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ABSTRACT

The management of IP networks and systems is currently based on the Simple Network Management P
(SNMP) and the SNMP management architecture. This poses a number of problems. Some are relate
efficiency, scalability, latency, and expressiveness of SNMP, others to the way the design of SNMP
management platforms historically evolved. After reviewing the numerous alternatives that are cur
investigated by the research community, including mobile code and intelligent agents, we propose to b
next generation of management applications on a new management architecture: WIMA, the Web
Integrated Management Architecture. WIMA is based on standard Web technologies. It relies on a push
organizational model for regular management (i.e., data collection—for offline processing—and moni
over a long period of time) and notification/event delivery, and a pull-based organizational model forad hoc
management (data retrieval over a very short time period). Its communication model is characterized by
use of persistent HTTP connections between agents and managers (or between mid- and top-level man
distributed hierarchical management); (ii) the support for any information model (SNMP, CIM, etc.); and
reversed client-server architecture that facilitates crossing firewalls. In WIMA, the preferred metho
representing management data in transit is XML. It is well suited for distributed hierarchical managem
unifies the communication model across the entire range of integrated management (that is, network, s
application, service, and policy management); and it offers high-level semantics to
management-application designer. All the major problems that we identified in SNMP are solved in W
Our architecture is validated by a prototype: JAMAP, the JAva MAnagement Platform.

Keywords: Network Management, Systems Management, Web-Based Management, Internet, Web,
WIMA, SNMP, CIM, HTTP, MIME, XML

Index Keys in the Computing Research Repository (CoRR):

• Area: Computer Science
• Subject Classes: Networking and Internet Architecture; Distributed Computing
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RÉSUMÉ

La gestion des réseaux et des systèmes IP repose actuellement sur le protocole SNMP (Simple Network
Management Protocol) et l’architecture de gestion SNMP. Ceci pose un certain nombre de problèmes. Ce
sont liés à l’efficacité, au passage à grande échelle, à la latence et à la puissance d’expression séma
SNMP; d’autres sont dûs à la façon dont les plateformes de gestion SNMP ont vu leur conception évolu
le temps. Après avoir passé en revue les nombreuses alternatives à SNMP actuellement envisagé
communauté de recherche, et notamment le code mobile et les agents intelligents, nous proposons d
prochaine génération de solutions de gestion sur une nouvelle architecture de gestion: WIMA (Web-based
Integrated Management Architecture). WIMA est fondée sur les technologies Web. Elle repose sur un mod
organisationnel diptyque utilisant d’une part un modèlepushpour la gestion régulière (c’est-à-dire la collect
de données à des fins d’analysea posterioriet lemonitoring, tous deux opérant sur une longue durée) et l’env
de notifications/évènements, et d’autre part d’un modèlepull pour la gestionad hoc(gestion au coup par coup
sur une durée très courte). Le modèle de communication de WIMA est caractérisé par (i) des connexion
permanentes entre agents et gestionnaires (ou entre gestionnaires de niveaux supérieur et inférieur e
gestion distribuée hiérarchique); (ii) le support de n’importe quel modèle informationnel (SNMP, CIM
autre); et (iii) une architecture client-serveur inversée qui facilite la traversée des pare-feux. Dans WIMA
recommandé d’utiliser XML pour représenter les données de gestion en transit. XML est bien adap
gestion distribuée hiérarchique et permet d’unifier le modèle de communication à travers le spectre
couvert par la gestion intégrée: gestion de réseaux, de systèmes, d’applications, de services, de politiq
XML offre également un niveau sémantique élevé au concepteur d’applications de gestion. Tous les pro
majeurs que nous avons identifiés dans SNMP sont résolus dans l’architecture de gestion WIMA.
architecture est validée par un prototype: JAMAP (JAva MAnagement Platform).

Mots-clés: gestion de réseaux, gestion de systèmes, gestion basée sur les technologies Web, Intern
push, WIMA, SNMP, CIM, HTTP, MIME, XML

Classification dans leComputing Research Repository(répertoire international de travaux de recherche
en informatique):

• catégorie: informatique
• sous-catégories: réseaux et architecture de l’Internet; informatique répartie
iv
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INTRODUCTION

A peculiar property of network and systems management is that it looks pretty simple at first sight, at le
the IP1 world. But as soon as you set about implementing or using a management application, you
problem after problem and gradually unfold theBig Book of Management Hassles. After spending several
years on this topic, most reasonable people decide to turn to other problems perhaps more technically d
but also less multifaceted, and in the end less complex and less challenging. The author decided to do ot
and endeavored to spend four years of his life to find a better solution to manage IP networks and sy
Whether any conclusion can be drawn about his sanity is left for the reader to decide... Anyhow, what wi
unfold before your eyes are the technical details of his proposed solution, a new management architec
the next decade, and an attempt to convince you of its relevance to the IP world.

1.1 Background

Throughout the 1990s, the management of IP networks has relied almost exclusively on a single proto
Simple Network Management Protocol (SNMP), and a single management architecture, confusing
called SNMP. The primary achievements of SNMP were its simplicity and its interoperability. SNMP-b
agents were easy to develop and integrate into managed devices. As a result, proprietary network man
solutions gradually gave way to open solutions. Whatever the equipment vendor, whatever the t
equipment, you could manage it with a single third-party management platform such as HP Open
Cabletron Spectrum, IBM/Tivoli Netview, Sun Microsystems Solstice, etc.

The market of IP networks management first went through a period of great and fast development;
1990–95, SNMP gradually became ubiquitous. In 1990, the RFCs specifying what is now called SNMPv1
issued by the Internet Engineering Task Force (IETF). In 1993, only three years later, it was comme
mandatory for a vendor to support SNMP on its entire range of network equipment, from the top-of-the-
backbone IP router to the bottom-of-the-range print server, because many customers made the sup
SNMP a requirement in their requests for bids.

1. Many acronyms used in this introductory chapter will be expanded and explained in the next two chapters, when we inv
SNMP and its potential alternatives.
1
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The situation changed in the mid–1990s. SNMPv2 raised high hopes, but proved to be a technic
marketing failure [141, 166, 207, p. 334]. By the time SNMPv3 was issued, in 1998, the market no l
believed in the capacity of SNMP to evolve and meet its needs. The relevance of traditional SNMP-
management was questioned by new vendors who wanted to enter this lucrative market, and were loo
ways to undermine the near monopoly of the four main management-platform vendors (HP, Cabletron
and Sun Microsystems). They began to offer new platforms based on new technologies that were appe
the market (e.g., AdventNet with Web technologies). SNMP-based management was also questio
customers, who were scared by the soaring costs associated with it. Customers also wanted to integrate
management with systems management. But while IP networks were mostly managed with open SNMP
management platforms, IP systems, conversely, were often managed with proprietary non-SNMP pla
(e.g., Novell NetWare or IBM/Tivoli TME for Windows-based PCs, or RPC-based management platform
Unix workstations). Equipment vendors also questioned SNMP-based management because
device-specific management GUIs (Graphical User Interfaces) had to be ported to an ever-growing num
management platforms and operating systems, which made their development costs sky-rocket. Most o
relevance of SNMP was undermined because the problem at stake was becoming more and more differ
the problem solved in the late 1980s. Today, virtually all devices are networked; most of them em
reasonable amount of processing power; some devices are wireless; data and telephone networks are
customers demand security for both Local-Area Networks (LANs) and Wide-Area Networks (WA
customers want to integrate network, systems, application, service, and policy management; the TCP/
is everywhere, in every system and every network device; Web technologies are used everywhere; et
of these assertions were true when SNMPv1 was devised. No wonder the solution selected in the 19
slow and small networks, with mostly low-profile agents, no longer appeared adequate to the market!

In the second half of the 1990s, the main change in Network and Systems Management (NSM) was tha
newcomers looked at it with software-engineering eyes, with no background (hence no habits) in NSM.
of them originated from the object-oriented world, others from the artificial-intelligence world, yet others
the database world, to name a few. And when these people analyzed how IP networks are typically m
today (that is, how management platforms are designed, how efficient SNMP is as an access protocol, w
the principle of data polling inherent to the SNMP management architecture is efficient, etc.), they
realized that most SNMP-based management applications do not withstand the comparison with m
distributed applications. Why not use object-oriented analysis, design, and implementation, which are
adopted by the software industry today? Why be limited by the few existing SNMP protocol primitive
collect data from an agent? Why incur the network overhead of having the manager repeatedly tell ever
what set of Management Information Base (MIB) variables it is interested in, when this selection remains
constant over time? Why not compress management data when it is transferred in bulk between age
managers? Why use an unreliable transport protocol to send a critical notification to a management
when an interface goes down on a backbone router? Why make it so difficult to manage remote subs
across firewalls? Why concentrate all the management application processing at the manager and let th
do nothing?

The software-engineering community had many alternatives to offer: Web technologies, mobile agents
networks, CORBA, intelligent agents, and so on. This resulted in a plethora of new proposals that
departed completely from the design decisions made a decade earlier. This also utterly confused the
Customers like simple messages, like “Buy SNMP because everyone does” or “Choose between COR
DCOM”. They make their investments strategically safe and easy to justify to top management. But the m
was telling them: “You can use mobile agents in Java, or Tcl/Tk, or Telescript... They are not mature ye
they will be soon and they are technically very attractive. You can also have CORBA, and DCOM
Enterprise JavaBeans (EJBs), and intelligent agents speaking KQML or ACL, and cooperative object-o
distributed platforms communicating via CORBA or Java RMI or...”. As expected, customers were (an
are) very reluctant to go from a very homogeneous and strategically safe market to such a hectic and ha
one. Some people decided to go for the most powerful: they became Microsoft-only shops and adopted
solutions based entirely on Windows and DCOM. Others preferred to put their eggs in several basket
kept several brands of material, they stuck to open systems, and put up with the inconvenience of sup
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multiple management systems: one for network devices, one for Windows PCs, one for Unix systems,
the intranet RDBMS, and so forth. By and large, most customers have decided to postpone heavy inve
to better days, when the future of network, systems, application, service, and policy management wo
clearer to read, and whenintegrated managementwould mean that all types of management could be integra
within a single platform. Today, investing in a management solution is a risky business.

It is our belief that NSM goes through cycles, alternating between periods when the market is clear to
standards are stable, and most customers make similar decisions to solve a given problem, and perio
the market is obscure to read, many new standards are in the making, and it is obvious to neither vend
customers what will succeed in the next management cycle. The 1980s were the days of prop
management solutions. The 1990s proved to be the days of SNMP for network management, and pro
solutions for systems management. What will be the basis for the NSM solutions of the next decade?

1.2 Ph.D. Work

This Ph.D. work was initiated in mid–1996, as the market was becoming confused. Coming from ind
having managed networks for six years, and having thoroughly investigated the SNMP-
management-platform market at the end of 1994, the author was familiar with the strengths and weakne
SNMP-based management, and wanted to make his small contribution to the next management cyc
purpose of this work was to study the management architectures and technologies that could be used
next cycle, to propose a new technical solution, to demonstrate its feasibility and simplicity by develop
prototype, and to give a vision of how this solution could evolve during the next decade—that is, prop
migration path from current management solutions to more visionary solutions.

To achieve this goal, the approach adopted for this thesis was to study NSM with both a network-manag
hat and a software-engineering hat. Due to market pressure, most project managers in industry are fo
jump on the bandwagon of the latest technology and develop as quickly as possible a fast-designed s
only to be the first on the market to support that technology. The rule of the market these days does no
to be “Do it right”, but rather “Be there first and trumpet loud”. Being outside industry and immune to partic
commercial interests, we took a different approach. We took the time to investigate most (hopeful
management paradigms proposed to date, we critically analyzed them, and thought about po
improvements. We compared different software-engineering approaches in the specific context of
selected one (Web-based management), improved it significantly, and proposed what we think is a
technical candidate for the management cycle of the next decade.

To a software engineer, IP networks appear to be fairly easy to manage because they impose no s
requirements on the management application. Typically (that is, if we ignore the extreme cases s
embedded systems in spatial or military equipment), we have no real-time constraints, fault-tolerant s
are not required, and we can even afford to lose some management data (not too much). Therefore
software-engineering perspective, a management application is a fairly simple case of distributed appl
we have one or several managers, and many agents (managed devices); most data goes from a
managers; and we can process management data (e.g., compute usage statistics or correlate alarms) e
agent, in a mid-level manager, or in a top-level manager. Similar tasks are routinely performed in
application domains, typically by relying on a Distributed Processing Environment (DPE, also c
middleware) such as CORBA, EJBs, or DCOM, and by buying Commercial Off-The-Shelf (COTS) compo
software.

