makes
sure that certain bask tasks are fulfilled. Frameworks are usually geared toward a

Figure 2-4: Data Form

Figure 2-5: Framework [36]

5. We adopted the Unified Modeling Language (UML) [14, 37] for the class, interaction, and
package diagrams in this thesis.

Data1
...

DataN Data1
... ...

DataI
...

...
DataN

bad solution refactored solution

Framework

customized class

hot spot

8

specific domain, e.g., multiobjective optimization with genetic algorithms [44] or
reliable distributed systems [18].

2.2.2. Example: Model-View-Controller

We already encountered the Model-View-Controller pattern in Section 2.1.3. Now
we consider the Model-View-Controller framework.

The Model-View-Controller (MVC) underlies Java’s GUI elements, the Swing set
[22]. In the case of a text field, for instance, the model manages the actual text, the view
displays the text on the screen, and the controller determines its editability. What
makes the text field a framework is that we can not only use it as is but also replace one
of its three constituent parts independent of the others by a subclass. Let us suppose
that we want to allow ASCII characters only; in that case we replace the default
controller by a subclass that ignores all other characters—the model and the view need
not change.

2.2.3. Application Framework

Frameworks such as the MVC represent larger-grained units of reuse than single
classes. Applications in a specific domain (e.g., productivity suites) have much more in
common than simple GUI components, though: window management, menu
handling, opening & saving documents, etc. An application framework is a standard
program that can handle, for example, windows and menus, but that has to be
extended by the programmer to give them content. Mössenböck [36] calls this
programming by difference.

Popular examples of application frameworks are Microsoft’s MFC for Windows [35]
and Metrowerks’ PowerPlant for the Mac OS [34].

2.2.4. Library vs. Framework

In procedure-oriented programming, the user of a procedure library develops the
main procedure and calls library procedures at her own discretion (see Figure 2-7 left).

Figure 2-6: Hot Spot [36]

A

P()

B

Q()

{ ...
b.Q()
... }

b

B2

Q()

B1

Q()

abstract class
= hot spot

Framework

user-specific
extensions

9

When using a class library, the user-defined classes are in control as well and
determine the overall architecture of the system.

The opposite is the case when development is based on frameworks: the framework
decides when the user’s methods are invoked (see Figure 2-7 right). This is also called
the Hollywood principle: "Don’t call us, we’ll call you!" [9, 36].

2.2.5. Patterns and Frameworks

According to Gamma et al., design patterns and frameworks differ in three major
ways [16, p. 28]:

"1. Design patterns are more abstract than frameworks. Frameworks can be
embodied in code, but only examples of patterns can be embodied in code. A
strength of frameworks is that they can be written down in programming
languages and not only studied but executed and reused directly. [...]
2. Design patterns are smaller architectural elements than frameworks. A
typical framework contains several design patterns, but the reverse is never true.
3. Design patterns are less specialized than frameworks. Frameworks always
have a particular application domain. [...]"

Thus, while classes promote code reuse and patterns promote design reuse,
frameworks promote both code and design reuse. To quote Garbinato [18, p. 18],
"design patterns capture experience about software design, whereas frameworks are software."
As a matter of fact, design constraints imposed by a framework may render it difficult
or impossible to combine several frameworks [31].

Figure 2-7: Library vs. Framework [36]

Code written by
the programmer

Reused code

main program

procedure library

framework

extensions

10
3. Network Management

Computer networks would be of little use if they did not work properly. Keeping a
network up and running, maintaining its performance, and reducing the cost of
ownership is what network management is about [33]. As computer networks grow in
size and importance and at the same time become more heterogeneous, having
management schemes that take into account scalability, heterogeneity, security, etc. is
no longer optional but mandatory.

In the remainder of this chapter, we first introduce general network-management
issues and then give an overview of SNMP and Web-based management.

3.1. General Issues

Management schemes differ in how they perform network management. What they
have largely in common is why network management is performed and who does so.

3.1.1. Monitoring & Control

According to Stallings [46], network management encompasses network
monitoring and network control.1 Monitoring means to gather information about the
network (e.g., the number of packets per minute a certain router handles). Control
means to update the information the network depends on (e.g., change a routing table).

What, then, should be monitored or controlled? The International Organization for
Standards (ISO) defines five key areas of network management [46]: fault
management, accounting management, configuration and name management,
performance management, and security management.

The purpose of fault management is to detect, isolate, and correct faults. A fault and
an error are not the same thing. A fault needs to be dealt with by the management
system (possibly automated). An error can be dealt with by a network node (e.g., by
using channel coding to detect transmission errors).

The purpose of accounting management is to allocate ressources and charge for their
services. Often the end users are not really charged (e.g., within a university).
Nevertheless, if the administrators (see Section 3.1.2.) track the end-user activity, they
can better plan for future changes of the network.

The purpose of configuration and name management is to identify the network nodes
and to communicate with them in order to maintain or modify the services the network
provides. This communication may consist of data collection, orders to enter a certain
state, or even the command to gracefully shut down the node.

The purpose of performance management is to measure the performance level of the
network. Central to performance management are the questions of what to measure
and how to interpret the measurements. To answer the first question, Stallings [46]
suggests and describes the following performance indicators: availability, response
time, accuracy, throughput, and utilization.

1. Note that the term network control is sometimes used to refer to events occurring on a short
time scale, e.g., when the reaction time is below 1s.

11
The purpose of security management is to make sure that only authorized entities gain
access to network services (information, processor time, etc.). In particular,
unauthorized users must not be able to control the network.

With fault, accounting and performance management, the emphasis is on
monitoring. With configuration and security management, the emphasis is on control
[46].

3.1.2. Entities

The network management staff consists of network administrators and network
operators. The network administrators decide on the network policies and on the
mechanisms to enforce them—loosely speaking, they are the boss. Network operators
perform regular management if they monitor the network on a regular basis to anticipate
problems, and ad-hoc management if they cope with a problem after it arised—and they
are the first to be notified (possibly in the middle of the night) in case of emergency.
That said, we will simply refer to both network administrators and network operators
as administrators.

An administrator works at a Network Management Station (NMS). Unlike most of
the network nodes, the NMS can be dedicated to network management only. The
process that runs on the NMS on behalf of the administrator is commonly called the
manager and should interact with her in a user-friendly manner.

The manager’s communication peers on the managed nodes are the agents. The
agents should at least be able to inform the manager about the state of their node and
change it on request.

The manager and agent processes make use of the facilities provided by the network
node on which they run (see Figure 3-1).

Figure 3-1: Network Management Processes (adapted from [46])

Manager
process

Workstation
services: OS,

communication,
...

Agent
process

Server services:
OS,

communication,
...

Agent
process

Router services:
communication,

...

Agent
process

Workstation
services: OS,

communication,
...

12
Nodes that cannot host an agent or do not support the management protocol need
to be represented by another network node on which a proxy agent process runs. Very
important is the principle of transparency [41]: when a real agent is managed via a
proxy agent, it should appear to the manager as if it were communicating with the real
agent directly.

3.1.3. Push vs. Pull

From the point of view of the manager, there are two ways of collecting data from
the agent [29]: the manager keeps asking the agent to send data at each polling cycle
(pull model), or the manager has the agent send data by subscribing to it once (push
model).

Typically, notifications rely on the push model, whereas monitoring can rely on
either the push or the pull model. The trade-off between the communication overhead
in the pull model and the added responsability for the agents in the push model is an
important design decision.

3.2. Simple Network Management Protocol

For about ten years, the Simple Network Management Protocol (SNMP) has been the
standard for IP network management. It includes an application-level communication
protocol running on top of the User Datagram Protocol (UDP) and defines the nature
of the management information.

Even though SNMP is an open standard (i.e., it is published as Requests for
Comments [RFCs] by the Internet Engineering Task Force [IETF]), only a handful of
companies actually compete in the manager-side software market. Martin-Flatin [27]
explains how this situation arised.

Three versions of SNMP exist [46]: The original SNMP which is now also called
SNMPv1 was replaced by SNMPv2. SNMPv3 defines a security capability and allows
for future enhancements without the need for a new version. SNMPv3 is intended for
use with SNMPv2.

3.2.1. Fundamental Axiom

The key to understanding SNMP is its fundamental axiom [41, p. 12]:
"The impact of adding network management to managed nodes must be minimal,
reflecting the lowest common denominator."

This translates into SNMP agents being very simple (what Wellens and
Auerbach [54] call dumb) and SNMP managers being very smart (i.e., complex).
Typically, there is only one management station.

While this distribution of network-management responsibilities reflected the
capabilities of the managed nodes of ten years ago, today most are capable of doing
more for network management (e.g., some preprocessing) without neglecting their
main task (e.g., routing) today [19].

13
3.2.2. Management Information

SNMP management information is defined by the Structure of Management
Information (SMI) and the Management Information Base (MIB).

SMI is a variant of the Abstract Syntax Notation One (ASN.1) [7, 46]. The types of
managed variables are defined with SMI. In SNMP, every managed node is abstracted
as a set of management variables. To monitor thus means to read variable values, to
control means to write variable values. The transfer syntax used for exchanging
variables between managers and agents are the Basic Encoding Rules (BER) [7, 46]. (For
more on ASN.1 and BER and their applications in distributed systems in general, see
Coulouris et al. [7]. For more on ASN.1 and BER and their application in SNMP in
particular, see Stallings [46].)

The MIBs are collections of management variables. They are organized as trees with
the variables as the leaves. Different types of network equipment support different
types of MIBs. Both generic and vendor-specific MIBs exist. Generic MIBs are issued
by the IETF, vendor-specific MIBs by the vendors of network equipment.

3.2.3. Information Exchange

When a manager wants to read or write a variable, it issues a request. The agent then
returns the value of the variable or the write confirmation in a reply (see Figure 3-2).
Sometimes the reply contains one or more exceptions, an error, or does not arrive at all.
An exception indicates that a particular variable (see next paragraph) cannot be
processed. An error indicates that the operation cannot be processed. If the reply does
not arrive at all, the request times out.

There are four kinds of request of interest to us: get, get-next, get-bulk, and set. The
get request asks for the value of one or more variables. The get-next request asks for the
values of the variables that follow the variables given in the request. This request
allows the manager to iterate over the MIB (which is a tree) and discover its structure.
The get-bulk request asks for the values of one or more variables that follow the variables
given in the request. This request can save the manager from using several get-next
requests. The set request creates or updates one or more variables.

Figure 3-2: Request-Reply

Manager

request

reply

Agent

14
When an agent has to inform the manager about an important event (usually a
problem), it sends an unsolicited notification (see Figure 3-3).

3.3. Web-based Network Management

Both the industry and academia are looking into managing networks by other
means than SNMP [27]. Instead of replacing SNMP by yet another protocol, using
Java-based or Web-based solutions seems to be more appealing [10, 49].

Several approaches have been suggested by Wellens and Auerbach [54], Sun
microsystems [49], Deri [10], etc. Here, we will consider the approach of
Martin-Flatin [28, 29], who makes use of both Java and Web technologies. We explain
the model underlying the JAva MAnagement Platform (JAMAP) [4, 30].