The complexity of NSM only appears at a later stage of analysis. In the IP world, it mainly stems from its
constraints as far as scalability and resource usage are concerned. First, the number of nodes to ma
grow large and span multiple management domains—consider, for instance, a large, geographically di
enterprise. Second, the amount of management-related configuration data in a single device can
important—e.g., the access-control lists in a router-based firewall. Third, we want to manage a wide ra
heterogeneous equipment. A $150,000 backbone router is vastly different from a $50 print server. The r
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cost of management software is very different, compared with the overall cost of hardware and software
the CPU and memory resources available. Fourth, we want to do many things (reactive manag
preventive management, security, accounting, billing, etc.) which, taken individually, are in general reas
simple to implement and manage, but become complex when put together. Fifth,all resources allocated to
management (memory, CPU, network bandwidth, manpower) are considered overhead, and should th
be kept to a minimum. Sixth, changing the habits of a market takes time; when SNMP appeared on the m
it took two to three years to deploy a new generation of devices, with new hardware and software. Se
changing the habits of a market costs a fortune, so you do not want to make a mistake when you decide t
in a new management solution. As an equipment vendor, if you embed the wrong management softwa
your devices (that is, the market decides to adopt a different standard after tens of thousands of your
have been sold), the cost is enormous for you to migrate, but also—and above all—for your customers,
will have to install new software in equipment already deployed in production networks—the last thing
want to ask your customers to do. In other words, large vendors that have a reputation to save will not e
on a new technology before they are reasonably sure that the market is heading in that direction. As the
of candidate technologies is large, we face a chicken-and-egg situation. Once you combine all these pr
then it becomes obvious that NSM is more complex and challenging than it first appears.

As we mentioned before, there are many candidates to succeed SNMP in integrated management. In thi
tation, we explain why, in our view, Web-based management is the best candidate for the next mana
cycle. Our argument is sixfold. First, Web technologies allow us to solve most of the problems tha
identified in SNMP-based management. Second, the solutions we describe in our dissertation are simp
could be engineered and widely deployed in less than a year. Mobile agents, conversely, require enviro
that are both secure and fast (especially for WAN links), which no one can presently provide. Similarly, si
yet efficient, multi-agent systems still remain to be seen in NSM. Third, Web technologies can have a
limited footprint on resource-constrained network devices, unlike CORBA. Fourth, Web technologies o
smooth migration path toward the future currently envisioned by the communication-service industry, t
dynamic service provisioning with mobile code. Fifth, Web-based management does not revolutionize
It can cope with legacy SNMP-based systems, and can also smoothly integrate new information mode
as CIM. Sixth and last, the Web has encountered a tremendous success in the enterprise world. Its sim
combined with the portability of Java, have made it ubiquitous, and it is difficult today to find
software-engineering field that is not leveraging it. Web expertise is rapidly developing worldwide, a
makes sense to capitalize on this wealth in NSM.

The idea of using Web technologies in NSM is not ours. It is not even new: experiments began in 1993–9
Web browsers, HTTP, HTML, and CGI scripts. The novelty is our management architecture called W
(Web-based Integrated Management Architecture). Its main contributions are the following:

• an organizational model based on push technologies, which unifies the transfer of notifications and
management data from agents to managers (or between managers in distributed management);

• a communication model that is totally independent of the information model; and
• the use of XML to distribute the management application across a hierarchy of managers, through
range of integrated-management tasks.
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1.3 Caveat

During the numerous seminars that the author had the opportunity to give during his Ph.D. work, there
standard misunderstanding about the type of networks and systems that this work addresses. In order
a similar misinterpretation of this dissertation, the reader is invited to pay attention to the followingcaveat:

This work deals with the management of IP networks and systems typically used today in
computer networks, as opposed to OSI-based telecommunication networks typically used in
classic telephony. Our conclusions apply equally well to standard IP data networks, IP multimedia
networks, and IP telephony networks. Due to time constraints, we did not fully investigate
wireless networks and therefore do not consider them here; but early work suggests that most o
our conclusions apply to fixed (wireline) as well as wireless networks, especially our push-based
organizational model. When we refer to network and systems management (or NSM for short) in
this dissertation, we mean the management of fixed IP networks interconnecting IP network
devices and IP systems.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we define our terminology and
the problem that we are striving to solve. In Chapter 3, we present an overview of the solution space in th
of two taxonomies of NSM paradigms. In Chapter 4, we analyze this solution space and select Web
management with weakly distributed hierarchical management. In Chapter 5, we summarize the state o
in Web-based management. In Chapter 6, we describe WIMA, our management architecture, and espe
push-based organizational model for regular management data. In Chapter 7, we detail WIMA-CM
communication model of WIMA. In Chapter 8, we study XML and show that it can significantly contribut
the next management cycle, especially for distributed management and integrated management. In Ch
we present JAMAP, a research prototype that was developed to demonstrate the feasibility and simpl
the core ideas behind WIMA. In Chapter 10, we compare our solutions with others. Finally, we conclud
give directions for future work in Chapter 11.
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Chapter 2

PROBLEM STATEMENT

In this chapter, we substantiate our claim that SNMP-based management is not appropriate for th
management cycle and justify why a new management architecture is needed. To do so, we recall
networks and systems are typically managed today and explain why this should change1.

This chapter is organized as follows. In Section 2.1, we define the terminology used throughout this d
tation. In Section 2.2, we characterize implicit and explicit design decisions that were made in the S
management architecture. In Section 2.3, we review the main strengths of SNMP. In Section 2.4, we d
the main problems that we identified in SNMP-based management. In Section 2.5, we show that the p
solved by SNMP has changed; what we need today is a new solution to a new problem. Finally, we sum
this chapter in Section 2.6.

2.1 Terminology

Before we describe the problem at stake, let us first define our terminology. The need for this is due
inconsistency in the terminology used by the NSM research community. What is a manager: a perso
program? What is an NMS: a program, a machine, or a group of machines? The situation is even wors
we build interdisciplinary teams, as mentioned in the introduction, and bring together people with diff
backgrounds. What is anagent for people coming from the Internet, telecommunications, softwa
engineering, or Distributed Artificial Intelligence (DAI) communities? To address this confusion in this dis
tation, we will adhere to the definitions given in this section.

We assume here that the reader is reasonably familiar with network and systems management, SNMP,
SNMP-based management platforms work in the IP world, how they are typically structured, an
management tasks they perform (for an introduction, see Stallings [207] and Rose [176]). We therefore
redefine here all the well-established concepts, but only those whose definition is not consensual and th
are specific to this work.

1. The author would like to thank Jürgen Schönwälder for his detailed feedback on this chapter.
7
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2.1.1 IP world vs. telecom world

In Section 1.3, we implicitly defined two separate worlds for networking:

• TheIP world, where all pieces of equipment support the TCP/IP stack1 for communication. Some authors
call it theInternet world. A typical example is a data network.

• Thetelecom world, where all pieces of equipment support part or all of the Open Systems Interconne
(OSI) stack for communication. A typical example is a traditional telephone network.

This thesis deals exclusively with the IP world, as suggested by its title.

2.1.2 Network, systems, application, service, policy, and integrated managemen

In the IP world,network managementprimarily deals with network devices, that is, equipment whose s
purpose is to make the network operate properly. Typical examples include IP routers, bridges, Asynch
Transfer Mode (ATM) switches, level-3 switches, level-4 switches, intelligent hubs, and plain hubs.
people also include in this category the network-accessed peripherals that are shared by a group of peo
printers or disk servers), on the basis that they are accessed via the network. We do not, as a periph
usually be directly attached to a host and is usefulper se: its usefulness does not depend on the network.
contrast, an IP router in itself is totally useless for an end user.

In the OSI world, there is a strong distinction betweenelement management, which is the management of
individual pieces of equipment, andnetwork management, which is the management of an entire netwo
abstracted as an entity of its own. For years, the IP world has been interested exclusively in the forme
the advent of concerns related to the Quality of Service (QoS) delivered by IP networks, the IP wor
become increasingly interested in managing end-to-end network characteristics as well. As a result, n
management in the IP world now encompasses both element management and network managemen
parlance. In this dissertation, we will consider both of them when we refer to network managemen
agent-manager interactions described in the next chapters will typically be about element manag
whereas manager-manager interactions will generally be about network management (in the OSI sen

In its simplest sense,systems managementis concerned with hosts, that is, individual machines that can ope
and fulfill useful tasks for users without a network. The objective of systems management is to make su
the host runs smoothly. Typical areas of interest to systems management include the monitoring of the
Processing Unit (CPU), memory, and disk usage; the management of processes, file system
access-control lists (see the Host Resources MIB [237]); and the detection of hardware faults. We i
shared peripherals in this category.

A piece of equipment can either be classified as a network device or as a system: the former is dealt w
network management, the latter by systems management.

Application managementis about managing programs that interact with users or other programs. T
programs run on top of an operating system. The management of the programs belongs
application-management realm, whereas the management of the underlying operating system belong
systems-management realm. Examples of applications that run on stand-alone machines and must be
managed are relational databases and object-oriented databases. Application management commo
with access control, performance monitoring, fine-grained buffer allocation, etc. The objective here is to e
that the application performs correctly, and to detect and repair a problem before users complain. S
management is more or less generic, whereas application management is inherently site specific.

1. The so-calledTCP/IP stackdoes not only include the Internet Protocol (IP) and the Transmission Control Protocol (TCP), bu
the User Datagram Protocol (UDP), the Internet Control Message Protocol (ICMP), the Simple Network Management P
(SNMP), etc.



Problem Statement 9

en we
a
, that is,
ent in
d server

matic
ance.
ing on

ted
fferent
ibuted
Sun

ams

stems:

above
But it
plication
ributed
ther
that a

ant to

sts,
ributed
tributed
Kramer,
o is not
gement
y this

ted by
he
re is an
a
lication
er, or
by the
QoS

g the
ber of

tion. For
he code.
Unfortunately, these nice, clear-cut definitions are not always valid. The situation becomes fuzzy wh
consider distribution aspects. Initially, adistributed systemwas a group of hosts that collectively offered
service and appeared as a single machine to that service. An example of distributed system is a cluster
a group of machines sharing multiaccess storage devices. This concept, popularized by Digital Equipm
the 1970s and 1980s, has been adopted since then by many Personal Computer (PC), workstation, an
vendors in the Windows and Unix worlds. A cluster allows for transparent load balancing and auto
recovery (failover); it provides applications with increased robustness and offers some kind of fault toler
Another example is a massively parallel system with hundreds of microprocessors. To the program runn
it, the entire system appears to be a single machine1.

Initially, a distributed applicationwas an application running on several hosts, possibly on a distribu
system. A distributed application consisted of several application modules, each of them running on a di
machine on top of an operating system, itself running on top of the hardware. An example of such a distr
application is NIS (Network Information Service), a popular network lookup service developed by
Microsystems in the 1980s and now found on virtually all Unix platforms. NIS relies on different progr
that run on different machines, but globally, it is used by the administrator as a single program.

Then came the main industrial outcome to date of the research efforts in distributed operating sy
Distributed Processing Environments(DPEs), also calledmiddleware. A middleware sits between the
operating system and the application. It can be viewed as a distributed application because it fulfills the
definition: it consists of several modules running on top of the operating system of different machines.
can also be viewed as a distributed system, because it offers a pseudo operating system to the ap
running on top of it: this application need not be aware whether the operating system underneath is dist
or not. A well-known example is the Common Object Request Broker Architecture (CORBA). Ano
example is a distributed relational database: it is not an operating system, but it is not a real application
user may interact with; it is a building block, on top of which a real application may run.

Things are even worse because frequently, in the literature, there is confusion betweendistributed systems
management(that is, a distributed way of managing systems) anddistributed-systems management(that is, the
management of distributed systems). This confusion is often created purposely, when the authors w
encompass both.

Today, the expressionsystems managementusually covers all of this: the management of stand-alone ho
the management of tightly coupled groups of machines, the management of middleware, and the dist
way of managing systems. As a result, there is a large overlap zone between distributed systems and dis
applications—so much so that some people include application management in systems management.
for instance, uses these two expressions interchangeably [121]. For us, the distinction between the tw
an important issue, because systems and application management are very similar in terms of mana
architecture and communication protocol. Although application management is not explicitly covered b
thesis, most of our conclusions apply also to it.

Service managementis not far from application management either, because most services are implemen
applications. The expressionservice managementcomes from the telecom world and only recently entered t
IP world, whereas application management is more commonly used in computer science. However, the
important nuance between the two. The termserviceimplicitly refers to a contract between a provider and
customer. Thus, service management is mostly concerned with what the customers see: the App
Programming Interfaces (APIs) they interact with, the type of service they purchased (e.g., gold, silv
economy), and the monitoring of the service actually delivered to ensure that the contract defined
Service-Level Agreement (SLA) is fulfilled. Two important elements of service management are thus
management and SLA monitoring. Application management, conversely, is concerned with tunin
internals of the service (e.g., increasing the number of large memory buffers and decreasing the num

1. Actually, there are some cases when we do not want to conceal all the details of the distributed system from the applica
instance, the programmer may want to know the number of processors available on the system to optimize the efficiency of t
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small memory buffers in a memory pool used by a database). Application management deals with the n
bolts that make up services.

Service management is high level, application management is low level. Service providers keep appl
management internal, and hide it from customers and competitors. Customers do not see the nitty-gritt
databases and infrastructure that underpin the provision of the service. But service providers do disclo
relevant to service management. Some of it is destined to their customers, to prove that the contracts ha
honored (provider-side SLA monitoring). Some is sent to other service providers (e.g., when the provis
one service requires the availability of others, provided by other companies).

Policy managementis concerned with the definition and enforcement of high-level management decis
Another name for it ispolicy-driven management[196]. An example of policy is the following: in case o
network congestion, the customers paying for a gold service get the absolute priority; if there is
bandwidth left, customers paying for a silver service get up to 90% of the remaining bandwidth,
customers paying for an economy service get the remainder. This policy has repercussions on
management (SLAs) and network management (configuration of queues in routers). More generally,
management interacts with network, systems, application, and service management.

Finally, the objective ofintegrated managementis to integrate network, systems, application, service, a
policy management within a single, distributed management platform, as opposed to having one mana
platform per type of management.

In this dissertation, we are primarily concerned with the integration of network and systems manageme
in some places, we will also make some observations relevant to application, service, and policy manag
A large part of Chapter 8 will be dedicated to integrated management.

2.1.3 Management application, platform, and system

In network management, the management software is called theNetwork Management Application. In reality,
several independent applications may be run to manage an entire network; in this case, we consid
collectively as a single distributed application. A Network Management Application is composed ofmanagers
running inNetwork Management Stations, andagentsrunning in network devices (also known as manag
devices). The termsmanagerand agent come from the manager-agent paradigm followed by the O
management model and the SNMP management architecture—i.e., the piece of software is named a
management role played by the machine it runs on.

Likewise, in systems management, aSystems Management Applicationis composed of managers running i
Systems Management Stations, and agents running in managed systems. These systems may be related
components of a distributed system) or independent (e.g., hosts in an intranet). The Network Manag
Application and the Systems Management Application are often, but not always, integrated. To keep t
fluid and remain generic, we will refer to themanagement applicationwhen we actually mean the Network
Management Application, the Systems Management Application, or both. Similarly, amanagement stationcan
be a Network Management Station, a Systems Management Station, or both.

A management platformis the manager side of a management application. It is characterized by a ce
version of the manager (e.g., HP OpenView Network Node Manager 6.1), a certain version of the ope
system of the management station (e.g., Linux 2.3.28), and the hardware of the management station
Compaq Pentium III PC). A management platform may be specialized for network management (Network
Management Platform), systems management (Systems Management Platform), or may integrate both.

The acronymNMSused to stand forNetwork Management System, in the early days of SNMPv1. But wha
exactly is a Network Management System? To some people, it is synonymous with Network Manag
Station; to others, it refers to the Network Management Platform; to yet others, a single Network Manag
System consists of all the Network Management Stations and the Network Management Application. To
any ambiguity, we will use neither the acronymNMS nor the expressionNetwork Management System.
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2.1.4 Agent vs. mobile agent vs. intelligent agent

By extension, themanagersoften refer to the management stations, and theagentsrefer to the managed device
or systems. These are clearly misnomers, for they confuse the management application running on a m
with the machine itself. But these terms are seldom ambiguous once placed in context.

To avoid any confusion between programs and people when we use the termmanagers, the people in charge
of managing networks or systems will be calledadministrators (this convention comes from the IETF).

The meaning that we retained for the wordagentis standard for the NSM community. It is inherited from th
manager-agent paradigm, one of the building blocks of the OSI and SNMP management architectures.
experienced that it is misleading to people coming from software engineering or DAI, because they rou
use it in a different sense. To avoid any confusion, an agent in the software-engineering sense will be c
mobile agent, which is essentially a technique to dispatch and execute code on a remote entity. Likewis
will speak of anintelligent agentwhen we mean an agent in the DAI sense, that is, a paradigm enab
elaborate (and sometimes complex) forms of cooperation between remote entities that “think” indepen
of each other. We will come back to mobile agents and intelligent agents in Chapter 3.

2.1.5 Proxy vs. gateway

To cope with legacy systems whose internal agent does not support the capabilities expected by the m
we assume hereafter that legacy systems make use ofmanagement gatewaysif necessary (see Fig. 1). A
management gateway is generally dedicated to a certain legacy system, and external to it. It is located b
the manager and the agent, and is transparent to the management application. It can, for instance, tra
CORBA request into SNMP protocol primitives, andvice versa. When a management gateway is used, t
agent embedded in the legacy system is called alegacy agent. Throughout this dissertation, when we refer t
anagent, we may refer either to the pair {legacy agent, management gateway} or to a single agent.

The management gateway is called aproxy agentby some authors [97, 122]. The problem with this designati
is that the concept of proxy is confusing and ill-defined. This was acknowledged by the IETF: “The
‘proxy’ has historically been used very loosely, with multiple different meanings” [125, p. 4]. The definit
of a proxy proposed in Request For Comment (RFC) 2573 [125] and RFC 2616 [74] are very specif
different from our definition of a management gateway. Our choice of the termgatewaywas based on the
definition given in RFC 2616 [74, p. 10]: “[A gateway is] a server which acts as an intermediary for some
server. Unlike a proxy, a gateway receives requests as if it were the origin server for the requested re
the requesting client may not be aware that it is communicating with a gateway”. Therefore, we will no
the phraseproxy agent.

Fig. 1. Delegation and cooperation

level 1: top-level manager

level 2: mid-level managers

level 3: agents or

level 4: legacy agents

management gateways
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For the sake of completeness, we should also mention that a management gateway is sometimes
delegated agent[254]. This phrase is ambiguous, as some authors give this name to programs rem
transferred to an agent [88]; so we will avoid it, too.

2.1.6 Delegation

Decentralized management is to the enterprise world what distributed management is to computer sc
management paradigm based on the delegation of tasks to other entities. These entities are peop
enterprise world, and machines or programs in computer science.Delegationis used in both contexts as a
generic word to describe the process of transferring power, authority, accountability, and respons
[71, 152] for a specific task to another entity. In distributed NSM, delegation always goes down
management hierarchy: a manager at level (N) delegates a task (i.e., a management processing u
subordinate at level (N+1); this is known asdownward delegation. In the enterprise world, we can also find
upward delegation; for example, an employee delegates his tasks to his manager when he is out d
illness [152]. Downward delegation and upward delegation are two kinds ofvertical delegation, typical of
hierarchical paradigms. In the enterprise world, organization charts generally follow a hierarchical para
They are characterized by a multi-layer pyramid, comprising atop-level manager(at level 1), severalmid-level
managers(at levels 2, 3...), andoperativesat the lowest level [71]. In NSM,managersglobally refer to all the
top-level and mid-level managers, whereas operatives are calledagents. Contrary to vertical delegation, we
havehorizontal delegationbetween two peers at the same level, typical ofcooperative paradigmsused in DAI.
Distributed NSM may rely on a hierarchical paradigm, a cooperative paradigm, or a combination of the
In fact, any paradigm outside the realm of centralized paradigms belongs to distributed NSM.

Delegation is normally aone-to-one relationship, between a manager and an agent in a hierarch
management paradigm, or between two peers (be they managers or agents) in a cooperative man
paradigm. Arguably, delegation may also be considered, in some cases, as aone-to-many relationship, where
a task is delegated to a group of entities, collectively responsible for the completion of the task. One-to
delegation is forbidden by most authors in enterprise management [12, 71, 152, 241]. It can be consid
DAI though. In distributed NSM, we propose to classify it as a form of cooperation, by coupling hierarc
and cooperative paradigms: a manager delegates a task to an agent, and this agent in turn cooperat
group of agents to achieve this task. In the case of amany-to-many relationship, we are clearly in the realm of
cooperation rather than delegation.

2.1.7 Paradigm vs. technology

Some people confuse management paradigms with management technologies. A typical example is C
in the literature, we find it referred to indistinctly as a paradigm, a technology, or even a framework. I
tradition of software engineering, and especially object-oriented analysis and design, we conside
technologies implement paradigms [82]. At the analysis phase, network and systems administrators
management paradigm(e.g, distributed objects). At the design phase, they select amanagement technology
(e.g., Java or CORBA). At the implementation phase, they use that technology to program the mana
application.

2.1.8 Architecture vs. framework

Many people confuse architectures with frameworks. In the IETF community, these two terms are ofte
interchangeably. For all SNMP protocols, the IETF uses the same name for the underlying protocol a
management architecture—unlike the International Organization for Standardization (ISO), for ins
which distinguishes the OSI management architecture from the communication protocol (CMIP, or Co
Management Information Protocol) and the protocol primitives (CMIS, or Common Management Inform
Service). This has confused many people, especially when solutions were proposed to replace the
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protocol while still preserving the SNMP management architecture. This problem has been acknowled
the IETF, and a recent RFC [93] now recommends to refer explicitly to anSNMP protocolor an SNMP
management framework (SNMP framework for short).

Unfortunately, frameworks and architectures have different meanings for the object-oriented communit
An architecturerefers to the collection of models devised at the analysis and high-level design phases
application; an architecture is therefore abstract in nature. Aframework, conversely, refers to both an
architecture and a set of template classes that implement this architecture. A framework provides ho
site-specific extensions. It gives a common basis for different sites to build similar applications. It pro
code that implements a specific model. A framework is related to a specific implementation and is lan
specific; an architecture is not. In this dissertation, we adopted the definitions of the object-ori
community. The three SNMP management frameworks are therefore called theSNMP management
architectures, and the OSI management framework is called theOSI management architecture.

2.1.9 Integrated management vs. enterprise management

The meaning ofenterprise managementis also ambiguous. To most people, enterprise managemen
something you learn doing business studies; this is the sense we retain in this chapter. But a new
appeared in the mid-1990s, epitomized by Web-Based Enterprise Management (WBEM). Particularly in
geographically dispersed corporations, the problem is not so much managing networks and systemsper se: it
is managing networks, systems, applications, services, and policies that are deeply intertwined. Before t
of WBEM, this was commonly referred to asintegrated management. Since the first WBEM proposal (1996)
it is often calledenterprise management, or evenglobal enterprise management.The main reason for this
terminological change is that in the mid-1990s, the main focus of marketing people shifted from network
systems to services, so they invented a new buzzword to epitomize this shift, but ignored the existing te
terminology. At IM’97, a speaker mentioned that the phrasesnetwork managementandsystems managemen
had been “banned”, so to say, in his company, in favor ofenterprise management. This reflects the lack of
substance behind this change of terminology. In our view, there is nothing more to this new so-calledenterprise
managementthan there is already in integrated management. As the latter is unambiguous, and because
no reason beyond sheer marketing to change a well-accepted terminology, we will not use the exp
enterprise management in its WBEM sense.

2.1.10 Firewalls

Real-life networks are becoming more and more different from the theoretical concept of a self-cont
connex network where the division between “us” and “them” is simplistic. Today, small enterprises often
remote offices and need somehow to manage them (at least the remote IP router). Midsize enterpr
typically geographically dispersed and have to manage remote branches. As for large enterprises, th
manage a collection of large networks, where the headquarters is interconnected to subsidiaries via pr
public WAN links overlaid with a Virtual Private Network (VPN).

Fig. 2. Management across firewalls: the real picture
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When the network is not connex, each constituent is usually protected by a firewall for security reasons.
case, the manager at the main office accesses an agent at a remote office via one or several firewall(s).
networks can thus be modeled as illustrated by Fig. 2. Each firewall depicted in this figure is optional.

The firewall of the main office is likely to be a full-blown, feature-rich, and expensive piece of softw
whereas the firewall of the remote office is likely to be pretty minimalist (e.g., a filtering router).

As far as manager-agent interactions are concerned, the scenario depicted in Fig. 2 can be abstracted
in Fig. 3. We will use this simplified representation in our dissertation.

2.1.11 Regular management vs.ad hoc management

The tasks achieved by a management application can be classified into four categories [132]:

• regular management
• ad hoc management
• configuration management
• background analysis

Regular managementconsists of management tasks that run continuously, almost permanently. It encomp
monitoring, data collection, notification delivery, and event handling. It requires that a dedicated mana
always up and running. In large networks, or in enterprises where the network is critical to the smooth ru
of the business, regular management is typically supervised by staff dedicated to monitoring (operators). Some
Small or Midsize Enterprises (SMEs) cannot afford this and therefore do not perform regular managem
all. Other SMEs rely on fully automated management (unattended mode): when a critical fault is detected by
a monitoring application, the administrator is automatically paged; when a minor fault is detected, the ad
trator is simply sent an email. The data received by the manager for the purpose ofmonitoring is processed
immediately, in pseudo real time, and then discarded. The data received for the purpose ofdata collectiongoes

Fig. 3. Management across firewalls: the simplified picture

Fig. 4. Four categories of management tasks and their associated management-data flows
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directly to the data repository; it is not directly processed by the manager and serves for background a
(see next). On the manager, the event correlator processes two types of events: some originating f
agents (notifications) and some originating from the manager itself (especially from its rule-based system
regular management, the management-data flow goes from the agent to the manager (see Fig. 4).