3.3.1. Entities

In addition to the managed nodes represented by an agent and the administrators
who work at NMSs, JAMAP also uses management servers as shown in Figure 3-4 and

Figure 3-3: Notification

Manager notification Agent

15
Figure 3-5. Only one management server and one management station are depicted in
these figures, but JAMAP supports several at the same time.

A NMS must be able to run a Web browser that supports Java applets. Agents must
be able to host an HTTP server with support for Java servlets. And the management

Figure 3-4: Monitoring and Data Collection [30]

MIB data
dispatcher

Agent

HTTP
server

MIB data
formatter

Mgmt server

Event
handler

Firewall

Event
correlator

Web browser

Network
map GUI
(applet)

client

server

Mgmt station

servlet

Pushed data
collector

Pushed data
interpreter

JDBC
client

Data server

General
purpose data

repository

JDBC
server

Administrator
or Operator

PagerEmail Telephone

Network map
registry

network
monitoring

Pushed data
filter

data collection

Siren

MIBs

Push
scheduler

Push definitions and
schedules repository

HTTP
client

servlet

servlet

HTTP
server

16
servers must be able to act both as an HTTP client and an HTTP server that supports
Java servlets.

3.3.2. Subscription

The first phase of managing a network node is the subscription. Via well-known
HTML pages, agents publish what MIBs they support and what notifications they can
send. The administrators download applets to select the MIB variables and
notifications they are interested in. They also define how often they want the agent to
send the variables.

It should be possible to make the subscription data persistent. On the one hand, this
allows to automatically resubscribe if the network node lost the subscription
information (e.g., after a crash). On the other hand, for the same type of network
equipment the applet needs to be downloaded only once, and the subscription data can
then be sent to all agents through some scripting mechanism.

Figure 3-5: Notification Handling [30]

Agent

HTTP
server

Mgmt server

Event
handler

Firewall

Event
correlator

Web browser

Network
map GUI
(applet)

client

server

Mgmt station

servlet

Notification
collector

JDBC
client

Data server

General
purpose data

repository

JDBC
server

Administrator
or Operator

PagerEmail Telephone

Network map
registry

Notification
filter

Siren

HTTP
client

servlet

HTTP
server

Notification
dispatcher

Notification
generator

Health
monitor

sensors

servlet

17
3.3.3. Monitoring and Data Collection

Variables are only polled during ad-hoc management. Regular management is
performed by having the agents send the variables as often as defined during the
subscription phase.

As shown in Figure 3-4, the servlet of the agent sends the variables to a management
server where they are received by the pushed-data collector. The pushed-data collector
connects to the agents upon startup and automatically reconnects to them if the
connection is accidentally lost or if an administrator orders to do so after a deliberate
disconnect (see next paragraph).

The role of the pushed-data filter is to detect misbehaving agents (e.g., a malicious
agent bombing the management system with bogus data) and to make the
pushed-data collector disconnect from them if this is necessary to protect the
management system. If an agents misbehaves, the pushed-data filter generates an
event for the event correlator.

Variables that have not been dropped by the filter are passed on to the pushed-data
interpreter. Data that is meant to be collected (e.g., to later assess the performance of
the system) is simply archived. Data for network monitoring is checked by the
interpreter based on rules defined by the administrators. If the values of the variables
are not ok (e.g., abnormal threshold passed), it generates an event for the event
correlator. It also generates an event if an agent does not push data on time.

Also based on rules defined by the administrators, the event correlator analyses the
data, and then updates the network map or calls the administrators’ attention by some
other means (via the event handler).

The network map is an image of the network state. Its graphical representation on
the NMS is designed such that administrators can easily grasp this state.

3.3.4. Notification Handling

When the health monitor detects an abnormal condition, it contacts the notification
generator which generates a standardized notification to be sent by the network
dispatcher to a notification servlet (see Figure 3-5).

The notification collector and the notification filter have the same purpose as their
pushed-data counterparts. There is no notification interpreter, however. Notifications
are always logged and passed on to the event correlator.

18
4. Patterns and AntiPatterns in SNMP-based
Network Management

Our goal in this chapter is to identify design patterns and antipatterns in the context
of SNMP-based network management.

The sources for the work presented in this chapter and the next are the books by
Gamma et al. [16], Buschmann et al. [6], and Brown et al. [5], as well as a preliminary
version of Schmidt et al. [43].1

In the remainder of this chapter, we first discuss design patterns that we consider
useful for object-oriented implementations of SNMP-compliant managers, agents, and
the communication protocol itself. Then, we present software-development and
software-architecture antipatterns.

4.1. Design Patterns

The power of design patterns stems from leading to a good software design—and
eventually implementation—when they are well-chosen. Choosing the right design
patterns in a given context can be more difficult than it may look, though. First, one
needs a solid base of design patterns to choose from—not only in numbers, but also in
understanding their similarities and differences, their benefits and liabilities.2 Second,
the design problem to be solved must be well-understood. And third, one has to
overcome the mental barrier of thinking of design patterns as being about objects in a
single address space only; design patterns describe responsibilities and collaborations
of software entities in general.3

To cut a long story short, this section continuously evolved in the course of this
thesis, with design patterns (and applications thereof) being included or excluded as
we gained a better understanding of both design patterns and the problem at hand.
However, we hope that this evolution is transparent; design patterns are most effective
when the reader afterwards goes: "Why didn’t I think of this? It’s so obvious now!"

Some of the design patterns we discuss are inherent in SNMP. Some are found at the
conceptual level, others at the specification level, yet others at the implementation level
[14]. Even if some cases do not directly lead to a new design, we find that they are still
valuable by providing insight into SNMP from a design pattern’s perspective.

We left out design patterns that do not provide a solution to a typical
network-management problem (in particular Buschmann et al.’s [6] idioms), even
though they may prove useful in resolving general implementation issues of

1. We also skimmed through the books by Grand [20, 21], but did not find any design patterns
of interest to us that are not discussed by Buschmann et al. [6] or Gamma et al. [16] as well.

2. Even though patterns authors go to great lengths to give intuitive examples, to list rules of
applicability, to discuss variants, etc. in order to make up for the reader’s possible lack of
design experience, developing a feel for patterns is nevertheless essential.

3. A big help in this last regard was the Building Software with Patterns chapter in Schmidt et
al. [43]. In addition to providing general guidelines that support a pattern-based software
construction, that chapter includes examples showing design patterns such as the MVC in a
distributed environment.

19
network-management software. For example, the Template Method pattern [16],
which we do not discuss, is likely to be found in many object-oriented software system.

Similarly, just because our focus is on network-management related applications of
a design pattern, this does not mean that the design pattern cannot be used anywhere
else in the network-management software. On the contrary: the design patterns in this
chapter are general enough to solve problems in different contexts and at different
scales [6, 16].

4.1.1. Adapter

The Adapter pattern [16] converts the interface of a pre-existing class into another
interface that clients expect.4 It enables the implementation (and thus the functionality)
of the class to be reused even if the interface of the class is not know by the potential
client.

For instance, a class providing encryption and decryption may feature a method
with signature
crypt(bool flag, int[] plainText, int[] cipherText)
whereas its client expects it to have methods such as
encrypt(int[] plainText, int[] cipherText) and
decrypt(int[] cipherText, int[] plainText).
Instead of reimplementing the functionality, a new class can simply forward
encrypt() and decrypt() requests by invoking crypt(), setting the flag and
ordering the arguments accordingly. Methods returning a value need to transform the
replies as well when necessary.

Gamma et al. [16] discuss two versions of the Adapter pattern, the Object Adapter
(see Figure 4-1) and the Class Adapter (see Figure 4-2). The Object Adapter realizes
adaptation by using object composition, the Class Adapter by using multiple

4. In a strongly typed language, the Adapter pattern is even necessary in cases where the
interface expected by the clients is contained in the interface of the pre-existing class, but
where the types differ.

Figure 4-1: Object Adapter (adapted from [16])

Client Target

request()

Adapter

request()

Adaptee

specificRequest()

adaptee.specificRequest()

adaptee
1

20
inheritance (e.g., in C++) or single implementation inheritance with multiple interface
inheritance (e.g., in Java).

From a conceptual point of view, the Object Adapter can be seen in networks with
proxy agents. When a managed node hosts an agent that is not SNMP-compliant, a
proxy agent needs to translate manager requests. The proxy agent thus takes on the
role of the Adapter object, and the manager corresponds to the Client and the agent
to the Adaptee. As these three entities are located on different network nodes (not to
mention in different address spaces), information between them is not exchanged
through direct method invocations but through the network. Note that the Proxy
pattern is not suitable for this particular situation (see Section 4.1.2.).

Note further that when an agent issues a notification, the proxy agent needs to
translate it as well before forwarding it to the manager. The proxy agent thus behaves
like a two-way adapter [16] (see Figure 4-3).

Figure 4-2: Class Adapter (adapted from [16])

Figure 4-3: SNMP Adapter

Client Target

request()

Adapter

request()

Adaptee

specificRequest()

specificRequest()

Manager

notification()

ProxyAgent

request()
nonSnmpNotification()

Agent

nonSnmpRequest()

manager.notification()

SnmpManager

notification()

SnmpAgent

request()

NonSnmpManager

nonSnmpNotification()

NonSnmpAgent

nonSnmpRequest()

1 * 11

21
4.1.2. Proxy

The Proxy pattern [6, 16] makes the client of an object communicate with a
representative rather than with the object itself. Such a representative can serve many
purposes determined by its pre- and post-processing of requests. For transparency
reasons, it is important that the Proxy and the Original classes have the same
interface (see Figure 4-4).

Because of its name and because it acts as an intermediary, a Proxy object seems to
correspond to a proxy agent. In general, this is wrong! The Proxy class has the same
interface as the Original, whereas a proxy agent and the agent it represents may not
have the same interface (see Section 4.1.1.).

Particular Proxy patterns are: the Remote Proxy, the Virtual Proxy, the Protection
Proxy, the Cache Proxy, the Synchronization Proxy, the Counting Proxy, and the
Firewall Proxy [6, 16]. Most interesting to network management are the Protection
Proxy and the Firewall Proxy.

In the Protection Proxy pattern [6], a Proxy object controls access to the Original.
It checks the access rights of a Client whenever a service is requested. A proxy agent
can do the same for an agent which is not security-aware albeit being able to
communicate in an SNMP-compliant way. For instance, a set request coming from an
unauthorized manager would be discarded by the protecting agent, whereas one from
an authorized manager would be forwarded to the protected agent, possibly after
stripping away the request authentication.

In the Firewall Proxy pattern [6], a proxy process protects an internal trusted network
from an external untrusted network. It represents server processes that communicate
with a potentially hostile environment in order to protect against attacks, typically to
avoid the disclosure of sensitive information or the misuse of network resources.
Firewalls are relevant to network management insofar as the manager and an agent
need not be on the same side with respect to the firewall (e.g., when managing a small
subsidiary across a WAN link).

Figure 4-4: Proxy (adapted from [6])

Client

task()

Proxy

service1()
service2()

Original

service1()
service2()

AbstractOriginal

service1()
service2()

1

22
4.1.3. Bridge

The Bridge pattern [16] decouples an abstraction from its implementation so that the
two can vary independently. It is depicted in Figure 4-5. One of its benefits is that
changes in the implementation of the abstraction have no impact on clients. The Bridge
unleashes its full power when there are several variants of the RefinedAbstraction
and ConcreteImp classes.