Ad hoc managementconsists of management tasks that run only for a short time. It comprises troublesho
and short-term monitoring. Troubleshooting is reactive; e.g., a network problem just showed up and an o
tries to identify and correct it by looking at error rates. Short-term monitoring is proactive; e.g., an adm
trator wants to check something on an IP router. By essence,ad hocmanagement cannot be automated. It
always manual and requires a user (administrator or operator) to interact with the management applicaAd
hoc management takes place in virtually all companies. It complements regular management in
enterprises that can afford operators, or in SMEs that rely entirely on automated regular management. I
organizations,ad hocmanagement generally replaces regular management. There is no operator, no de
manager, and a part-time administrator who works in purely reactive mode, on anad hocbasis. Inad hoc
management, the management-data flow goes from the agent to the manager (see Fig. 4).

Configuration managementis about changing the state of an agent to make it operate differently. It is ac
as opposed to regular andad hocmanagement that both passively collect data. We distinguish two mo
manual (e.g., with GUIs) and automated (e.g., with scripts). Manual configuration management usually
place on anad hocbasis, when the need arises. Automated configuration management is generally regul
instance, the routing of transatlantic traffic over multiple links may be automatically altered every mornin
every evening to benefit from slack-hour discounts. It can also occur on anad hocbasis; e.g., when a new
customer signs in, the type of service he/she pays for can result in the setting of access-control lists at a
router. Note that for configuration management, the management-data flow goes in the opposite directio
the manager to the agent (see Fig. 4). This is why we do not split configuration management into regu
ad hoc management.

Background analysisincludes report generation (typically on a daily, weekly, and monthly basis), billi
security analysis, data mining, and more generally any application that exploits and makes sense ou
wealth of data gathered by regular management, especially by data collection. These applications run
in the background, on a machine which is often not the manager. This prevents number-crunching back
tasks from slowing down monitoring and event correlation, which are supposed to operate in pseudo re
There is no management-data flow associated with background analysis between the agent and the
(see Fig. 4).

In this dissertation, we will concentrate on agent-manager and manager-manager interactions, that is
organizational and communication models (see Section 6.1). We will mostly study regular management
accounts for most of the network overhead, manager’s processing overhead, and agent’s processing o
We will also briefly considerad hoc management.

2.2 Characteristics of SNMP-Based Management

Now that we have defined a clear terminology, let us summarize the main characteristics of SNMP
management.

Partial specification

Many characteristics of SNMP-based management appear explicitly in the specifications. But som
transmitted more informally via well-known textbooks, research articles, magazines, SNMP-related m
lists, or open-source software. For instance, the change in the recommended use for theinform Packet Data
Unit (PDU), from a manager-to-manager notification in SNMPv2 to a general-purpose acknowledged
cation in SNMPv3 [125, 167], does not explicitly appear in any RFC, but gradually imposed itself in
mailing list of the IETF SNMPv3 Working Group. (Note that we are not saying here that the newinform is
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not specified.) Another example will be encountered in the next chapter, when we study the issue
maximum size of an SNMP message: one value (1472 octets) is considered well-known only because it
in one of the most famous textbooks on SNMP and was used in some open-source implementations of
in the early 1990s. Note that we will also come across significant characteristics of SNMP-based mana
that have no technical roots at all and are solely due to the way the SNMP market developed over tim

Interoperability

SNMPv1 was developed in the late 1980s, in the days of proprietary management. Just like its main com
in those days, the OSI management architecture, the main goal of the SNMP management architectur
achieve interoperability between multiple vendors, to pave the way from proprietary to open manage
Interoperability was undeniably the main merit of SNMPv1.

In the SNMP management architecture, interoperability is guaranteed by:

• SNMP agents and managers complying with the IETF specifications
• well-known generic MIBs evolving slowly
• vendor-specific MIBs whose internals are advertised
• a single metamodel for all MIBs
• a lingua franca (SNMPv1) used by most sites, and a small variation of it (SNMPv2c) used by the o
• management platforms developed by third-party vendors with supposedly no interest in favorin
equipment vendor over another

Simplicity

OSI management did not encounter any success in the IP world because it was overly complex. It trie
everything right, and failed. SNMP, conversely, focused on the bare minimum, the bottom line, and post
everything elsesine die: security, distribution, etc. As a result, SNMP was simple and inexpensive
implement for equipment vendors. Open-source code for SNMP agents was freely available on the Inter
Carnegie Mellon University (CMU) and Massachusetts Institute of Technology (MIT) distributions w
probably the most popular in the early 1990s, when the SNMP market exploded), so it was very eas
vendor to take this code, customize it, and integrate it in a piece of equipment. SNMP was simple to le
customers, too, and it took little time for administrators and operators to get accustomed to it. Simplicit
the second main achievement of SNMP after interoperability and, in our view, the main reason for its su

Generic vs. vendor-specific MIBs

Agents support two types of virtual management-data repositories (MIBs) in the SNMP world. Generic
are usually defined by the IETF1 and supported by multiple vendors (e.g., MIB-II). Vendor-specific MIBs a
controlled by the vendors but available to all (e.g., the Cisco MIB, initially unique and now broken down
several entities). MIBs constitute the main element of the SNMP information model.

A stable metamodel2: SMI

Another characteristic (and strength) of SNMP is that its information metamodel, the Structure of Manag
Information (SMI), has been very stable over time. There have been only two versions of it in a de
SMIv1 [177] is still used by MIB-II, the standard MIB in the IP world, supported by virtually al
SNMP-compliant network devices and systems. Most other MIBs now use SMIv2 [44].

1. Some MIBs are defined by other consortia; e.g., the SNMP M4 Network Element View MIB is defined by the ATM Forum [1
2. Stricto sensu, SMI is not SNMP’s information metamodel, but rather the language used for defining SNMP’s information m

(MIBs). The IETF did not specify a metamodelper se, if we refer to the exact definition of a metamodel [13]. But the vocabulary
the SMI language (that is, theontologyin modeling jargon) relies on an implicit metamodel that we also call SMI in our dissertat
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For completeness, we should mention that a third version of SMI, called SMIng, was recently propos
Schönwälder and Strauss [183]. But it is still confined to the research community, and there is no evide
yet that it will be standardized by the IETF, let alone adopted by the SNMP market. We therefore d
consider it when we refer to SNMP-based management.

Not one but several SNMPs

When we saySNMP, we actually make a simplification. There are currently three SNMP managem
architectures (SNMPv1, SNMPv2c, and SNMPv3), three SNMP protocols (SNMPv1, SNMPv2,
SNMPv3), two metamodels (SMIv1 and SMIv2), and many Protocol Data Units (PDUs):get , get-next ,
get-bulk , set , trap , SNMPv2-trap , inform , etc. Each management architecture uses a differ
version of the protocol. Different protocols accept different PDUs. For instance, as far as notification
concerned, the SNMPv1 protocol uses thetrap PDU, whereas the SNMPv2c and SNMPv3 protocols use
SNMPv2-trap PDU. All of this is slightly confusing because the clear separation between the versio
schemes of PDUs, protocols, and management architectures was only made in 1998, with the first re
SNMPv3. We will come back to this in more detail in Section 3.1.

Manager-agent paradigm, client-server architecture

As OSI management, SNMP-based management relies on the well-known manager-agent paradigm
This paradigm is based on the client-server architecture for communication. For polling, the manager
client and the agent is the server. For notifications, it is the opposite. In hierarchically distributed manage
the same machine can play the manager and agent roles; in this case, it runs a client and a server.

All agents are created equal... and “dumb”

In the SNMP management architecture, and especially in its organizational model, there is an im
assumption that all agents should be managed alike. As a result, we use the same type of interaction
a manager and an agent, whatever the agent, be it powerful or not. In such situations, the weakest lin
chain rules: all agents must be managed alike, and some agents can be “dumb”1, so all agents are managed a
if they were “dumb”. The manager does not have to cope with “dumb” agents and “smart” agents in pa
there is no differentiation. As a result, SNMP leverages the least common denominator be
bottom-of-the-range and top-of-the-range equipment.

The suitability of this implicit assumption was destroyed in the mid-1990s by Wellens and Auerbach,
they exposed theMyth of the Dumb Agent[242], and by Goldszmidt, when he justified the suitability of h
new organizational model: Management by Delegation [88]. The IETF recently became aware of this a
Script MIB [126], released in 1999, is its first achievement to provide managementà la carte, with a differen-
tiation by the manager between “smart” and “dumb” agents. But for security reasons, the Script MIB re
SNMPv3, which is hardly used anywhere at the time we write these lines.

Small footprint on agents

Because agents are supposedly “dumb” and short of resources, the footprint of SNMP on agents is very
as opposed to OSI management, for instance, which imposes a large footprint on agents. Apart from th
that they support, all the network devices and systems of a given vendor can therefore run the same
code, from bottom- to top-of-the-range equipment.

1. This term is often used in NSM: we have “dumb” network devices or systems just as we have “dumb” terminals. “Dumb” age
not really participate in the management application, they only passively collect data on behalf of the manager.
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Monitoring is not notification driven

In the telecom world, most of the problems with the agents are detected by the agents themselves.
problem is encountered, the agent generates a notification and sends it to the manager. Parallel to
manager’s rule-based system routinely checks a number of things (e.g., that a certain aggregate value
below a certain threshold), and generates an event when a problem is detected (e.g., a threshold is ex
The main task of the manager, with respect to monitoring, is to correlate all these types of events:
generated by the agents and those generated by the manager. Because most events originate from th
we say that monitoring is notification driven in the telecom world.

In the IP world, conversely, most of the problems with the agents are detected by the manager. This is
consequence of the assumption that the agents are “dumb” and short of resources: they are not suf
instrumented to detect what goes wrong. Most of the agents in the IP world are only able to send a han
notifications to the manager. For instance, with IOS 10.31, Cisco IP routers were only able to send 7 types
notifications in 1996. Reportedly, this was still the case in March 2000 (IOS 12.0), although this inform
could not be verified by the author on real equipment. During his previous job, the author came across
pieces of equipment that could not send any notification. Because few events originate from the agents,
that monitoring is not notification driven in the IP world. This mode of operation explains why notificat
are not very important in the IP world. To detect problems, a manager typically relies on polling inste
notifications (see next). Note, however, that nothing inherent in the SNMP specifications prevents ve
from basing monitoring on notifications issued by agents.

Polling for regular management

In SNMP, monitoring and data collection are based onpolling (pull model). The manager patiently keep
asking the same things to the agents, at each poll cycle, and the agents return the values of the reques
variables. On the manager, a module that we call thepolled-data interpreteris in charge of detecting whethe
anything goes wrong with the agents. It does so by “interpreting” (analyzing) the data received from the a

The SNMP designers initially promoted a concept known astrap-directed polling[176, p. 20, 207, pp. 79–81]:
upon receipt of a notification from an agent, a manager was expected to poll a number of MIB variables
agent to work out the cause of the reported problem. This vision has been abandoned in practice, becaus
are typically not instrumented to generate many different notifications. To learn that an agent experie
problem, a manager must actively poll the agent and cannot passively wait for incoming notifications.

Vendor-specific management GUIs

Management platforms generally come with a few generic management GUIs, but most customers comp
them with vendor-specific management GUIs calledadd-ons(e.g., CiscoWorks for Cisco equipment). Thes
add-ons are dedicated to one specific vendor or one line of products (e.g., IP routers or ATM switches)
offer user-friendly GUIs, customized for a specific piece of equipment. For instance, to report that a po
gone down on a network device, a vendor-specific GUI typically displays a picture of the connectors
back of the device (the image looks exactly like the real device), and turns the corresponding port re
makes it easy for an operator to check that the corresponding connector is not loose. A generic GUI, conv
simply represents a generic device with ports randomly placed; this view does not look like the real devic
finding the actual location of the corresponding port on the device can take time.

Add-ons are commonly used today in Network Operations Centers (NOCs) in the IP world, because the
the life of operators a lot easier. They have an important drawback, though: they defeat the purpose o
management. Network devices and systems are supposed to be commodities: if vendor A is less expens
vendor B, the customer buys equipment from vendor A. Some time later, if vendor B is less expensiv
customer purchases from vendor B. With vendor-specific GUIs, changing a supplier involves retra

1. Internetwork Operating System (IOS) is the operating system run by Cisco’s networking equipment.
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operators—something companies legitimately want to avoid. Differences between command-line inte
from different vendors make this issue of retraining even worse. With these discrepancies, equipment v
managed to segment a large commodity market into a collection of captive markets, which are obviousl
lucrative [132].

No distribution between managers

The SNMP management architecture is centralized. There is currently no standard and open way of dist
management across a hierarchy of managers in SNMP-based management, especially when the man
written by different vendors. This issue will be studied in Section 3.1. To work around this limitation, s
vendors support distributed management through proprietary extensions. A few years ago, for instan
OpenView offered an OSI-based solution for distributing management in the IP world; all the managers
run HP OpenView.

One consequence of this lack of support for open distributed management is that problems that oc
management-domain boundaries are generally difficult to analyze, and are often dealt with by people oad
hocbasis. Another problem is that it is very difficult to integrate the management of two domains whe
managers come from different vendors. This situation typically arises when two companies merge.

Most management platforms support only a fraction of FCAPS

In the telecom world, management platforms generally support most (if not all) of the OSI functional
(Fault, Configuration, Accounting, Performance, and Security management, also known as FCAPS [48
This is not the case in the IP world, where most platforms support only a fraction of FCAPS. Ind
management platforms are often simpler in the IP world than their counterparts in the telecom world1.

Themandatory tasks are performed by virtually all management platforms. They are:

• Monitoring for the purpose of reactive fault management, reactive performance management, and r
provisioning.

• Data collection for the purpose of proactive fault management, proactive performance manageme
proactive provisioning.

• Data interpretation (because agents cannot work out the origin of problems by themselves).
• Event correlation. Events can be SNMPv1 traps (trap PDU), SNMPv2 notifications (SNMPv2-trap
PDU), SNMPv3 informs (inform  PDU), or events generated by the monitoring engine.

We call optional tasks all the remaining management tasks: configuration management, inven
management, access-control management, accounting, billing, security-logs analysis, etc.

MIBs offer instrumentation APIs

Due to the way the SNMP market developed over time, SNMP MIBs offer only low-level APIs, often ca
instrumentation MIBs. These MIBs deal only with the nuts and bolts of NSM. This is not inherent in the SN
management architecture itself, nor in its information model: it is simply historical. Note that the wor
high-level virtual management-data repositories recently undertaken by the Distributed Managemen
Force (DMTF) and the IETF, under the umbrella of policies and policy-driven management, might even
bring an end to this lack of high-level MIBs in SNMP.

1. These different cultures partly explain the different approaches to billing between traditional telephony and IP telepho
example. In the IP world, accounting is also particularly difficult to manage when we use dynamic IP-address allocation s
such as the Dynamic Host Configuration Protocol (DHCP).
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New MIBs appear at a slow pace

In the IETF working groups, MIBs are created and modified by consensus. This is at the heart of the I
business model. Reaching consensus takes time, so new MIBs appear at a slow pace. As time goes
commercial interests behind any technical decision become increasingly important, and more and
vendors get involved in the IETF working groups with both technical and commercial agendas. Thu
decisions take even longer to be made. The slow pace at which policy-based management has progres
it is reasonably well understood (that is, since the mid-1990s [196, 244, 5]) illustrates this phenomeno

Tightly coupled data repository

For commercial rather than technical reasons, customers in the IP world depend on peer-to-peer agr
between SNMP-based management-platform vendors and third-party database vendors. This is due to
coupling of the data repository and the management platform in this market.

If a customer already owns and masters a Relational DataBase Management System (RDBMS), and th
a management platform1, he/she cannot necessarily use this RDBMS to store management data: this da
must be already supported by the management platform of his/her choice. Since only a fraction of the da
on the market are supported by the major management platforms, he/she has to be lucky... Alternatively
can be charged the port of the management platform to this new RDBMS—but this cost is prohibitive for
companies. This uncomfortable situation is caused by the way management-platform developers usual
their code and interface with data repositories in the SNMP world: they use the proprietary APIs offer
RDBMS vendors (e.g., the C-language SQL interface to Oracle) to get the best performance from the RD
While this renders database accesses efficient, it also makes it costly to support multiple RDBMSs.

No integrated management

The last important characteristic of SNMP-based management is the absence of integration of ne
systems, application, service, and policy management. This is not due to intrinsic limitations in the S
management architecture, but rather to the lack of interest (or at least, the lack of deliverables) in inte
management within the IETF working groups. As a result, enterprises run different management pla
from different vendors in parallel and independently. Today, there is no standard and open way of integ
management in the IP world. The few management platforms that claim to support integrated manage
a certain extent (e.g., HP OpenView and CA Unicenter TNG) do so by using proprietary solutions.

The current race to standardize and implement policy-based management, and to translate high-level
into low-level settings of NSM MIB variables, has left the IETF standing in the starting-blocks for a w
This situation created an opportunity for a new industrial symposium, the DMTF, to take the lead in integ
network, systems, application, service, and policy management in the IP world. We will come back
DMTF work in more detail in Section 5.5.1.

2.3 Strengths of SNMP-Based Management

Before we set about criticizing the SNMP management architecture, the SNMP protocol, and SNMP
management platforms, let us first acknowledge the tremendous success experienced by SNMP (es
SNMPv1) in the 1990s. Within a few years, the networking industry, which was entirely dominate
proprietary equipment and management, turned to open systems and open management. IP netwo
undoubtedly been the greatest success of open systems.

1. This situation was very frequent in the first half of the 1990s, as RDBMSs predated SNMP-based management platforms.
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As we reviewed the main characteristics of SNMP-based management in the previous section, we cam
the following strengths of SNMP-based management:

• interoperability
• simplicity
• wide support by IP-equipment vendors
• small footprint on agents
• low extra cost of adding management to a network device or system
• same minimal middleware everywhere

In light of the technologies widely used today, many design decisions in SNMP-based management
inefficient or outdated, as we mentioned in the introduction. But they did not in the late 1980s, when SN
was devised. Moreover, if we place ourselves in a historical perspective taking into account ho
management market evolved [132], many deficiencies in today’s commercial management platforms
analyzed and understood. The success of SNMP-based management, especially in network manageme
to a large extent to its simplicity, so it would be unfair to criticize this simplicity afterward. In short, cong
ulations to the designers of SNMP! They did a great job in the context of proprietary management that c
terized the late 1980s. Turning a closed, proprietary market into an open, standard-based market withi
years is a remarkable accomplishment.

2.4 Problems with SNMP-Based Management1

During a decade of operational use in the IP world, SNMP-based management has exposed a nu
problems. Some of them are minor, but others are serious and require drastic changes in the mana
architecture, communication protocol, or management platforms. In this section, we describe the
problems that we identified and, for each of them, briefly summarize the solution offered by WIMA. We
study the problems related to scalability and efficiency, then the problems related to management pla
and finally identify some important features that are currently missing in SNMP.

2.4.1 Scalability and efficiency issues

Throughout the 1990s, several independent evolutions gradually exposed a major weakness in the
management architecture: scalability. We will see that the efficiency problems experienced by the S
protocol have a strong impact on the scalability of the SNMP management architecture.

Scalability issues can be classified into four categories:

• network overhead
• latency
• manager’s processing capacity
• capacity of the manager’s local segment

The first factor that impacts scalability is network overhead. In the context of NSM,network overheadis the
proportion of a link capacity used to transfer management data, and thus unavailable for user data. The
of a network is to transfer user data, not management data, so the lower the network overhead the b
general, network overhead should not account for more than a small percentage of the network cap
except for the manager’s local segment, as we will see. The traffic associated with NSM is consideredentirely
as network overhead, so an important goal in NSM is to keep network overhead low. For a given ca

1. A small fraction of the material presented in this section was published in March 1999 inThe Simple Times, the online magazine of
the SNMP community [201]. Ron Sprenkels coauthored this article and contributed some ideas presented here; he also inv
expressionget-bulk overshoot effect. Several ideas also came up during the first meeting of the IRTF Network Managem
Research Group in Lausanne, Switzerland in November 1998.
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network overhead increases almost linearly with the amount of management data that is transferredstricto
sensu, it is a non-continuous piecewise linear function due to the IP, transport, and application headers

The second factor is latency. For polling,latencyis the time elapsed between the moment the manager requ
the value of a MIB variable and the time it receives it from the agent. It is important to keep latency reaso
low. If it is too high, the manager can reach a point where it does not fulfill its mission: it detects operat
problems too slowly and corrects them too late, thereby possibly causing new problems. Latency can
into two components.End-host latencyincludes marshalling and unmarshalling of data, compression
decompression, security-key computation, etc. It mostly depends on the effectiveness of the commun
protocol, and we will see that the SNMP protocol leaves a lot to be desired in this respect. Keeping en
latency low on the manager frees up some resources that can be allocated to the actual management ap
Keeping it low on the agent prevents the management processing overhead from hampering the oper
the agent (the purpose of an agent is to fulfill its mission, not to be managed).Network latencyincludes the
time spent in the network links (propagation delay) and network equipment. It depends on the capac
error rates of the links, on the speed of the IP routers traversed between the agent and the manager (s
or hardware-based routing, busy or empty input-output queues), on the speed of the switching fabric, e
main effect of the management application on network latency is the amount of data to move about. This
varies as the network overhead. The main effect of the communication protocol on network latency
number of messages that are exchanged (see Section 2.4.1.2).

The third factor with a direct impact on scalability is the manager’s processing capacity. The man
hardware resources (CPU, memory, etc.) that are dedicated to the management application cannot b
nitely increased, due to cost and hardware constraints; so there is only so much that the manager can
per time unit. In Section 3.1.1, we will explain that the three SNMP management architectures (v1, v2
v3) follow a centralized paradigm, despite some (failed) past attempts to distribute management. This c
ization exacerbates the need to relieve the manager from performing any superfluous processing.

The fourth factor is the capacity of the manager’s local segment. This is a direct consequence of cen
management. The management data sent by all the agents converges toward a single point: the
segment to which the manager is connected to. By design, this creates a bottleneck. It is therefore impo
reduce the network overhead as much as possible, especially by improving the efficiency of the commun
protocol, in order to postpone the threshold at which the manager’s local segment saturates and cann
anymore with all the incoming data. Note that for large or busy networks, the manager’s local segm
usually dedicated to management; in this case, network overhead is not limited to just a small percenta
limited solely by the segment capacity.

2.4.1.1 Ever more management data

Over time, scalability has become a serious issue in NSM. This is because the total amount of mana
data that must be transferred over the network, and processed by the manager, has gone up very sign
and keeps growing. Despite the increase in the installed network capacity (by about an order of magnit
LANs during the 1990s), the network overhead caused by management data is larger than ten years a
is expected to continue to grow. We identified three core reasons for this need to transfer and process ev
management data.

First, the number of agents to manage has exploded, because:

• The installed base of IP network devices and systems has increased dramatically throughout the 19
several orders of magnitude. Most of the growth was fueled by Personal Computers (PCs) until th
1990s. Mobile phones and Web-enabled handheld devices are now spreading even faster.

• The proportion of equipment supporting TCP/IP has grown very rapidly. Today, the TCP/IP sta
virtually ubiquitous. In contrast, most PCs did not have a TCP/IP stack when SNMPv1 was releas

• The proportion of networked equipment has grown asymptotically toward 100% in the 1990s, wh
many machines (especially PCs) were stand-alone in the late 1980s.
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Second, the total amount of management data that needs to be retrieved per agent has gone up sign
because:

• Agents support more MIBs today than in the early 1990s. The days are over when an IP router sup
only MIB-II and a vendor-specific MIB.

• The size of many SNMP tables has increased with the size of the networks (e.g., IP routing tables
connection tables, and accounting tables).

• The number of ports per interconnection device has increased by an order of magnitude betwe
typical equipment of the early 1990s (routers, bridges, and repeaters) and the typical equipment of
1990s (intelligent hubs, level-2 switches, and level-3 switches).

• A growing proportion of enterprises critically depend on their networks for the smooth running of
business. As a result, they follow more closely than ever the health of their networking equipment (
proactive management with management platforms, as opposed to simple reactive management pe
manually).

• The overprovisioning of networks, which has imposed itself over the years as an absolute neces
network architects, is costing more and more as networks grow in size and capacity. Regular and d
performance monitoring helps reduce the overprovisioning ratio and allows for substantial savings

Third, the amount of management data to move about and process is expected to continue to increas
future, because:

• The installed base of IP network devices and systems keeps growing, year after year.
• The advent of multimedia networks and pseudo real-time services (e.g., streaming video) calls fo
management, and thus more transfers of management data.

• Service management, which only recently appeared in the IP world, generates extra managemen
• If SNMPv3 is used in the future, some of its most useful new features (authentication and access c
may require large configuration tables to be transferred over the network, especially View-based A
Control Model (VACM) tables [246].