For example, let us assume that the Abstraction provides the building blocks to
draw different kinds of windows (document windows, dialog boxes, etc.). Every
RefinedAbstraction corresponds to one such kind and is implemented in terms of
Abstraction’s services. A variant of ConcreteImp corresponds to a certain
look-and-feel. By changing the imp reference, we can easily give a new look-and-feel
to an existing kind of window. The Bridge saves us from having to design
NumberOfRefinements x NumberOfImplementations classes, i.e., we only have to
design NumberOfRefinements + NumberOfImplementations classes.

By applying the Bridge, the management application can use different logs (variants
of RefinedAbstraction) without having to worry about what kind of persistent
storage (database, spread-sheet, etc.) actually underlies their implementation. In
particular, the management application becomes independent of a specific vendor’s
database system.

4.1.4. Whole-Part and Composite

The Whole-Part pattern [6] helps with the composition of objects that together form
a semantic unit. A Whole class (see Figure 4-6) encapsulates its constituent Parts,
organizes their collaboration, and provides a common interface to its functionality. The
Whole prevents Clients from accessing these constituent Parts directly.

Figure 4-5: Bridge (adapted from [16])

Client Abstraction

operation()

Implementor

operationImp()

imp.operationImp()

RefinedAbstraction

ConcreteImpB

operationImp()

ConcreteImpA

operationImp()

imp

23
In addition to simply managing homogeneous or heterogeneous Parts, the Whole
may exhibit different behavior depending on its Parts (e.g., a molecule consisting of
atoms in a simulation program). Buschmann et al. [6] call this emergent behavior.

The Composite pattern [16, 36] (see Figure 4-7) is only applicable to whole-part
hierarchies in which the Wholes and the Parts can be treated uniformly. By using
recursive composition, clients do not have to make a distinction between Wholes and
Parts. As a matter of fact, as long as they do not compose objects themselves, they do
not even have to know whether the object they interact with is a Composite or a Leaf,
because they only depend on the Component interface.

SNMPv1 does not support distributed management at all, but SNMPv3 potentially
allows for hierarchical management [26]. (SNMPv2’s support was broken [26].) The

Figure 4-6: Whole-Part (adapted from [6])

Figure 4-7: Composite (adapted from [16, 36])

Client

doTask()

Whole

service1()
service2()

...

PartA

serviceA1()
serviceA2()

...

...

PartN

serviceN1()
serviceN2()

...

Client Component

operation()

Leaf

operation()

Composite

operation()
add(Component)

remove(Component)
getChild(int)

*

24
idea is to divide networks into subnetworks. Top-level managers manage these
subnetworks by delegating management to mid-level managers (see Figure 4-8).

Conceptually, the Client in the Whole-Part pattern therefore corresponds to a
top-level manager, the Whole to a mid-level manager and the Parts to the agents.

Note that in practice, distributed network management today is usually realized by
proprietary schemes because manager-to-manager interaction is still undefined in
SNMP. This may change in the future.

4.1.5. Facade and Wrapper Facade

The Facade pattern [16] provides a unified interface to a set of interfaces in a
subsystem. An example is depicted in Figure 4-9.

A Facade class can shield the client of a subsystem from its internals. As long as the
Facade interface remains stable, the subsystem can be reorganized without breaking
its clients. Or the Facade class can offer one, less complex but also less powerful
interface as an alternative to working directly with the constituent classes. Consider a
development subsystem consisting of scanners, parsers, code-generators, etc. Many of

Figure 4-8: Hierarchical Network Management

Figure 4-9: Facade (adapted from [16])

Agent AgentAgent

Agent Agent

Top-level
Manager

Mid-level
Manager

Facade
subsystem classes

SymTable

HashTable

Scanner

Parser

CodeGen

PowerPC Pentium

25
its clients probably just want to translate from high-level language X to machine code
Y. The Facade class could therefore supply a method compileFromXtoY() which
accepts a handle to the source code, takes care of all intermediate compilation steps,
and returns a handle to the binary.

The Wrapper Facade pattern [43] provides concise, robust, portable, maintainable,
and cohesive class interfaces (note the plural) that encapsulate low-level functions and
data structures. A WrapperFacade class is not meant to be an alternative. Its intent is
clearly to provide an object-oriented interface to a non-object-oriented subsystem (see
Figure 4-10).

Facades and Wrapper Facades can be very useful for layered architectures (see
Section 4.1.6.) in which the layers feature a service access point. The SNMP layer (all
the layers in the TCP/IP protocol stack, as a matter of fact) is no exception. It has to
provide its clients with a well-defined interface, independent of how many classes,
functions, etc. were used to implement it. It is the task of the Facade class to provide
this interface and shield the clients from implementational details if the
implementation of the layer is object-oriented. If it is not, the Wrapper Facade is the
pattern of choice.

Figure 4-10: Wrapper Facade [43]

Application

WrapperFacade

data

method1()
...

methodN()

FunctionA

FunctionB

FunctionC

calls method

calls

calls

calls

26
4.1.6. Layers

The Layers pattern [6] helps to structure applications that can be decomposed into
groups of subtasks in which each group of subtasks is at a particular level of
abstraction. It is depicted in Figure 4-11.

A well-known example of Layers is the ISO Open Systems Interconnection (OSI)
model [52]: Together the application, presentation, session, transport, network, data
link, and physical layers provide communication facilities. Yet each layer depends
solely on the one below it and provides services only to the one above it through its
service access point. The communication facilities can be varied by replacing one or
more layers (e.g., a connection-oriented transport layer instead of a connectionless).

Sometimes a layer does not provide any functionality of its own. Its sole purpose can
be to abstract from lower layers to make the whole system more stable or portable (e.g.,
a hardware abstraction layer). This issue is also addressed by the Facade and Wrapper
Facade patterns (see Section 4.1.5.). Or the layer adapts the one below it, i.e., it acts as
an Adapter (see Section 4.1.1.).5

Note that the layers do not have to be shielded by incorporating a unified interface
as long as layer i+1 does not depend on layer i-1 or lower (see Figure 4-12). A layer is
shielded if its clients perceive it as an atomic unit; it is unshielded if its clients can see
inside.

In the context of SNMP, the TCP/IP protocol stack is one incarnation of the Layers
pattern. SNMP is located at the application layer where it provides services to its
clients (i.e., manager and agents) and uses services provided by UDP at the transport
layer. UDP uses services provided by IP at the internet layer, etc.

Another incarnation are the managed nodes. According to Rose [41], any managed
node can be conceptualized as containing three components: “useful stuff”, which
performs the functions desired by the user; management instrumentation, which
interacts with the implementation of the managed node; and management protocol,

Figure 4-11: Layers [6]

5. Patterns having similar intents or structures are not the exception. There are situations where
multiple patterns apply, depending on the viewpoint taken. What is important is that when
the differences become rather "philosophical" than technical, they probably do not matter in
practice anyway.

Client LayerN

LayerN-1

Layer1

highest level of abstraction

lowest level of abstraction

uses

27
which permits the monitoring and control of the managed node. To see the layering,
simply replace the word "components" in the first sentence with "layers".

Figure 4-12: Shielded and Unshielded Layers

Component 2Component 1

Layer i+1

Component BComponent A

Layer i

Layer i-1

28
4.1.7. Iterator

The Iterator pattern [16] provides a way to access the elements of an aggregate object
sequentially without exposing its underlying structure. It is depicted in Figure 4-13.

Containers such as lists and trees often need to be traversed. By making an iterator
object responsible for access and traversal of the container, different kinds of traversal
(e.g., forward and backward) can be supported without bloating the container’s
interface, and more than one traversal can be pending on the same container (i.e., one
traversal per iterator). Furthermore, by defining interfaces common to all containers
and iterators, respectively, the dynamic type of the container can easily be changed at
a later time, and methods need not depend on it.

SNMP managers can iterate over agent MIBs (using get-next or get-bulk, see
Section 3.2.3.) to perform an SNMP walk (that is, retrieving an entire MIB by starting
at its root), or to discover all the interfaces of a node (MIB-II interfaces sub-group).

At first sight, this seems to have nothing to do with the Iterator pattern; there is no
Iterator object between the manager and an agent MIB. And we know that SNMP
MIBs have a tree structure. But if we apply the Iterator pattern at the manager, we
make the manager more reusable as it does not depend on a specific MIB structure. In
the worst case, we just get a cleaner design by separating the core of the manager from
the part (namely the Iterator) that knows how SNMP MIBs are represented. In the
best case, we can use the manager with MIBs that provide Iterators of their own
without having to make major changes. One such change can consist of applying the
Adapter pattern (see Section 4.1.1.) when the Iterator interface we designed and the
one the new MIB provides do not match.

Figure 4-13: Iterator (adapted from [16])

Aggregate

createIterator()

ConcreteAggregate

createIterator()

Iterator

first()
next()

isDone()
currentItem()

ConcreteIterator

first()
next()

isDone()
currentItem()

Client

return new ConcreteIterator(this)

*1

29
4.1.8. Mediator

The Mediator pattern [16] promotes loose coupling by keeping objects from referring
to each other explicitly. It is depicted in Figure 4-14.

The state of an object sometimes depends on the state of other objects (e.g., GUI
elements within a dialog box). When one such object changes state (e.g., checking off a
check box), dependent objects may have to change their state as a consequence (e.g.,
enabling a text field). By applying the Mediator pattern, ConcreteColleagues
(whose state depends on each other) only need to inform the Mediator object when
their state changes. The Mediator object then changes the state of other
ConcreteColleagues as needed.

From a conceptual point of view, the manager mediates between network nodes
that depend on each other, as an agent may notify the manager about an event that
causes the manager to change the state of other nodes. Nevertheless, note that some
nodes change their state in a coordinated fashion without the intervention of the
manager. For example, routers exchange and update their routing tables among
themselves [52].

Another application of the Mediator pattern in network management is within the
network map GUI. For instance, when an icon representing a router changes its state
(e.g., represented by a color) to "down", the map Mediator object must change the
state of all network nodes that can only be reached through that router to
"unreachable" or "undetermined".

4.2. AntiPatterns

The purpose of antipatterns is not only to find problems, but also to solve or at least
alleviate them. However, as our intent is not to revise SNMP, we content ourselves
with identifying reasons that lead to some of its shortcomings. This will help us to
avoid them in Web-based network management.

4.2.1. The Blob

The Blob antipattern [5] has been introduced in Section 2.1.6. In short, it is found in
designs where one class monopolizes the processing, and other classes do little and
primarily encapsulate data (see Figure 4-15).

Figure 4-14: Mediator (adapted from [16])

Mediator Colleague

ConcreteMediator ConcreteColleague1 ConcreteColleague2

1

* *

30
The distribution of responsibilities in SNMP has a striking resemblance with this
antipattern. The manager is powerful and complex while the agents basically only
feature get and set functions. This is one consequence of the fundamental axiom (see
Section 3.2.1.) and eventually led to the "myth of the dumb agent" [54]. The inaccuracy
of this axiom has been highlighted for years by Yemini and Goldszmidt [56, 19].

Especially in cases where the managed nodes are modern workstations, printers,
and other devices with powerful CPUs, one should look into the possibility of using
idle CPU cycles for network-management purposes.6 In performance management, for
example, some agents could compute usage statistics locally and send the results to the
manager instead of sending the raw measurement data.

4.2.2. Golden Hammer

The Golden Hammer antipattern [5] typically occurs when a development team has
gained a high level of competence in a particular technology and every new product
or development effort is viewed as something that is best solved with it. Its main
symptoms are that (i) solutions have inferior performance, scalability, etc. when
compared to other solutions in the industry, and (ii) new developments rely heavily on
a specific vendor product or technology.

The Java platform used to be a typical example [22, 23]. Originally, there was exactly
one kind of Java run-time environment. Over the years, it became clear that the Java
run-time environment was not powerful enough for large-scale enterprise applications
and too demanding for embedded systems. This was acknowledged and addressed by
Sun microsystems in 1999. Today, the Java run-time environment (as well as the
software development kit) is available in three editions: J2ME (micro), J2SE (standard),
and J2EE (enterprise) [48]. The micro edition is further customizable by defining
profiles, that is, a specification of the minimum set of Application Programming
Interfaces (APIs) useful for a particular kind of consumer device and a specification of
the Java virtual machine functions required to support those APIs [47].

SNMP’s fundamental axiom (see Section 3.2.1.) can be considered as an instance of
this antipattern. By reading Rose [41], one gets the impression that many major design
decisions were based on the fundamental axiom: minimizing the impact of

Figure 4-15: The Blob (behavioral form)

6. After all, CPUs are much more powerful today than they used to be in the late 1980s, when
SNMPv1 was devised. To quote Wellens and Auerbach [54, p. 2]: "Today’s network devices often
contain processors and memory exceeding that of our management platforms of a few years ago."

bad solution refactored solution

The bigger the rectangle, the more
work is performed by that class.

31
management on the agents (and thus shifting the burden to the management station),
for instance, or choosing UDP as the transport layer protocol. (SNMP as a whole could
have turned into a Golden Hammer instance, too, if the people who suggested to use
SNMP for any kind of management—such as systems management and policy
management—had been listened to.)

Another example of the Golden Hammer was the attempt, in the early 1990s, to
impose the OSI management stack (CMIP, CMIS, etc.) on all managed nodes in LANs,
including bottom of the range devices. A stack that had been developed for
telecommunications networks and that could not compete with the TCP/IP stack in
LANs.

4.2.3. Design by Committee

The Design by Committee antipattern [5] refers to a complex software design which is
the product of a committee process. Some of its symptoms are an overly complex
design documentation, the requirements and the design lacking convergence and
stability, and architects and developers having conflicting interpretation of the design.

McCloghrie [32], Rose [41], and Stallings [46] explain in detail the adverse effect that
this antipattern had on the design of SNMPv2, resulting in multiple versions and their
rejection by the market.

4.2.4. Reinvent the Wheel

The Reinvent the Wheel antipattern [5] appears when custom software systems are
built from scratch instead of taking advantage of reuse. Typical symptoms are closed
system architectures, replication of commercial software functions, and immature and
unstable architectures—because engineers make mistakes. Furthermore, systems
designed from the ground up usually take longer to develop, which makes them more
expensive.7

It would not be fair to say that by developing SNMP, the IETF reinvented the wheel.
Ten years ago, there was no application layer protocol suitable for network
management. There was no distributed object technology—such as OMG’s CORBA or
Microsoft’s DCOM [50]—either.

But today, would a developer new to network management (any kind of newcomer,
not necessarily a recent graduate) not be right in considering SNMP-based solutions to
be instances of Reinvent the Wheel? After all, SNMP keeps developers from falling
back on middleware and protocols they master when developing
network-management software.8—The answer is no. Because plain and simple, SNMP
is just one case of the more general problem of legacy systems.

7. Another cost factor is training: Reinvent the Wheel often leads to domain-specific or
proprietary solutions that people are not trained for.

8. At least this avoids the Golden Hammer, see Section 4.2.2.

32
5. A Patterns View of JAMAP

Several proposals for Web-based network management have been made so far,
including WBEM [11, 53], Wellens and Auerbach [54], and Anerousis [2]. In this thesis,
we refer to the proposal by Martin-Flatin [28, 29], the JAva MAnagement Platform
(JAMAP) [30].

JAMAP is partially realized in a prototype that is also called JAMAP [4]. This
prototype is the topic of the next chapter.

In the remainder of this chapter, we characterize JAMAP in terms of design patterns.
We start with a coarse-grained view and refine it in the course of the text. In the last
two sections, we discuss a design pattern that has no JAMAP counterpart yet as well
as an antipattern.

5.1. The Big Picture

Three patterns convey an overview of the JAMAP architecture: Pipes and Filters,
Layers (see Section 4.1.6.), and Model-View-Controller (see Section 2.1.3.).

The Pipes and Filters pattern [6] provides a structure for systems that process a
stream of data. It processes a data stream coming from a data source and going to a
data sink by enriching, refining, or transforming the data within filters connected by
pipes as depicted in Figure 5-1.

The activity of a filter can be triggered by the subsequent pipe pulling output data
from the filter or the previous pipeline pushing input data to the filter. Alternatively,
the filter can be active in a loop pulling its input from and pushing its output down the
pipeline.

Pipes can synchronize two active components. If only one of the adjacent filters is
active, the pipe can be implemented by a direct call from the active to the passive
component. (In the Decorator pattern [see Section 5.3.2.], the Decorators are filters that
activate each other directly, without the intervention of pipes.)

The data source can either actively push data to the first processing stage or
passively provide data when the first filter pulls. An active data sink pulls results out
of the preceding processing stage, whereas a passive data sink allows the preceding
filter to push the results into it.

Figure 5-1: Processing Pipeline

Data Source Filter 1 Data SinkFilter N...Pipe Pipe

33
Pipes and Filters. While there are many pipes and filter components in JAMAP (e.g.,
HTTP connections and pushed-data interpreters), their order remains static. For
example, a pushed-data collector is always followed by a pushed-data filter. Thus, this
pattern has primarily been applied for a clear separation of concerns, and not to allow
for new kinds of information processing by reordering the filters.

Unlike the simple processing pipeline depicted in Figure 5-1, both the high-level
view of the management system (see Figure 5-2) and the mid-level view of the
pushed-data servlet (see Figure 5-3) show that the JAMAP filters can have several
input or output pipes.

Layers. Both the pipes and the filters are instances of the Layers pattern (see
Figure 5-4). The communication relies on HTTP at the application layer, TCP at the
transport layer, and IP at the internet layer. The applets and the servlets are layered on

Figure 5-2: High-Level View

Figure 5-3: Mid-Level View

Data Source: AgentData Source: Agent Data Source: Agent

Data Sink: Data Log Data Sink: Network Map

Filter: Mgmt Server

Filter: Mgmt Server Filter: Mgmt Server

Pipes: HTTP Connections

Data Source:
Pushed-Data

Collector

Filter:
Pushed-Data

Filter

Data Sink:
Pushed-Data
Interpreter

Data Sink:
Pushed-Data
Interpreter

Note that here, the pipes only
exist at the conceptual level.

34
top of the Java Virtual Machine, which in turn is layered on top of the host’s operating
system.

Model-View-Controller. An agent can be managed by one or more management
stations, i.e., a manager monitors (view) and controls (controller) the agent (model). To
help the administrators in their duties, monitoring can be supported by different
views. And the controllers can depend on the administrator’s privileges to control the
network. Unlike the typical case discussed in Section 2.1.3., we have several models
(i.e., agents) in JAMAP (see Figure 5-5).1

5.2. Information Flow

A core aspect of JAMAP is the push-based communication and the possibility to
dynamically connect management servers with managed nodes and management
stations with management servers. Both issues are addressed by the Observer pattern
and one of its variants, the Strict Propagator.

To log information, JAMAP uses JDBC [23], an example of the Bridge pattern (see
Section 4.1.3.), which keeps the management server(s) and the data server(s)
independent. Changing one does not affect the other. In SNMP-based network
management, buying a network management platform reduces the choice of database
management systems because of peer-to-peer agreements between vendors [27].

The Observer pattern [16] defines a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated

Figure 5-4: Layered Pipes and Filters

Figure 5-5: MVC in JAMAP

1. And unlike SNMP-based management where typically only one NMS manages an agent, we
have several views and controllers in JAMAP.

HTTP

IP

TCP

Applet

Operating System

Java Virtual Machine

Servlet

Pipe Filter

Agent:
Model

Agent:
Model

Agent:
Model

NMS:
View-Controller

NMS:
View-Controller

35
automatically. It is also known as the Publisher-Subscriber pattern [6] and is depicted in
Figure 5-6.

The Observer pattern is an ingredient of the MVC (see Section 2.1.3.). The Model
corresponds to the Subject and a View-Controller pair to an Observer object.
But the use of the Observer pattern is of course not limited to GUIs as we shall se
shortly.

An interaction between a Subject and Observers is depicted in Figure 5-7. After
an Observer object changed the state of the Subject, the Subject notifies every
Observer that then fetches the state.

Gamma et al. discuss several points with regard to the Observer pattern, three of
which are of particular interest to us [16, pp. 297-298]:

"2. Observing more than one subject. It might make sense in some situations
for an observer to depend on more than one subject. [...] It’s necessary to extend the

Figure 5-6: Observer (adapted from [16])

Figure 5-7: Subject-Observer Interaction (adapted from [16])

Subject

attach(Observer)
detach(Observer)

notify()

Observer

update()

observers

*

ConcreteSubject

getState()
setState()

subjectState

ConcreteObserver

update()

observerState

for all o in observers {
o.update() }

subject

1

observerState =
subject.getState()

a Subject an Observer an Observer

setState()

notify()

update()

getState()
update()

getState()

36
Update interface in such cases to let the observer know which subject is sending
the notification. [...]
6. Avoiding observer-specific update protocols: the push and the pull
models. Implementations of the Observer pattern often have the subject broadcast
additional information about the change. The subject passes this information as an
argument to Update. The amount of information may vary widely.
At one extreme, which we call the push model, the subject sends observers
detailed information about the change, whether they want it or not. At the other
extreme is the pull model; the subject sends nothing but the most minimal
notification, and observers ask for details explicitly thereafter.
[...]
7. Specifying modifications of interest explicitly. You can improve update
efficiency by extending the subject’s registration interface to allow registering
observers only for specific events of interest. When such an event occurs, the
subject informs only those observers that have registered interest in that event."

To perform regular management in JAMAP, management stations observe (i.e.,
monitor) more than one agent, state information is transmitted in a push fashion, and
management stations explicitly subscribe to MIB data and notifications they are
interested in.

Even though being correct, this view is too high-level for implementational
purposes: Pushed data is first received by management servers, and management
stations observe the network map registry.

The Propagator [12] is a family of patterns related to the Observer that works with an
arbitrary dependency network (vs. Observer’s single level of dependents). The Strict
Propagator is the family member of interest to us and is depicted in Figure 5-8.

A StrictPropagator object can act as an Observer and a Subject at the same
time. This makes is possible to both observe and be observed.