• If ad hocnetworks become a reality, the number of agents to manage will explode (but each agent
individually, will require little management).

SNMP-based management cannot cope indefinitely with this increase in the amount of data transferre
the network and processed by the manager. As a matter of fact, SNMP is exposed to the four sca
problems described on p. 21. To keep network overhead low on each network link, there is a limit to the a
of management data that each agent can send. To keep the manager’s latency low, there is a limit on
amount of data that the manager can receive from all the agents. To ensure that the manager keeps up
workload of the management application without falling behind, there is a maximum amount of data th
be processed per time unit. And finally, to keep the load on the manager’s local segment below its sat
point, there is a limit on the total amount of data that can be sent by the agents to the manager. As the
of management data grows indefinitely, sooner or later, we must reach one of these limits: it is not po
due to cost and hardware constraints, to increase indefinitely the capacity of all the network links a
manager’s processing capacity. SNMP-based management has no built-in mechanisms to avoid these t
effects.

In WIMA, we face the same increase in the amount of management data to transfer and process; this is
for all management architectures. We deal with it in two ways. First, we improve the efficiency of data tran
by changing the communication and organizational models. Once we reach one of the limits mentioned
we split the management domain and distribute management across several managers.
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2.4.1.2 Bulk transfers: too many SNMP messages

As the amount of data to transfer grows, it makes sense to reduce the overhead by sending the data in b
is, by sending many MIB variables at a time (typically, between 10 kbytes and 1 Mbyte of data). The pro
is that SNMP is not suited for this. In SNMPv1, v2c, and v3, the retrieval of several MIB variables at a
requires the exchange of many request-response PDUs over the network. We identified three basic pr
the design ofget-next , theget-bulk  overshoot effect, and the maximum size of an SNMP message

Design ofget-next

With SNMPv1, we have only one practical option to retrieve a table: theget-next protocol operation. The
problem with bulk transfers is that, by design,get-next cannot fill up SNMP messages efficiently. If the
table has many rows, the manager must perform at least oneget-next per row. If a table row does not fit
entirely into a single SNMP message, the agent returns an error message; the manager then has to iss
get-next with a new varbind list1 consisting of only some of the OIDs in the table row. This guess-work
the manager (“How much space will the agent require to answer my request?”) is inefficient. First, it unn
sarily increases the number of computations by the manager and therefore increases end-host latency.
because the manager fills up the messages by trial and error, the filling ratio can be poor. By putting to
data, the manager unduly increases the number of round trips, which increases the network latency, the
overhead, and the end-host latency. By putting too much data, the manager causes an error at the age
unnecessarily augments network overhead, network latency, and end-host latency at the manager and t

Sprenkels’sget-bulk  overshoot effect

With SNMPv2c and SNMPv3, we can also use theget-bulk protocol operation to retrieve a table. With
get-bulk , we can retrieve more than one table row at a time. If a table row does not fill up an entire S
message,get-bulk is more efficient thanget-next because we can transfer more data per SNM
message. This reduces the network overhead, the network latency, and the end-host latency. But the
still has to perform some guess-work because of the maximum size of an SNMP message; Sprenkels c
problem theget-bulk  overshoot effect[201].

Because the manager does not know in advance the length of the table it wants to retrieve, it has to
value to use for themax-repetitions parameter. Using a low value causes more PDU exchanges
necessary. Using a high value, however, can result in anovershooteffect: the agent can return data that do
not belong to the table of interest to the manager. For instance, let us suppose thatmax-repetitions is
equal to 50 and the table only contains 10 additional rows. The agent will first receive the request, unm
it, and identify the input varbind list. Then, 50 times in a row, it will retrieve object values from the SN
instrumentation, encode them with Basic Encoding Rules (BER), and store them in a large buffer in me
Finally, it will send the SNMP message to the manager. The manager will have to decode the 50 object
varbind list returned by the agent, but will keep 10 and discard 40. This is a waste of network resources
waste of processing resources at both the manager and the agent: many OIDs are BER-encoded, ma
transferred, unmarshalled, and BER-decoded only to be disposed of by the management application.

Scotty [187] and some other network management applications implement a slow-start adaptive mecha
find out empirically a good value formax-repetitions . This mechanism only partially addresses th
issue, though. First, if the initial seed formax-repetitions is too large, we still experience an overshoo
effect. In the previous example, if the seed is set to 20 instead of 50 due to slow start, we process 10
objects instead of 40—better, but still not very good. Second, if the initial seed formax-repetitions is
too small, this mechanism only partially fills the first SNMP messages and more messages are sent tha
necessary—again, not optimal.

1. A varbind list is a vector of MIB variables in SNMP (varbind stands forvariable binding). An OID (Object IDentifier) uniquely
identifies a MIB variable.
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Maximum size of an SNMP message

The third problem is the maximum size of an SNMP message: it is too low for bulk transfers. This size is a
constrained by the following factors:

• We must have exactly one PDU per SNMP message [45].
• An SNMP message cannot expand over multiple UDP datagrams, by design of UDP (packetiza
performed by a layer on top of the transport protocol).

• UDP datagrams cannot be longer than 64 kbytes [169].
• All SNMP agents must accept SNMP messages that are up to 484 octets in length, but may legally
longer messages [46, 239].

• Some TCP/IP stacks (especially old ones) limit the maximum size of a UDP datagram to 8 kbytes. T
a carry-over from the days when memory was a scarce and expensive resource on agents1.

• SNMPv2c defines themaximum message size [45], which allows the manager to further constrai
the maximum size of an SNMP message generated by the agent. The problem is that SNMPv2c d
convey this information from the manager to the agent, thus it is unusable in practice. SNMPv3 solve
problem by clearly specifying how to transfer themaximum message size .

The maximum size of an SNMP message can also be constrained by the following optional factors:

• The size of a UDP datagram is limited to the Maximum Transfer Unit (MTU) if we must not fragmen
the IP layer. This typically occurs on busy backbone routers, which are generally configured n
fragment IP packets so as to conserve resources for routing. This MTU is typically equal to 1472 by
a LAN (1500 bytes of Ethernet payload, less 20 bytes of IP header and 8 bytes of UDP heade
548 bytes for a WAN (576-byte MTU for nonlocal destination network [31], less 20 bytes of IP heade
8 bytes of UDP header).

• In his famous textbook [176], Rose specifies minimum guaranteed sizes for SNMP messages fo
transport domain. These values are: 1472 octets for UDP [176, p. 171], 1472 octets for the OSI C
tionLess Network Service (CLNS) and Connection-Oriented Network Service (CONS) [176, p.
484 octets for Appletalk’s DDP [176, p. 173], and 576 octets for Novell’s IPX [176, p. 174]. Althou
these values are not specified in any RFC, they reflect habits in the SNMP market. Note th
recommended value of 1472 octets for UDP is identical to the LAN MTU in the previous bullet.

• A get-next  request cannot retrieve more than one table row at a time.

In short, the maximum size of an SNMP message is always comprised between 484 bytes and 64
Typically, it is equal to 1472 bytes for a LAN and 548 bytes for a WAN. Old SNMP agents have a maxim
size of only 484 bytes. Let us translate this in terms of SNMP messages exchanged over the network
the manager retrieves several MIB variables or tables in one bulk, the agent must split the data into
SNMP messages: 10 kbytes divided by 1472 yields only 7 SNMP messages, but 1 Mbyte divided b
requires more than 2000 SNMP messages! If the table has many rows and each individual row is not
ularly large, the SNMP messages are only partially filled, so their number is even greater whenget-next is
used. (This is commonly the case in production networks today, because they use SNMPv1 in their ma

This multiplication of SNMP messages is highly undesirable because the overall latency of a data tr
increases with the number of PDU exchanges. The reasons for this are fourfold. First, end-host l
increases because both the agent and the manager have to process more packets, generate or p
headers, marshall or unmarshall more data, etc. Second, network latency augments because mor
messages induce more round trips and increase the overall transmission delay2. Third, a larger number of

1. We find a trace of this limitation in the Network File System (NFS), another application-layer protocol based on UDP. In 1989
NFS version 2 was specified, the maximum size for data transfers was set to 8 kbytes [215, p. 21]. This limit was relaxed
1995, when NFS version 3 was released [41, pp. 11–12].

2. Note that in some environments, e.g. Ethernet-based LANs, many small packets actually have a better chance to go throug
retransmissions than fewer large packets, so network latency may not be badly affected in such networks.
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SNMP messages has a slightly adverse effect on network overhead because the higher the number of
the higher the number of headers to move about and the higher the network overhead. Last but not le
multiplication has an impact on routers along the path between the agent and the manager, because w
time in a router is the header parsing and analysis; once the router knows which interface to send the pa
what the Type Of Service (TOS) field is, and what the IP options are, the length of the packet has compar
little impact on the latency. Therefore, the more packets the larger processing overhead for all traver
routers. By unnecessarily increasing the number of packets, we unnecessarily fill up the buffers used b
routers for input and output queues, and therefore increase the risks of having buffer overflows.

In WIMA, we address the issue of bulk transfers by allowing for indefinitely large messages to be exch
between the agent and the manager (or between the mid- and top-level managers in distributed hier
management).

2.4.1.3 Table Retrievals

In the previous section, we described how cumbersome it is to retrieve SNMP tables withget-next and
get-bulk . Two other problems make this situation even worse in all versions of SNMP (v1, v2c, and
the possible presence of holes in tables and the consistency of large tables.

Holes in sparse tables

Retrieving SNMP tables is more complicated than retrieving simple MIB variables (managed objects) be
the SNMP management architectures do not define tablesper se, in the common sense of the term; instea
they defineconceptual tables. In a conceptual table, none of the columnar objects is mandatory in a table
in other words, conceptual tables allow their rows to have missing cells that we callholes. In the presence of
holes, tables are calledsparse tables. Let us illustrate this problem with an example.

With SNMPv1, it is common practice to retrieve a table from an agent by performing repeatedget-next
operations at the manager. The retrieval process starts off with a varbind list initialized with the OIDs
first row of the table. Afterward, the varbind list of eachget-next operation holds the last retrieved OID in
each column. If a hole is encountered in table row N (that is, the corresponding cell of the table is not d
by the vendor for that device), theget-next operation returns the next object that does have a value in
column. The row of that object isa priori unknown: it could be row (N+1), (N+2), etc. The manager detect
hole by comparing, column by column, the expected next OID with the OID returned byget-next . If they
differ, the next expected OID is a hole. All this processing increases the end-host latency at the manage
the table is large, be the table sparse or not.

If none of the remaining table rows has a value in that column, then the next OID in the MIB is returned
rule for MIBs traversal is to use a depth-first tree search). The retrieval ends when all OIDs in the ret
varbind list start with a sequence which is different from that of the table; e.g., for the IP routing tab
MIB-II, when none of the OIDs starts with 1.3.6.1.2.1.4.21. Thus, the overshoot effect described earl
get-bulk  is integratedby design in the retrieval of conceptual tables, which is remarkably inefficient.

In retrospect, one wonders why a clean concept of table was not introduced from the outset in SNMP.
it not be more intuitive to return the error codenoSuchInstance when an empty cell is retrieved from a
table? We identified four potential reasons justifying this design decision.

First, this scheme was devised by the designers of SNMPv1 in the late 1980s, when memory was a sca
expensive resource in agents. The holes in sparse tables allowed vendors to save memory in the agen
while agents were fitted with more memory, conceptual tables remained unchanged in SNMPv2c and SN
for backward compatibility. Probably all agents put on the market today have enough memory to store a
code in memory when a cell is empty, hence the argument of the scarcity of memory does not hold an

Second, in those days, it seemed a good idea to keep network transfers as slim as possible; every sin
that could be saved had to be saved. By explicitly allowing the agent to skip holes in a table [178, pp. 3–
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designers of SNMPv1 helped keep the network overhead low and redeemed the verbosity of BER-encod
(see Section 2.4.1.4). Today, the speed of development of an application generally prevails over the n
efficiency of the solution (there are exceptions, though). Layered approaches such as CORBA or Dist
Component Object Model (DCOM) are routinely used to develop software, despite the fact that they ind
large network overhead and do little to reduce it. Therefore, it no longer makes sense to save every sing
in SNMP when most of the user traffic is grossly inefficient in terms of network overhead.

Third, when SNMPv1 was designed, the manager was supposed to have plenty of resources (as oppos
agent), so the extra processing induced by this convoluted encoding of tables was not deemed to be a p
Today, networks are much larger than in the early 1980s and managers often get close to (and sometime
the limits of their resources. Putting the unnecessary burden of reconstructing weirdly structured tables
shoulders of managers is no longer considered a good idea.

Fourth, there was nonoSuchInstance error code in SNMPv1: this code was only introduced in SNMPv
the precursor of SNMPv2c, and later maintained in SNMPv3.