Figure 5-8: Strict Propagator (adapted from [12])

Client StrictPropagator

update(from)
notifyDependents()

addDependent(StrictPropagator)
removeDependent(StrictPropagator)

*

*
dependents

ConcreteStrictPropagator

update(from)
getState()
setState()

state

for all d in dependents {
d.update(this)

d.notifyDependents() }

state = f(state, from)

37
In JAMAP, agents are Subjects and are only observed. The management servlets
running on the management server are StrictPropagators: they both observe (the
agents) and are observed (pushed-data servlets by the events servlet, the event servlet
by the management stations). Management stations are Observers and are not
observed themselves.

Buschmann et al. briefly treat three variants of the Observer. One of them can be of
interest to certain realizations of JAMAP [16, p. 341]:

"Gatekeeper. The Publisher-Subscriber pattern can be also applied to distributed
systems. [...] In one process a component sends out messages, while in the
receiving process a singleton ’gatekeeper’ demultiplexes them by surveying the
entry points for the process. The gatekeeper notifies event-handling subscribers
[Observers] when events for which they registered occur."

The Gatekeeper pattern, also known as the Reactor patter [43], should be considered
in cases where threading is not or only poorly supported. In theory, this should not be
too big an issue in Java. In practice, the performance of Java threading can be poor and
necessitate a reimplementation based on the Gatekeppper, because either the thread
support by the operating system or the thread implementation of the Java run-time
system is poor.

5.3. Servlets Patterns

5.3.1. Singleton

The Singleton pattern [16] ensures that a class has one instance only and provides a
global point of access to it. It is depicted in Figure 5-9.

A well-known example for Singletons are abstract data structures. Unlike, for
instance, a list defined as an abstract data type, a list defined as an abstract data
structure must be shared by all its clients. Different programming languages provide
different ways of realizing them, e.g., using modules or namespaces, hiding the
constructor, or making the whole class static.

A server supporting servlets instantiates a servlet at most once, i.e., servlets are
Singletons. Note, however, that if a servlet thread is busy servicing a request when
another one arrives, a new servlet thread will be forked to serve the arriving request.
The crucial point is that all these threads share the same servlet state, at whatever point
of execution they might be.

Figure 5-9: Singleton (adapted from [16])

Singleton

instance()
singletonOperation()
getSingletonData()

uniqueInstance
singletonData

return uniqueInstance

38
5.3.2. Decorator

The Decorator pattern [16] dynamically provides an object with additional
responsibilities, without using inheritance. It is depicted in Figure 5-10.

For example, if we want to make a file stream class and a network stream class (that
both inherit from the same abstract stream class) more secure, we can subclass each of
them to define an encrypted file stream class and an encrypted network stream class.
If, additionally, we want streams that compress data, we can equally well define a
compressed file stream class and a compressed network stream class. What about file
streams that are both compressed and encrypted? Supplying all the desired variants
gets quickly out of control.

By applying the Decorator pattern, we define a compressed stream class and an
encrypted stream class that can work with any kind of stream. A compressed and
encrypted file stream can now easily be constructed at run time by cascading these
three streams.

This is exactly how Java streams are realized [22]. An abstract class called
InputStream (Component) is the superclass of all input streams. Concrete subclasses
such as FileInputStream (ConcreteComponent) actually write data to a medium.
The abstract subclass FilterInputStream (Decorator) is the superclass of all
classes that transform data, but do not write it to a medium themselves. The
GZIPInputStream (ConcreteDecorator) is a concrete subclass of
FileInputStream. Output streams are organized analogously. JAMAP intensively
uses Java streams and thus the Decorator pattern.

Figure 5-10: Decorator (adapted from [16])

Component

operation()

Decorator

operation()

component

ConcreteComponent

operation()

ConcreteDecoratorA

addedState

ConcreteDecoratorB

operation()
addedBehavior()

operation()

component.operation()

addedBehavior()
super.operation()

1

1

39
5.3.3. Strategy

The Strategy pattern [16] defines a family of algorithms, encapsulates each one, and
makes them interchangeable. It is depicted in Figure 5-11.

The same task (e.g., sorting) can sometimes be carried out by different algorithms
(e.g., bubble sort, quicksort, etc.). If it is desirable for a class to support several such
algorithms, they can all be implemented in the same class (and, at a given time, selected
through a conditional statement), or the class is subclassed for every algorithm.
Alternatively, the Strategy pattern suggests to decouple the varying behavior from the
class that exhibits this behavior and to define each algorithm in a class of its own.

Prior to sending data, an agent may compress, encrypt, or authenticate these data
(see also Section 5.3.2.). By defining class hierarchies for the compression, encryption,
and authentication schemes, we can easily configure a running system to use a new
scheme. The receivers (i.e., the pushed-data servlets on the management servers) need
to be configured accordingly prior to checking the authentication of, decrypting, or
decompressing these data.

The flexibility offered by the Strategy pattern is useful in the pushed-data
interpreter. A rule can be created or modified (with the rule editor applet) whenever
an administrator deems it necessary. In particular, a rule can be deployed long after the
pushed-data interpreter has taken up its work.

Note that in the Strategy pattern, all ConcreteStrategy classes can work with the
same input data and only differ in how they compute on it (and possibly the output
data they generate). In JAMAP, the interpreter rules may also differ in what input data
they understand (SMI-based, XML-based, etc.).

An event correlator can provide a quite similar rule creation and modification
mechanism that allows administrators to define and apply new correlation rules at run
time.

Figure 5-11: Strategy (adapted from [16])

Context

contextInterface()

Strategy

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

ConcreteStrategyB

algorithmInterface()

40
5.3.4. Builder

The Builder pattern [16] separates the construction of a complex object from its
representation so that the same construction process can create different
representations. It is depicted in Figure 5-12.

A Director acts on behalf of a client object (e.g., a development environment) that
asks it to build a complex product (e.g., machine code) after providing it with the
necessary data (e.g., a parse tree) and the respective ConcreteBuilder (e.g., for
PowerPCs). The client knows the ConcreteBuilder, so it knows how to extract the
end product (i.e., what method to call).

An application of the Builder pattern in JAMAP (see Figure 5-13) is the separation
between the push scheduler and the MIB data formatter. The PushScheduler merely
asks the MIBFormatter it is given (e.g., the first time an HTTP GET request is serviced
by the servlet) to return an array of bytes representing the variable specified with the
OID, so that the variable can be embedded in a MIME part. Note that the constructed
object is not complex in this case, but the separation allows for different types of
representation, including XML, strings, etc.

Figure 5-12: Builder (adapted from [16])

Figure 5-13: MIB Formatter

Builder

buildPartA()
buildPartB()

ConcreteBuilder

buildPartA()
buildPartB()
getResult()

Director

construct()
1

build the product part
by part in the correct
order and quantity

MIBFormatter

formatVar(int oID)

SnmpFormatter

formatVar(int oID)

PushScheduler 1

41
5.4. Command Pattern

The Command pattern [16] decouples the invoker of a request (command) from the
receiver by encapsulating requests as objects. Different invokers can be parameterized
with the same request (thus leading to the same result), and the same invoker can be
parameterized with different requests at different times. Because requests are
first-class objects, they can easily be queued or logged, e.g., to support undoable
operations. The Command pattern is depicted in Figure 5-14.

For example, a word processor (Client) can parameterize both a menu item and a
button in a toolbar (Invokers) with the same ConcreteCommand (e.g., "cut").
Beforehand, the word processor has given the ConcreteCommand the identity of the
current document (Receiver). The ConcreteCommand also knows whether its
widgets should be enabled or not and whether it has to put itself on an undo stack after
execution. An interaction is depicted in Figure 5-15.

Figure 5-14: Command (adapted from [16])

Figure 5-15: Command Interaction (adapted from [16])

Client Invoker

Receiver

action()

Command

execute()

ConcreteCommand

state

execute()

receiver

receiver.action()

1

1 *

**

*

a Receiver a Client

a ConcreteCommand

an Invoker

storeCommand()

execute()

action()

42
The Command (along with the Command Processor pattern [6]) is certainly a viable
pattern for the GUIs in JAMAP2, but GUIs are—with the exception of the management-
specific GUI discussed in Section 4.1.8.—not our concern in this thesis. Nevertheless,
the Command pattern can inspire us to delegate management tasks to agents by
sending them Command-like objects they execute locally.3 Such a Command object can
even be composed of other Command objects as suggested by the MacroCommand
pattern (see Figure 5-16), a special case of the Composite pattern (see Section 4.1.4.).

5.5. Continuous Obsolescence AntiPattern

Continuous Obsolescence [5] stems from technology changing so rapidly that
developers have trouble keeping up with the current version of software and finding
combinations of product releases that work together.

As Brown et al. point out [5, p. 85]: "Java is a well-known example of this phenomenon,
with new versions coming out every few months."

JAMAP relies heavily on Java and is thus indirectly prone to Continuous
Obsolescence. For example, what used to be called Embedded Java has now evolved
into the Java Platform Micro Edition (J2ME) [47]. This is of concern to developers
developing agents, but the problem seems to be local. At first sight, it even seems like
all the servlets (on both the managers and the agents) in a given network can be based
on different releases of Java without causing interoperability problems.

Appearences are deceiving: wherever Java serialization is used, chances are that
objects cannot be deserialized. Every class automatically has a (static final long)
version number called serialVersionUID which is a function of the field
declarations and the method signatures of the class [22]. If the interface changes, then
so does the serialVersionUID. And if at the time of deserialization the
serialVersionUID of the object and the class do not match, an exception is thrown.
Nevertheless, the version number can manually be set to the old one if the new class
implementation is compatible to the old.

2. The more so as the Java platform supports it through the Action interface [22].
3. This is an example for the remote evaluation paradigm of mobile code [15].

Figure 5-16: MacroCommand (adapted from [16])

Command

execute()

... MacroCommand

execute()

for all c in commands {
c.execute() }

1..*

*

commands

43
6. Analysis of the JAMAP Prototype

The JAva MAnagement Platform (JAMAP) is a prototype of a management platform
for Web-based network management originally developed by Laurent Bovet [4]1. A
high-level overview of JAMAP is given by Martin-Flatin et al. [30].

JAMAP encompasses about 60 classes and 10 interfaces [4]. The agent-side classes
realize what is necessary for data subscription and data dispatching. Notifications are
not fully supported yet. The manager-side classes realize what is necessary for
pushed-data and elementary event handling.2

The core characteristics of JAMAP are (i) the HTTP-based communication, (ii) the
use of applets and servlets, and (iii) the use of serialized Java objects for the data
exchange. Between managers and agents, the serialized objects are embedded in
MIME messages.

In the remainder of this chapter, we discuss JAMAP’s support for distributing the
management platform, take a closer look at two of the servlets, and point out
implementation and design limitations that do not affect the overall architecture of
JAMAP. The last two sections are primarily destined for people working with the
source code.

For the sake of simplicity, we assume here that the reader is familiar with the
above-mentioned documents. If need be, JAMAP is explained in detail in [4, 30].

6.1. Distributed Network Management Platform

As shown in Figure 6-1, we will typically have several agents (dozens or hundreds),
a few (or only one) management servers featuring the pushed-data servlet, one
management server featuring the events servlet, and one or more management
stations running the network-map applet and possibly data-subscription applets. The
events servlet and one pushed-data servlet can of course run on the same management
server.

Agents have the possibility to send data to more than one pushed-data servlet. This
is primarily for reasons of redundancy, i.e., all pushed-data servlets connected to a
given agent would typically receive the same data. But in order not to limit the
application, we also want the possibility to send different data to the pushed-data
servlets.

Similarly, pushed-data servlets have the possibility to send data to more than one
events servlet. While allowing only one events servlet in a given network solves the
problem of maintaining consistency between several network-map registries (because

1. Personal remark: I am very impressed by Laurent Bovet’s work. In addition to designing and
implementing a runnable prototype using classes from different origins, he also set up an
HTTP server and had some remarkable ideas I would probably not have had. The
shortcomings I discuss are in my opinion largely due to a lack of time and to the experimental
nature of his work. Any critique is meant to be purely technical and by no means personal.

2. The JAMAP documentation [4] uses the term "notification" to denote SNMP notifications and
the term "event" to denote events generated by the pushed-data filter or the pushed-data
interpreter. In general, these terms are often interchangeable in network management.

44
it does not arise in the first place), we may well like to experiment with a new events
servlet (e.g., with a new event correlator) without having to disable the current one.

JAMAP already allows for more than one pushed-data servlet or events servlet.
However, pushed-data servlets connected to the same agent will receive the same data.
This is because of how subscriptions are designed and implemented.

At the time of subscription, an instance of a Subscription subclass is created. A
Subscription object (its dynamic type is not of relevance right now) contains three
fields: objectID, objectType, and subscriberID. A subscriberID
encapsulates a collectorID and a consumerID (see Figure 6-2).

Figure 6-1: Management Nodes

Figure 6-2: Payload and its Subclasses

Agent Agent

Pushed-Data
Servlet

Events Servlet

Network Map
Applet

Data Subscription
Applet

Agent Agent

Pushed-Data
Servlet

Network Map
Applet

Payload

Event

Serializable

eventType: String
agentID: String

description: String
value: Object

Unit

sourceID: String
object: Object

Subscription

objectID: String
objectType: String

SubscriberID

collectorID: String
consumerID: String

DataSubscription

frequency: int

NotificationSubscription EventSubscription

Note: The constructors are omitted.

su
bs

cr
ip

ti
on

su
bs

cr
be

rI
D

1 1

45
The objectID denotes the identifier (ID) of the variable or notification to subscribe
to. The objectType denotes the type (e.g., "SNMPNotification"). Both values are
completely ignored, though! The reason they can be ignored—and the reason that only
a SubscriberID object is necessary for unsubscription—is that consumerID is in
essence a concatenation of the object type and the object ID. The collectorID,
finally, is simply the ID of the agent.

We doubt the usefulness of the consumer ID3, but the idea of collectors is a very
powerful one. A pushed-data servlet will receive variables (and notifications)
depending on which collector ID it used when establishing the connection to the agent.
In other words, this is an example of the Observer pattern [16] with multicast (and not
broadcast) semantics. But to unleash its power, the collector ID must not be set to the
agent ID (as is currently the case), otherwise the pushed-data servlet either receives all
the data or none at all. We therefore suggest that the collectorID field replaces the
subscriberID field in Subscription and that SubscriberID is discarded.

Currently, the events servlet has to run on the same server as the (single)
pushed-data servlet to which it connects. This is because there is no means yet to tell it
to which pushed-data servlet to connect. We suggest to develop an applet through
which an administrator can subscribe the events servlet to pushed-data servlets, by
giving it a list of URIs, for instance. If the events servlet cannot store this list locally, a
similar solution as for the agents should be envisioned (see Section 6.2.). Of course, the
same mechanism can be used to tell pushed-data servlets to which agents to connect.

In addition to fetching a variable value once, data-subscription applets can also
subscribe to variables of their agent. The exact same mechanism as for pushed-data
servlets can be used, namely that the applet connects to the agent with a certain
collector ID. An alternative would be that applets use the pull model when they are
used for ad-hoc management. The waste of bandwidth (compared to using the push
model) is only temporary.

6.2. Agent

The central piece of the agent is the PushDispatcher servlet which can service
HTTP GET and POST requests. Upon instantiation, the PushDispatcher object tries
to load a SubscriptionTable object from the local file system. If this fails, an empty
one is created.

POST requests can either contain a subscription or an unsubscription (coming from
the data subscription applet). The SubscriptionTable4 is modified accordingly and
stored on the local file system (if possible).

Not all agents will have the possibility to locally store their SubscriptionTable.
We therefore suggest that they only provide a small non-volatile memory to store a
URI. This administrator-assigned URI denotes the location and the name of the
serialized SubscriptionTable. At the time of initialization, the agent requests
(HTTP GET) the SubscriptionTable. By communicating the same URI to several
agents, they will all use the same SubscriptionTable. Through the data

3. Currently, it is used to assign an interpreter rule to a variable. But each monitored variable
having an interpreter rule of its own will not scale well.

4. For the sake of simplicity, we refrain from specifying whether we mean the class or an
instance when it is clear from the context.

46
subscription applet, an administrator can instruct an agent to store (another HTTP
request to the same URI) the SubscriptionTable or to fetch it anew. And if the
administrator wants several agents to fetch it anew, she can write a simple script that
issues the necessary HTTP request to the these agents.

Each HTTP GET request results in the creation of a PushScheduler and in the
invocation of its endlessly looping push method. This method pushes variables to the
issuer of the GET request with the help of a MultiObjectOutputStream.

Being designed for an SNMP agent, the PushScheduler is SNMP specific.
Furthermore, it only works for subscriptions whose frequency—strictly speaking:
period—is a multiple of 5 seconds (hard-coded).5 The developer must have been aware
of this problem, for in one of the comments, he hints at using the greatest common
divisor of all subscription periods to determine when to check the subscriptions next;
this is a very good idea that should be pursued.

We suggest that the PushScheduler should be designed to be MIB independent,
allowing it to be used in any kind of agent (e.g., CIM MIBs). This can be achieved by
separating the currently implicit MIB data formatter part according to the Builder
pattern [16] (see Section 5.3.4. for more).

When a variable is transmitted, it is wrapped into a Unit (see Figure 6-2)—along
with its subscription—, and the Unit is then pushed by invoking the writeObject
method of the MultiObjectOutputStream. This method, however, always
appends a MIME separator which supposedly denotes the end of a push cycle.

The format we suggest to use in the future is depicted in Figure 6-3. The
PushScheduler tells the MultipartObjectOutputStream to write the part
header. It then tells it—for all variables in the push cycle—to write the object ID as well
as the array that the MIB data formatter returned. And then it tells it to write the MIME
separator.6

The object ID is a 32-bit, signed, big-endian integer (i.e., a Java int). The byte array
can represent a serialized Java object, an XML file in UTF encoding, etc. A "smart"
pushed-data collector will be able to determine where one variable ends and the next
(or the MIME separator) starts by looking up the MIME type and interpreting the byte
array accordingly.

5. For practical management purposes, a resolution in minutes should suffice.
6. For all these kinds of output, the MultiObjectOutputStream can use an output stream

that implements the java.io.DataOutput interface.

Figure 6-3: Format of MIME Parts

MIME part header OID; byte array ...

... OID; byte array MIME separator

47
6.3. Manager

The central pieces of the manager are the PushedDataCollector servlet and the
EventManager servlet.

As both Bovet [4] and Martin-Flatin et al. [30] indicate, a full-blown events servlet is
a project of its own. We thus confine our study to the pushed-data servlet, but only
after suggesting to add a filter between the events and pushed-data servlets. The task
of this filter will be to translate events (e.g., a SNMP notification the notification filter
forwards) in case their format does not conform to the one expected by the event
correlator.

Upon instantiation, the PushedDataCollector creates a MibDataLogger. The
latter is a helper object to log SNMP variables on the same server (hard-coded). These
are two liabilities that are undesirable for a general-purpose pushed-data servlet.
However, the only reason the MibDataLogger is SNMP-specific is that it contains an
unnecessary cast to a third-party SNMP-variable type (see also Section 6.5.), so this can
easily be fixed.

HTTP POST requests can contain one of three commands (coming from the rule
editor applet). The "reinit" command tells the PushedDataCollector to connect to
an agent to which it may not be connected yet. (When it starts to run, it is connected to
no agent at all. Once connected to an agent, it cannot be disconnected on command.)
The "reconnect" command tells it to connect to an agent to which it is already
connected after closing the current connection. The "postrule" command, finally, tells
it to compile and instantiate a rule for a given agent (collector) and a given variable
(consumer). If necessary, the PushedDataCollector first connects to the agent.

Each HTTP GET request results in the creation of a PushForwardConsumer and in
the invocation of its endlessly looping waitAndPush method. This method pushes
events to the issuer of the GET request with the help of a
MultiPartObjectOutputStream. The PushForwardConsumer is registered with
the ForwardConsumer (multiplexer) of the PushedDataCollector. The
ForwardConsumer receives the events of all the PushedDataFilters and
PushedDataInterpreters.

Figure 6-4: Consumer & Co.

<<interface>>
Consumer

feed(Unit)

<<interface>>
FinalConsumer

feed(Unit)
getID(): String

<<interface>>
RelayConsumer

feed(Unit)
setNext(Consumer)
getNext(Consumer)

ForwardConsumer

feed(Unit)
getID(): String

register(Consumer)
unregister(Consumer

PushForwardConsumer

feed(Unit)
getID(): String
waitAndPush()

Note: The constructors
are omitted.

48
The problem is that JAMAP Consumers handle Units (see Figure 6-4). So every
Event first needs to be wrapped into a Unit before being serialized and sent through
the network. This wastes both time and bandwidth. And we can spare neither when
things go wrong in the network, resulting in many events being generated and
transmitted.

6.4. Analysis of the Design

Visibility. The fields of the JAMAP classes are either declared public7 or nothing at
all (i.e., neither private nor protected). In Java, the default is package visibility
which most certainly is not what was intended. All classes in the same package can
access and modify those non-private fields which in turn may hamper the evolution
of classes that expose their fields in such a way. Data hiding is a proven principle of
programming in general and of object-oriented programming in particular. The Bridge
pattern [16] goes even further by not only hiding the implementation, but by
decoupling it from the abstraction.

False Family. PersistentObject is a JAMAP class that directly inherits from
java.lang.Object and that implements java.io.Serializable without
modifying any behavior or adding any fields. The intention seems to be that it acts as
the supertype of all serializable JAMAP classes. But there is no need for such a class as
this is the role of java.io.Serializable. Furthermore, classes that do not inherit
from java.lang.Object directly or from a PersistentObject subclass cannot
inherit from the latter anymore, and some classes that could inherit do not. Most
important, however, is that the five classes that do do not really belong to the same
family (e.g., PushNetworker and DefaultMonitorController). The Family
pattern [36] should not be applied when the purpose of the child classes is quite
different from the purposes of their parent and sibling classes.

Wrong Reference. Payload8 (see Figure 6-2) is the superclass of all classes exchanged
via the network. Important for these classes is that they are serializable. However, two
of these classes—Event and Unit—each contain a reference to a
java.lang.Object. At run time, this may cause the raise of an exception if the
dynamic type of the object is not serializable. Therefore, these references in Event and
Unit should be replaced by references to java.io.Serializable. No generality is
lost and errors are already discovered at compile time. (The argument type of the
writeObject method in MultiPartObjectOutputStream can be changed
accordingly.)