In summary, holes in tables were not a problem when SNMPv1 was designed; but they are today, b
SNMP-based management relies heavily on OIDs stored in tables and the decoding of these OIDs
manager is inefficient and increases the latency. We need a better mechanism for table retrievals.

Consistency of large tables

A potentially serious, yet often forgotten, problem encountered with SNMP tables is their consistency.
all existing SNMP protocols (v1, v2, and v3), the manager has no way of retrieving an entire table
consistent state. If the agent updates the table in the middle of a retrieval, the manager ends up
inconsistent view of this table. This issue is particularly critical for large tables, whose retrievals deman
exchange of many messages over the network, and for which the elapsed time between the first reques
last response can exceed the mean time between two consecutive changes of the table.

The retrieval of an entire MIB in a consistent state can reasonably be considered unrealistic: this might
that the agent halt its operation for several seconds, which, in many cases, is neither possible nor desira
retrieving an entire table in an atomic operation is a very reasonable expectation from administrators.

The issue of table retrievals is not specifically addressed by WIMA, because it requires a change
information model. In WIMA, we do not define our own information model: we want to be able to use
possible information models, existing and future ones. But the support for thenoSuchInstance error code
can easily be added to a management gateway.

2.4.1.4 Poor efficiency of BER encoding

The SNMP protocol (v1, v2, and v3) uses BER [110] to encode management data prior to sending it ov
network. BER encoding can be implemented with very compact code (small footprint on agents) and ca
reasonable overhead on the agent and manager for both encoding and decoding. But the encoded
verbose: the amount of administrative data (identifier and length) is large compared to the payload (co
This makes the network overhead unnecessarily large. It also increases the end-host latency, because m
takes more time to marshall and unmarshall. Mitra [147] and Neufeld and Vuong [154] describe in det
performance issues with BER.

BER encoding was not designed with a view to reducing latency or network overhead: it was just sim
implement. This simplicity was the very reason why it was selected for SNMPv1. (Later, it was kept i
SNMPv2 and SNMPv3 protocols for backward compatibility). But the price to pay for this simplicity is
poor track record regarding network overhead and, to a lesser extent, latency.

The ISO has standardized three alternatives to BER. These are studied and compared by Mitra [1
summarize, Packed Encoding Rules (PER [111]) generate data that is approximately 30% more comp
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BER-encoded data, at the expense of a significant increase in the encoding time. Distinguished Encodin
(DER [110]) slightly improve the encoding time over BER, and have a low impact on network over
compared to BER; but the gain offered by DER over BER remains marginal. Canonical Encoding
(CER [110]) are less demanding than PER in terms of encoding time, but encoded data is more verbos
is better than DER if the value to encode is so large that it does not entirely fit into the available memory
that LightWeight Encoding Rules (LWER [105]) have been investigated but not standardized by the ISO
decrease latency by ensuring quick encoding and decoding. But LWER-encoded data can be much lar
BER-encoded data, which has a negative effect on network overhead.

As we can see, none of these encodings is clearly superior to BER. On a case-by-case basis, some a
than others; but none is always superior. As far as ISO encodings are concerned, there is always a t
between end-host latency and network overhead: you cannot win on both sides. If you gain on end-host l
you lose on network overhead, andvice versa. A quick but simple encoding results in a smaller end-ho
latency but a larger network overhead, whereas a slow but smart encoding increases end-host latenc
decreasing network overhead.

In WIMA, we solve this problem by allowing for any representation scheme and any encoding scheme
communication model, instead of imposing BER. By compressing data, we significantly reduce ne
overhead while keeping latency almost unchanged (see end of Section 2.4.1.6).

2.4.1.5 Verbose OID naming

Another problem with SNMP-based management lies in the OID naming scheme used by the inform
model (that is, the naming conventions for MIB variables). When we take a close look at the OIDs th
transferred in SNMP messages, we observe a high degree of redundancy. For instance, all objects s
MIB-II are prefixed with 1.3.6.1.2.1. If this prefix could be omitted, 20% to 50% of the OID name wo
typically be saved. More significantly, if we consider the objects stored in a table (these account for a
proportion of MIB variables), the prefixes of the OIDs are all identical up to the column number, and the
postfixes of all the entries of a single row are the same. In this case, more than 90% of the OID na
redundant. This naming scheme is really inefficient!

If we compare the OID naming scheme of SNMP with that of the Unix file system, we see that there a
concepts similar tochange directory(cd command) and relative paths in SNMP: all OIDs are specified
absolute paths from the rootiso(1) . The use of relative paths within a varbind list would make OIDs short
especially for tables, thereby decreasing the network overhead.

The second problem associated with OID naming is that each number composing the OID (that is
sub-identifier) is BER-encoded separately—except the first two, which are coded on a single byte. T
inefficient. For instance, the 9-byte OID ofsysDescr in MIB-II (1.3.6.1.2.1.1.1.0) is BER-encoded a
06:08:2B:06:01:02:01:01:01:00 (10 bytes). This leaves us with a compression ratio of about 1: the en
data takes as much space as the initial data. By comparison, the compression ratios obtained withgzip on
large files of textual data typically range from 3 to 5: the compressed data is 3 to 5 times smaller than the
data.

For these two reasons, there is ample room for decreasing network overhead by simply changing th
naming scheme of SNMP. Note that latency is also affected: if the OID naming scheme of SNMP were
efficient, the agent would not have to encode so many integers and the manager would not have to de
of them.

In WIMA, we do not define a new naming scheme: this would require the specification of a new inform
model, and we want to be able to use any information model. Instead, we compress all the data, including
which reduces network overhead without affecting latency too much (see end of Section 2.4.1.6).
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2.4.1.6 No compression of management data

Strangely enough, the designers of SNMPv1 worked hard to save every single byte to be sent over the n
(e.g., see sparse tables), but they did not allow for the transparent compression of management data in
This unnecessarily increases network overhead and, as a result, network latency. One reason for this
the Myth of the Dumb Agent: if the agent is “dumb” and short of resources, it does not have the CPU
memory resources to compress data dynamically.

As of SNMPv3, it is possible to compress management data by adding encryption envelopes to
messages [201]. Although this feature was initially intended for encrypting data in transit, it also allow
data compression. By adding an encryption algorithm that compresses the message, the size of the m
that are transmitted over the network can be decreased substantially. Preliminary tests by Schönwälder
that BER-encoded SNMPv3 PDUs can be compressed by 90% when using the DEFLATE format [62
get-bulk operations1. By defining compression as an encryption algorithm, we can add compressio
SNMPv3 without making any changes to the protocol. However, since there is nonoAuthPriv security level
in SNMPv3, one has to use authentication in order to take advantage of compression. This is a major lim
of this scheme, which was discussed to a great extent by the IRTF Network Management Research Gro
came to the conclusion that it made this scheme unusable in practice.

In WIMA, management data can be compressed, which significantly decreases network overhead. It in
end-host latency (the agent and the manager have to do more work), but significantly decreases network
because there is less data to move about. Overall, compression is almost negligible with respect to la

2.4.1.7 Polling

In Section 2.4.3.1, we mentioned that in the SNMP management architecture, monitoring and data co
are based on polling, that is, on the pull model. This scheme is inefficient with respect to:

• network overhead: the manager keeps sending the same requests to the agents, which unnecessari
the network;

• end-host latency at the manager: the manager keeps putting together, encoding, and marshalling the s
requests for sending them to the agents, which unnecessarily loads the manager;

• end-host latency at the agent: the agent keeps unmarshalling and decoding the same SNMP mess
which unnecessarily clutters the agent’s CPU and memory resources; and

• network latency: the pull model requires a round trip whereas the push model requires a one-way tra

We will describe this problem and our proposed solution in great detail in Section 6.1.4.2.

In WIMA, this problem is solved by going from a pull to a push model, which involves changing the org
zational and communication models of the management architecture. This is one of the most drastic c
that we propose.

2.4.1.8 Unreliable transport protocol

Another problem that we identified in SNMP-based management is the transport protocol used underne
SNMP protocol. Why use UDP to send critical or fatal notifications to the manager (e.g., “interface XXX
gone down on backbone router YYY”)? By using an unreliable transport protocol, we run the risk of lo
important notifications for silly reasons such as buffer overflows in IP routers2. Why be exposed to the
small-message-size problem described in Section 2.4.1.2, partially due to the use of UDP, when we co
TCP and large-size application-level messages?

1. Note that more tests should be performed to confirm this value in a general case.
2. Buffer overflows are a normal way to deal with bursts of traffic in the IP world. In case of buffer overflow, packets are silently dr

by the IP router (that is, the source of the packet is not notified that this packet was dropped).
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When the SNMPv1 protocol was devised, the underlying transport protocol was not mandated. In the IP
it could be either UDP or TCP. In practice, virtually all commercial offerings opted for UDP from day o
sometimes on technical grounds, but generally only because everybody else did (snowball effec
technical grounds for the superiority of UDP over TCP were that TCP-based SNMP traffic would make
situation worse when a network is severely congested, because of TCP’s three-way handshake and au
retransmissions: both increase network overhead. This rationale was defended for years by Rose, on
designers of SNMP and a fervent opponent to using SNMP over TCP [176, pp. 20–22]. The relevance
argument was destroyed by Wellens and Auerbach when they denounced theMyth of the Collapsing
Backbone[242]. In short, most real-life networks are overprovisioned, and SNMP is of no use whatsoev
troubleshooting serious congestions of such networks. Instead, operators typically resort to tools such aping ,
traceroute , etc. This counterargument is fully endorsed by the author, as it corroborates his experie
managing real-life networks.

We identified three good reasons for choosing TCP to transport management data. First, it significantly r
data losses (we have no guarantee of delivery, though). Two facts are often overlooked by adminis
buffer overflows do occur in real life, and some management data is lost. The frequency of these losse
specific and even network-link specific; it also varies considerably over time. Some administrators are un
of the proportion of management data that never reaches the manager, including some critically im
notifications. With TCP, notifications are less often losten route due to buffer overflows in IP routers.

Second, TCP allows for very large application-level messages. This makes bulk transfers more efficie
diminishes network and end-host latency, as the number of messages exchanged over the network is
cantly reduced (provided that the TCP window size does not change too often). TCP’s window mech
allows several chunks of data to be in transit in parallel. This removes the latency caused by additiona
trips when a table row does not fit into a single UDP message, or when the requestedmax-repetitions
parameter for aget-bulk request does not fit into a single UDP packet. Not only does latency decrease
SNMP-table consistency also improves, as we shorten the time window during which the agent might
a table while the manager is recursively retrieving it.

A third reason for using a reliable transport protocol to transfer management data is to relieve the mana
application from managing all the timers and performing all the retries currently necessary to recove
network losses in the case of SNMP polling. In our view, this task does not belong in the application laye
rather in the transport layer.

In Section 7.2.2, once we have elaborated on our solution, we will come back to this issue and present tw
reasons for using TCP instead of UDP. For the sake of completeness, we should mention that the
Network Management Research Group is currently working on an Internet-Draft proposing
SNMP-over-TCP transport mapping [184] as an alternative to the standard SNMP-over-UDP tra
mapping [46]. This work is progressing and might eventually become an experimental RFC. But it is
confined to the research community, and there is no sign as yet that this SNMP-over-TCP mapping
adopted by the SNMP industry.

In WIMA, we solve these problems by using TCP instead of UDP.

2.4.2 Missing features

Now that we have investigated the features that are not implemented optimally in SNMP-based manag
let us identify the features that are missing altogether. We broke them down into two groups: those rel
security and those related to the low level of semantics of SNMP.

2.4.2.1 Security

Two security-related features are missing in SNMP: the support for simple, transparent security a
possibility to go across firewalls easily.
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No simple, transparent security

SNMPv1 and v2c support no security. Identification based on acommunity stringis so simplistic that it cannot
be counted as a security scheme. There is no authentication, and the community string is even transm
clear over the network!

The main novelty brought by SNMPv3 is security. SNMPv3 supports identification, authentica
encryption, integrity, access control, etc. This security requires significant configuration (keys manage
VACM tables, etc.) and is anything but transparent to the end user. SNMPv3 does not support strong s
the keys can be stolen by an attacker [182]. In cryptography, SNMPv3’s security scheme is considere
because there are known ways to break it. For the purpose of NSM, we classify it asmedium securitybecause
it offers sufficient security for most customers.

SNMP-based management gives us the choice between two levels of security:

• no security (SNMPv1 and SNMPv2c)
• medium security (SNMPv3)

In our view, there are actually four levels of security in NSM:

• no security
• simple security: transparent,à la Secure Sockets Layer (SSL [205])
• medium security: sophisticated key management, sufficient if you are not paranoid about security
• strong security: needed if you are paranoid about security (e.g., banks and the military)

If we compare our risk levels in NSM with those defined by Smith in a general context [197, pp. 60–61
simple securityroughly corresponds to hislow risk, our medium securityto hismedium risk, and ourstrong
securityto hishigh risk. Smith defines yet another risk level, calledcritical, when the loss of life or a major
disaster is at stake. We include this last category instrong security.