Reinvent the Wheel. MIMEPart and MultiPartStreamHandler are a prime
example for the Reinvent the Wheel antipattern [5]. They implement functionality that
java.util.StringTokenizer already provides, namely the division of
java.lang.Strings into substrings wherever certain delimiter characters are
found.

Naming. MultiPartObjectOutputStream is not a subclass of
java.io.OutputStream despite its name and despite featuring a writeObject

7. We find this to be ok, but object-orientation purists would probably prefer to provide access
to those fields through (final) accessor methods only.

8. Payload could have been declared abstract. This raises the interesting question of why
java.lang.Object is not abstract either.

49
method with the exact same signature. A naming convention in the JAMAP
documentation [4] may also confuse the uninitiated reader: the term "MIB" denotes a
SNMP MIB and is not used in a generic sense.

6.5. Analysis of the Implementation

Comments. The biggest problem we faced while studying the source code of JAMAP
is that comments are virtually non-existent. It was difficult at times to figure out what
the responsibility of a class is, or to understand the inner workings of a method. Note
that because we are dealing with a first prototype, this is not necessarily an instance of
the Architecture by Implication antipattern [5]. Nevertheless, this may eventually
cause the Lava Flow antipattern [5].

Serialization. The java.io.Serializable interface is primarily a tagging
interface [22]. In other words, classes that implement it let the run-time environment
know that it is ok to serialize their objects. And even though serialization can be
customized by defining private writeObject and readObject methods, one does
not have to do so as long as the default serialization mechanism is appropriate.
Furthermore, as soon as a class implements a certain interface, all its subclasses are of
the latter’s type as well. Most of the JAMAP classes that implement the
Serializable interface override writeObject and readObject even though
they do not change the default serialization mechanism. This unnecessarily clutters the
source code.

Casts. When working with object references, the only kind of explicit cast that is
occasionally necessary (and checked at run time) is the downcast.9 The JAMAP source
code, however, contains both upcasts (e.g., in EventManager) and casts of fields to
types they are declared as anyway (e.g., in SubscriptionTable). While syntactically
and semantically correct, this may cause performance penalties if the compiler does
not remove the unnecessary casts and is potentially very confusing for someone
reading the source code. As for the Functional Decomposition antipattern [5], the cause
may be thinking in a non-object-oriented programming language such as C.

Exception Handling. Most try blocks in JAMAP are only followed by a single
"catch-all" catch(Exception) block which simply prints the stack trace. We find
that this is ok for a prototype. Nevertheless, one should keep in mind that beyond
doing more useful and important things within a catch block, we can profit from
Java’s strong typing to separate the catch blocks of different exceptions on the one
hand, and not to erroneously catch exceptions that should have propagated out of the
method on the other hand.

Consistency. The same MIME part boundary is defined in more than one JAMAP
class (i.e., in MultipartObjectOutputStream and MultipartStreamHandler).
Defining the "same" constant in more than one class is very dangerous. Instead, it
should be publicly defined in one only class or in an interface without any methods. In
the former case other classes can use it by referencing the constant, in the latter case by
implementing the interface.

9. Downcasts are not necessary to determine the method that is performed when an operation
is invoked on an object (e.g., as in MibDataLogger)—polymorphism takes care of that.

50
Efficiency. First, when the same reference or value is requested or computed more
than once in the same block but does not change in between, it should be assigned to a
local variable the first time it is needed. Second, in cases where information has to be
read from an input stream but can be processed before being complete, it seems like a
good idea to read information until the input stream blocks, to process what has been
read (instead of first waiting for all the data), and to go back to reading afterwards. The
JAMAP classes that make use of this idea (e.g., Proxy) do so by defining an array of
length one into which to read. The problem is that with java.io.InputStreams, the
number of bytes read is at most the number of bytes available without blocking or the
length of the array into which to read the bytes—whichever number is smaller.10 Third,
whenever a String is constructed by appending several chars or Strings, it is more
efficient to use a StringBuffer than performing String concatenation (e.g., as is
done in MIMEPart or MultiPartStreamHandler).

10. By the way, we came across a bug that only appears on occasion. If the InputStream is still
blocked at the time of the next read attempt, the old content of the array will be processed
again. One therefore not only has to check for a return value of -1 (denoting the end of
stream), but also for 0 (meaning no byte read).

51
7. Conclusion

7.1. Summary and Contributions

In this thesis, we first introduced design patterns and two approaches to IP network
management, the Simple Network Management Protocol (SNMP) and Martin-Flatin’s
proposal for Web-based network management (JAMAP).

We then compiled a list of ten design patterns, summarizing each one and
explaining their potential roles in SNMP-compliant network-management software.
We also discussed four antipatterns in the context of SNMP-based network
management.

Next, we characterized the architecture of JAMAP in terms of design patterns,
starting with a coarse-grained view and refining it. Additionally, we presented a
design pattern that may lead to a solution for distributing management tasks.

Finally, we briefly reviewed the current JAMAP prototype and made some
suggestions for improvement, both at the design and implementation level.

Overall, we provided a software-engineering view of IP network management. We
showed that general-purpose design patterns—first found in designs of editors,
graphical user interfaces, frameworks, and many other software systems—can support
the documentation and design of network-management software.

7.2. Benefits for the Student

Building on what I was taught in the lectures on computer networks, distributed
systems, and Web technologies, I learned the foundations of network management. In
particular, I learned how IP networks are managed with SNMP and in one instance of
Web-based network management.

As to my software-engineering skills, I gained more experience in the design of
object-oriented software systems, broadened my knowledge of Java (threading,
networking, servlets), and learned the core parts of the Unified Modeling Language.
Furthermore, I saw clear examples of what to avoid when developing software while
I studied antipatterns.

The main benefit, however, stems from my intensive study of design patterns in the
course of this thesis. I now know about 40 design patterns, most of which I can put into
practice without having to consult the literature.

7.3. Future Work

The compilation of design patterns for IP network management can be pursued by
taking into account WBEM, JMX, and other proposals on the one hand, and further
design-patterns literature on the other hand.

It is probably worthwhile to investigate how recent Java technologies—such as
JavaSpaces, Jini, and especially the Java Management Extensions—can be incorporated
into Web-based network management. It would also be interesting to see whether

52
JAMAP and the design patterns we suggest contain ideas that have been missed in
these Java technologies.

Finally, it would be useful to implement and test the modifications that we
suggested for JAMAP. But before doing so, one may want to address the issues of
security and delegation of management, which probably require further design
modifications.

53
Appendix A:
Project Description

54
Diploma Project (M.S. thesis) for 1999-2000:
Design Patterns for the Management of IP Networks

This project has been assigned to Paul E. Sevinç, M.S. student at ETH Zurich.

Professor: R. Guerraoui (LSE)

Assistant: J.P. Martin-Flatin (ICA), INR 130, Tel. 4668, <jp.martin-flatin@ieee.org>

Hosting lab: ICA

Work place: INR 111

Maximum number of students for this project: 1

Project Description

The management of IP networks (especially intranets) is typically based on a network
management platform, such as HP OpenView or Cabletron Spectrum, and
vendor-specific management GUIs called add-ons. In this setup, management
software is expensive, but hardware is expensive too, since we need a dedicated
management station. Transfers of management data between the manager and the
agents are based on the SNMP protocol and the manager-agent paradigm [8]. The
manager performs some polling at regular time intervals.

A new approach to IP network management, known as "Web-Based management",
consists in using Web technologies instead. An applet is uploaded by a Web browser,
and management data is exchanged via HTTP (instead of SNMP) between the manager
and the agents. This requires that HTTP servers be embedded in all agents. We
proposed recently a new model whereby data polling is replaced by push technologies,
which saves a lot of network bandwidth [5].

Some work is currently under way at ICA to develop a management platform called
JAMAP [6], which supports Web-based management and is based on the push model.
The network management model adopted for this platform is fairly simple, though.
The purpose of this project is to devise a more comprehensive management framework
that would extend significantly the current model. The student will first study how
network monitoring, data collection, notification delivery and event handling are
currently performed. He/she will then analyze them, and build object-oriented
models of these management tasks. Based on the so-called Gang of Four’s book [4],
he/she will propose some design patterns to model the network management
application.

55
Benefits for the Student

In the course of this diploma project, the student will:
• become an expert in object-oriented design and design patterns
• become familiar with the Unified Modeling Language
• get an in-depth understanding of the management of IP networks
• apply theoretical software engineering concepts to a practical application domain

Prerequisites

Prior to starting this project, the student should:
• be enrolled in a computer science or communication systems program (EPFL or

Erasmus exchange)
• have a good knowledge of object-oriented methods and Java
• be familiar with the Web
• know the basics of design patterns
• not necessarily know anything about network management

Bibliography

[1] G. Booch. Object-Oriented Analysis and Design. 2nd edition. Addison-Wesley,
Menlo Park, CA, USA, 1994.

[2] G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, MA, USA, 1999.

[3] M. Fowler and K. Scott. UML Distilled: Applying the Standard Object Modeling
Language. Addison-Wesley, Reading, MA, USA, 1997.

[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Menlo Park, CA, USA, 1994.

[5] J.P. Martin-Flatin. "Push vs. Pull in Web-Based Network Management". In Proc. 6th
IFIP/IEEE International Symposium on Integrated Network Management (IM’99), Boston,
MA, USA, May 1999. IEEE Press, New York, NY, USA, 1999.

[6] J.P. Martin-Flatin, L. Bovet and J.P. Hubaux. "JAMAP: a Web-Based Management
Platform for IP Networks". Submitted to the 9th IFIP/IEEE International Workshop on
Distributed Systems: Operations & Management (DSOM’99), Zurich, Switzerland, October
1999. Springer-Verlag, Berlin, Germany, 1999.

[7] P. Sridharan. Advanced Java Networking. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1997.

[8] W. Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. 3rd edition.
Addison-Wesley, Reading, MA, USA, 1999.

56
References

1. C. Alexander. "The Origins of Pattern Theory: The Future of the Theory, and the Generation of a
Living World". IEEE Software, 16 (5): 71-82, 1999.

2. N. Anerousis. "Scalable Management Services Using Java and the World Wide Web". In A.S. Sethi
(Ed.), Proc. 9th IFIP/IEEE Int. Workshop on Distributed Systems: Operations & Management
(DSOM’98), Newark, DE, USA, October 1998, pp. 79-90.

3. B. Appleton. "Patterns and Software: Essential Concepts and Terminology".
Available at <http://www.enteract.com/~bradapp/docs/>.

4. L. Bovet. The Push Model in a Java-Based Network Management Application. Master’s Thesis, Swiss
Federal Institute of Technology Lausanne, Switzerland, March 1999.
Available at <http://icawww.epfl.ch/~jpmf/students.html>.

5. W.H. Brown, R.C. Malveau, H.W. McCormick III, and T.J. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. John Wiley & Sons, New York, NY, USA, 1998.

6. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley & Sons, Chicester, England, 1996.

7. G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design. 2nd edition.
Addison-Wesley, Wokingham, England, 1994.

8. W. Cunningham and K. Beck. "Using Pattern Languages for Object-Oriented Programs". In
L. Power and Z. Weiss (Eds.), Addendum to the Proc. 2nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA ’87), Orlando, FL,
USA, October 1987, p. 16 & pp. 94-95. ACM Press, New York, NY, USA, 1995.
Available at <http://c2.com/doc/oopsla87.html>.

9. D.F. D’Souza and A.C. Wills. Objects, Components, and Frameworks with UML: The Catalysis
Approach. Addison-Wesley, Reading, MA, USA, 1999.

10. L. Deri. A Component-based Architecture for Open, Independently Extensible Distributed Systems.
Doctoral Thesis, University of Bern, Switzerland, June 1997.
Available at <http://www.iam.unibe.ch/cgi-bin/oobib?scg-phd>.

11. Distributed Management Task Force. WBEM Initiative. Home Page.
Located at <http://www.dmtf.org/wbem/>.

12. P.H. Feiler and W.F. Tichy. "Propagator—A Family of Patterns". Proc. 23rd International Conference
on Technology of Object-Oriented Languages and Systems (TOOLS ’97), Santa Barbara, CA, USA, July
1997.

13. P. Felber, R. Guerraoui, and M.E. Fayad. "Putting OO Distributed Programming to Work".
Communications of the ACM, 42 (11): 97-101, 1999.

14. M. Fowler with K. Scott. UML Distilled: A Brief Guide to the Standard Object Modeling Language. 2nd
edition. Addison-Wesley, Reading, MA, USA, 2000.

15. A. Fuggetta, G.P. Picco, and G. Vigna. "Understanding Code Mobility". IEEE Transactions on
Software Engineering, 24 (5): 342-361, 1998.

16. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesely, Reading, MA, USA, 1995.

17. B. Garbinato and R. Guerraoui. "Using the Strategy Design Pattern to Compose Reliable
Distributed Protocols". In Proc. 3rd USENIX Conference on Object-Oriented Technologies and Systems
(COOTS ’97), Portland, OR, USA, June 1997, pp. 221-232.

18. B. Garbinato. Protocol Objects and Patterns for Structuring Reliable Distributed Systems. Doctoral
Thesis no. 1801, Swiss Federal Institute of Technology Lausanne, Switzerland, May 1998.

19. G.S. Goldszmidt. Distributed Management by Delegation. Doctoral Thesis, Columbia University,
New York, NY, USA, 1996.

57
20. M. Grand. Patterns in Java, Volume 1: A Catalog of Reusable Design Patterns Illustrated with UML.
John Wiley & Sons, New York, NY, USA, 1998.

21. M. Grand. Patterns in Java, Volume 2. John Wiley & Sons, New York, NY, USA, 1999.

22. C.S. Horstmann and G. Cornell. Core Java: Fundamentals. 4th edition. Sun Microsystems Press,
Palo Alto, CA, USA, 1999.

23. C.S. Horstmann and G. Cornell. Core Java: Advanced Topics. 4th edition. Sun Microsystems Press,
Palo Alto, CA, USA, 2000.

24. H. Hüni, R. Johnson, and R. Engel. "A Framework for Network Protocol Software". In Proc. 10th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’95), Austin, TX, USA, October 1995, pp. 358-369. ACM Press, New York,
NY, USA, 1995.

25. D. Levi. "Introduction to the Script MIB". The Simple Times, 7 (2): 5-6, 1999.

26. J.P. Martin-Flatin, S. Znaty, and J.P. Hubaux. A Survey of Distributed Enterprise Network and
Systems Management. Technical Report SSC/1998/024, version 2, Swiss Federal Institute of
Technology Lausanne, Switzerland, August 1998.

27. J.P. Martin-Flatin. IP Network Management Platforms Before the Web. Technical Report
SSC/1998/021, version 2, Swiss Federal Institute of Technology Lausanne, Switzerland,
December 1998.

28. J.P. Martin-Flatin. The Push Model in Web-Based Network Management. Technical Report
SSC/1998/022, version 3, Swiss Federal Institute of Technology Lausanne, Switzerland,
November 1998.

29. J.P. Martin-Flatin. "Push vs. Pull in Web-Based Network Management". In M. Sloman,
S. Mazumdar, and E. Lupu (Eds.), Proc. 6th IFIP/IEEE International Symposium on Integrated
Network Management (IM’99), Boston, MA, USA, May 1999, pp. 3–18. IEEE Press, New York, NY,
USA, 1999.

30. J.P. Martin-Flatin, L. Bovet, and J.P. Hubaux. "JAMAP: a Web-Based Management Platform for IP
Networks". In R. Stadler and B. Stiller (Eds.), Active Technologies for Network and Service
Management-Proc. 10th IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management (DSOM’99), Zurich, Switzerland, October 1999. LNCS 1700: 164-178, Springer, Berlin,
Germany, 1999.

31. M. Mattsson, J. Bosch, and M.E. Fayad. "Framework Integration: Problems, Causes, Solutions".
Communications of the ACM, 42 (10): 80-87, 1999.

32. K. McCloghrie. "The SNMP Framework". The Simple Times, 4 (1): 9-10, 1996.

33. P.E. Mellquist. SNMP++: An Object-Oriented Approach to Developing Network Management Software.
Prentice-Hall, Uppder Saddle River, NJ, USA, 1998.

34. Metrowerks. PowerPlant White Paper. Metrowerks, Austin, TX, USA.
Available at <http://www.metrowerks.com/whitepapers/>.

35. Microsoft. MFC Documentation. Microsoft, Redmond, WA, USA.
Available at <http://msdn.microsoft.com/library/devprods/vs6/visualc/vcmfc/mfchm.htm>

36. H. Mössenböck. Objektorientierte Programmierung in Oberon-2. 3rd edition. Springer, Heidelberg,
Germany, 1998.

37. Object Management Group. OMG Unified Modeling Language Specification. Object Management
Group, Framingham, MA, USA, June 1999.
Available at <http://www.rational.com/uml/index.jtpml>.

38. A.J. Riehl. Object-Oriented Design Heuristics. Addison-Wesely, Reading, MA, USA, 1996.

39. D. Riehle and H. Züllighoven. "Understanding and Using Patterns in Software Development".
Theory and Practice of Object Systems, 2 (1): 3-13, 1996.

40. D. Riehle. "The Event Notification Pattern—Integrating Implicit Invocation with
Object-Orientation". Theory and Practice of Object Systems, 2 (1): 43-52, 1996.

58
41. M.T. Rose. The Simple Book: An Introduction to Networking Management. revised 2nd edition.
Prentice-Hall, Uppder Saddle River, NJ, USA, 1996.

42. D.C. Schmidt. Patterns for Concurrent, Parallel, and Distributed Systems. Home Page.
Located at <http://www.cs.wustl.edu/~schmidt/patterns-ace.html>.

43. D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture:
Patterns for Concurrent and Distributed Objects. John Wiley & Sons, Chicester, England. To appear
in 2000. (Drafts available at <http://www.cs.wustl.edu/~schmidt/patterns/patterns.html>.)

44. P.E. Sevinç. Ein Framework für die Mehrzieloptimierung mit Genetischen Algorithmen. Term Thesis,
Swiss Federal Institute of Technology Zurich, Switzerland, February 1999.
Available at <http://www.stud.ee.ethz.ch/~psevinc/FEMO/>.

45. A. Silberschatz and P.B. Galvin. Operating System Concepts. 5th edition. Addison-Wesely,
Reading, MA, USA, 1998.

46. W. Stallings. SNMP, SNMP v2, SNMP v3, and RMON 1 and 2, 3rd edition. Addison-Wesely,
Reading, MA, USA, 1999.

47. Sun Microsystems. Java 2 Platform, Micro Edition. Home Page.
Located at <http://java.sun.com/j2me/>.

48. Sun Microsystems. Java Technology. Home Page.
Located at <http://java.sun.com/>.

49. Sun Microsystems. JMX white paper. Sun microsystems, Palo Alto, CA, USA, June 1999.
Available at <http://java.sun.com/products/JavaManagement/index.html>.

50. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesely,
Reading, MA, USA, 1998.

51. C. Szyperski. "Components and Objects Together". Software Development, 7 (5), 1999.
Available at <http://www.sdmagazine.com/breakrm/features/s995f2.shtml>.

52. A.S. Tanenbaum. Computer Networks. 3rd edition. Prentice-Hall, Upper Saddle River, NJ, USA,
1996.

53. J.P. Thompson. "Web-Based Enterprise Management Architecture". IEEE Communications
Magazine, 36 (3): 80-86, 1998.

54. C. Wellens and K. Auerbach. "Towards Useful Management". The Simple Times, 4 (3):1-6, 1996.

55. E. Wilde. Wilde’s WWW: Technical Foundations of the World Wide Web. Springer, Berlin, Germany,
1999.

56. Y. Yemini, G. Goldszmidt, and S. Yemini. “Network Management by Delegation”. In I. Krishnan
and W. Zimmer (Eds.), Proc. IFIP 2nd Int. Symposium on Integrated Network Management
(ISINM’91), Washington, DC, USA, April 1991, pp. 95-107. North-Holland, Elsevier, Amsterdam,
The Netherlands, 1991.

	Table of Contents
	1. Introduction
	1.1. Background
	1.2. Objective
	1.3. Outline

	2. Software Engineering
	2.1. Patterns and AntiPatterns
	2.1.1. Pattern
	2.1.2. Software Patterns
	2.1.3. Example: Model-View-Controller
	2.1.4. More on Patterns
	2.1.5. AntiPattern
	2.1.6. Example: Blob

	2.2. Frameworks
	2.2.1. Framework
	2.2.2. Example: Model-View-Controller
	2.2.3. Application Framework
	2.2.4. Library vs. Framework
	2.2.5. Patterns and Frameworks

	3. Network Management
	3.1. General Issues
	3.1.1. Monitoring & Control
	3.1.2. Entities
	3.1.3. Push vs. Pull

	3.2. Simple Network Management Protocol
	3.2.1. Fundamental Axiom
	3.2.2. Management Information
	3.2.3. Information Exchange

	3.3. Web-based Network Management
	3.3.1. Entities
	3.3.2. Subscription
	3.3.3. Monitoring and Data Collection
	3.3.4. Notification Handling

	4. Patterns and AntiPatterns in SNMP-based Network Management
	4.1. Design Patterns
	4.1.1. Adapter
	4.1.2. Proxy
	4.1.3. Bridge
	4.1.4. Whole-Part and Composite
	4.1.5. Facade and Wrapper Facade
	4.1.6. Layers
	4.1.7. Iterator
	4.1.8. Mediator

	4.2. AntiPatterns
	4.2.1. The Blob
	4.2.2. Golden Hammer
	4.2.3. Design by Committee
	4.2.4. Reinvent the Wheel

	5. A Patterns View of JAMAP
	5.1. The Big Picture
	5.2. Information Flow
	5.3. Servlets Patterns
	5.3.1. Singleton
	5.3.2. Decorator
	5.3.3. Strategy
	5.3.4. Builder

	5.4. Command Pattern
	5.5. Continuous Obsolescence AntiPattern

	6. Analysis of the JAMAP Prototype
	6.1. Distributed Network Management Platform
	6.2. Agent
	6.3. Manager
	6.4. Analysis of the Design
	6.5. Analysis of the Implementation

	7. Conclusion
	7.1. Summary and Contributions
	7.2. Benefits for the Student
	7.3. Future Work

	Appendix A: Project Description
	References