In NSM, people are mostly interested in our second and third levels of security:simple securityandmedium
security. For most sites, these levels offer enough security, but no more than needed. In SNMP-
management, we have the first and third levels of security, but we miss the second and fourth lev
Section 2.5, we will see that a management architecture should not rely on strong security; so it is not a p
if it is missing in SNMP-based management. But the absence of support for simple security causes
problem. In NSM, we really need the support for simple, transparent security because this is what
enterprises want to use (especially SMEs). They do not want passwords to be transmitted in clea
SNMPv1 and v2c: they simply want transparent identification and authenticationà la SSL. Some also want
some kind of encryption, so that a casual attacker cannot easily access sensitive data (e.g., which cu
pay for a gold service). But most of them do not really mind whether the confidentiality of managemen
is guaranteed, and have no problem if a smart attacker manages to eavesdrop management data in tra
a WAN link.

In WIMA, security is decoupled from our own communication model. We can use any level of security of
by HTTP: HTTP authentication, SSL, etc. We entirely rely on the security schemes supported by the W3
strong security, we also need data-link encryption hardware.

Firewalls are difficult to cross

Firewalls have not yet been taken into account by the SNMP designers. When the author discussed th
with members of the IETF working groups in the past, he always got the same answer: “Why would you
to go across a firewall with SNMP?”. In Section 6.2.4, we will present several scenarios justifying the ne
management data to go across one or several firewall(s).

In WIMA, we addressed this problem by taking firewalls into consideration from the outset and changin
communication model accordingly.
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2.4.2.2 Information model: low level of semantics

The need for high-level semantics in management will be described in great detail in Section 3.2. Let us
summarize it here. As far as semantic richness is concerned, the main shortcomings in SNMP are the
of high-level MIBs, the limited set of SNMP protocol primitives, and the data-oriented nature of the SN
information model. Because of these limitations, writing smart management applications is difficult, so p
often write low-level applications, very close to instrumentation. This partly explains why manage
applications are often limited to little more than monitoring in the IP world.

No high-level MIBs

In Section 2.2 (“MIBs offer instrumentation APIs”), we already pointed out the absence of high-level MIB
SNMP-based management. This is a major problem for information modelers and management-app
designers.

Too few SNMP protocol primitives

All three SNMP protocols (v1, v2, and v3) support basically three protocol primitives, if we group them
similar semantics:get , set , and notify . This is extremely limited and is typical of a data-oriente
information model. In object-oriented software engineering, this design problem is known as theBlob
antipattern [34] or theGod Class problem [173]. It is a direct consequence of theMyth of the Dumb Agent.

SNMP information model: not object oriented

Object-oriented models are widely used in industry today, and it is a shame for an information modele
forced by SNMP to go back to old data-oriented modeling. Strangely enough, object-oriented modelin
already in the air in the late 1980s, but it was not adopted by the designers of SNMPv1. The absenc
object-oriented information model in SNMP is generally regarded as one of the main limitations of SN
When the DMTF endeavored to define a new management architecture in the late 1990s, it came as no
that its first delivery was a new object-oriented information model: the Common Information Model (C
We will present CIM in Section 5.5.1.

Programming by side effect

If we combine the limited number of SNMP protocol primitives with the data-oriented nature of the SN
information model, we see that SNMP information modelers have a lot of difficulty implementing
equivalent ofbehavior(methods) in object-oriented software engineering. This problem has led to an u
workaround known asprogramming by side effect.

To trigger an action on a remote agent, the manager sets an integer MIB variable (let us call itdoIt ) to a
certain value. Different values trigger different actions: if you setdoIt to 39, you reboot the machine; if you
setdoIt to 57, you reset an interface; etc. This very poor design often leads to “spaghetti code” in manag
applications: programmers do not use wrapper libraries offering a higher-level API, but hard-code the di
values (39, 57, etc.) all over the code. This makes it impossible to maintain the management applicatio
long run. In software engineering, it is well known that a poorly designed API often leads to a poor des
the applications using it. It is unfortunate that SNMP does not provide management-application designe
a higher level of semantics.

In WIMA, we will propose several ways of alleviating or correcting this problem. One of them uses CIM
the eXtensible Markup Language (XML).
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2.4.3 Nontechnical problems in SNMP-based management

In this section, we study the last category of problems that we identified in SNMP-based manage
nontechnical problems. These problems are related to SNMP-based management platforms, to the n
domain-specific expertise, and to SNMP’s slow evolution pace.

2.4.3.1 Problems with management platforms

The problems related to SNMP-based management platforms are not technical in nature: they are du
way the management-platform market evolved over time. These problems are not inherent in the
management architecture or the SNMP protocol. But as they have been going on for a decade, there
hope of seeing them disappear from the SNMP market.

In 1998, we identified a number of problems by making an in-depth analysis of how SNMP-based manag
platforms typically work, and how these platforms evolved during the 1990s [132]. To summarize
methodology, we first studied how SNMP-based management platforms evolved from the specificat
SNMPv1 to the advent of Web-based platforms. Then, we described the initial vision of an open marke
generic tools, and explained how it evolved toward captive markets with vendor-specific tools. Finall
analyzed the consequences of the arrival of Windows-based management platforms in a market pre
dominated by Unix. The conclusions of this work are the following.

Customers’ grievances

For customers, SNMP-based management platforms present four shortcomings. First, they are too ex
in terms of hardware and software. In particular, customers resent that in practice, a dedicated mac
needed to manage small networks. Second, they want to be able to store management data in whatever
they happen to own. They do not want to rely on preexisting peer-to-peer agreements be
management-platform and database vendors (see Section 2.2, “Tightly coupled data repository”). Thir
want to be able to move the manager easily from one machine to another, e.g. from a Windows PC to a
PC, without having to pay for a new software package. Fourth, current management platforms offer insuf
integration of management (see Section 2.5).

In WIMA, the first, second, and fourth problems are solved. The third problem can be solved bu
necessarily.

Vendors’ grievances

Equipment vendors are primarily dissatisfied with the huge costs they have to bear to port their device-s
management GUIs (one for IP routers, one for level-3 switches, one for ATM switches, one for intelligent
one for plain hubs, etc.) to all existing management platforms, that is:

• to all existing processors: Intel XX, Motorola YY, etc.
• to all existing operating systems: Linux XX, Windows YY, Solaris ZZ, etc.
• to all existing managers: HP OpenView, Cabletron Spectrum, etc.

This explosion of the number of different platforms to support (and test before each release of a
management GUI) leads to an exponential growth in the development and testing costs incurred by equ
vendors. Over time, add-on developers have learned to live with this heterogeneity, and wrapper code ge
hides system-specific idiosyncrasies from the rest of the management application. This reduc
development costs, but definitely not the testing costs.

This problem is solved in WIMA by embedding Java management applets into network and sy
equipment, and by relying on the portability of Java code.
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Customers and vendors’ common grievances

Finally, some grievances are shared by customers and equipment vendors alike. First, they all want to
the time-to-market of vendor-specific management GUIs. In SNMP-based management, there is often
lag of several months between the time a new piece of hardware appears on the market and the time a c
can purchase an add-on for his/her favorite management platform. Ideally, customers and vendors wo
any network device and any system to be manageable via a nice management GUI (not a mere MIB b
as soon as it is launched on the market.

Second, in order to attract more customers, start-up companies want to have access to the major man
platforms. So do their customers, because this enables them to drive the costs down by increasing com
Usually, start-ups cannot afford the peer-to-peer agreements that give equipment vendors acce
management-platform API, and an entry in the catalog of the management-platform vendor. Neither ca
afford the development costs for porting their management GUI to myriads of management platforms. Id
a start-up would like its customers to be able to download their add-ons into any management platform, w
the start-up having to pay royalties to any management-platform vendor. Instead, in SNMP-
management, customers typically use a separate, dedicated management platform when they buy a
equipment from a start-up. This defeats the concept of integrated management. When the author was
in industry, this problem proved to be a major restriction when purchasing new equipment.

Third, both vendors and customers need a solution to the problem of MIB versioning. From time to
equipment vendors release a new version of their proprietary MIB and management GUIs. As it is not po
to upgrade all the agents and the manager simultaneously, and as old pieces of equipment may not sup
latest vendor-specific MIB, customers have to live with several versions of a MIB coexisting in the
network, either temporarily or permanently. Unfortunately, there is no MIB-discovery protocol in SNM1.
Thus it is not easy to maintain the manager’s knowledge of an agent’s MIB version synchronized wi
actual version of this MIB in that agent. Some management platforms require that the manager be u
manually, others demand that it be updated externally via scripts; yet others do not allow several versio
MIB to coexist in a manager.

In WIMA, all of these problems are solved by embedding management applets into network and sy
equipment.

2.4.3.2 Domain-specific expertise

SNMP expertise is domain specific, hence rare and expensive. In particular, new programmers need
training. This may seem absurd to a newcomer to SNMP-based management. If we compare the te
merits of SNMP (especially the SNMP protocol) with those of other existing technologies, they hardly com
because the design of SNMP is, by and large, outdated. Is SNMP another incarnation of theReinvent the Wheel
pattern [34]? It is not, for a very simple reason: in the IP world, it came first. When SNMPv1 was devised,
of the technologies that we use in WIMA existed. In the late 1980s, it therefore made sense to define
protocol and a new management architecture: the existing ones (OSI management) were not appropri
now that thecorpusof Internet technologies has grown enormously, and many of these technologie
routinely reused in different domains, it no longer makes sense to use a domain-specific technolo
management, especially for the communication protocol. Transferring management data is not vastly d
from transferring user data!

In WIMA, we solved this problem by using standard and ubiquitous Web technologies.

1. Agent capabilities (e.g., MIBs) can be documented insysORTable [47]. In theory, this feature could be used to implement
MIB-discovery protocol. In practice, administrators cannot rely on it because it appeared only in 1996 with the second SN
generation (most deployed agents support SNMPv1). Moreover, among SNMPv2c- and SNMPv3-compliant agents, som
maintain thesysORTable  table up to date.



Problem Statement 35

gh to
ket (see
wo of
nt, and
ation

lves at
e [141,
e the
began

AN)
future.
ipment
wants
1 will
ill be
-based

Pv1
alled
etwork

gement
nalyze
ult to
s have

o solve
is not

ed for
IMA

t
o way it
process

lenty of

than in
like
2.4.3.3 SNMP evolves too slowly

The last problem that we identified in SNMP-based management is its inability to evolve quickly enou
meet the market’s demands in a timely manner. Despite the growing expectations and needs of the mar
Section 2.5), the IETF working groups in charge of SNMP have progressed too slowly in the 1990s. T
the reasons for the initial success of SNMPv1 were that it was lightweight compared to OSI manageme
it did not have to go through the four-year standardization cycles of the International Telecommunic
Union—Telecommunication standardization sector (ITU-T). But experience has shown that SNMP evo
an even slower pace. SNMPv1 was released in 1990. In 1994, SNMPv2p proved to be a complete failur
166, 207, p. 334]. In 1996, SNMPv2c added very little to SNMPv1. In the end, it took eight years befor
IETF delivered a substantial new release, SNMPv3, and another two years before major companies
supporting it1. By this time, the market had lost confidence in the ability of SNMP to meet its needs.

Despite all the good work that was done by the IETF SNMPv3 and DIStributed MANagement (DISM
Working Groups, it appears that many vendors and customers do not contemplate using SNMPv3 in the
In November 1998, at the Networld+Interop trade show in Paris, France, the author asked many equ
vendors whether they already supported SNMPv3. Their answers were unanimous: “No, but who
SNMPv3 anyway? You are the first to ask.” In the next management cycle, it seems likely that SNMPv
survive unchanged as a simple solution for monitoring network equipment, while alternatives to SNMP w
used to perform advanced management tasks. We propose to use WIMA as an alternative to SNMP
management.

2.5 We need a new solution to a new problem

In view of all the problems listed in Section 2.4, one could be tempted to criticize the designers of SNM
for overlooking or poorly engineering so many things. However, this would be grossly unfair. First, we rec
in Section 2.3 the strengths and achievements of SNMP. SNMP has been a success story in n
management. Today, most IP network devices in the world are managed with SNMP-based mana
platforms. Second, we should keep in mind that hindsight-based analysis is an easy art. It is simple to a
retrospectively how things should have been designed in the first place. It is considerably more diffic
make the same analysis beforehand. Third, the requirements for managing IP networks and system
changed considerably since the inception of SNMP, a decade ago. The problem that we are trying t
today is different from the problem that was successfully solved in the late 1980s: no wonder SNMP
appropriate for NSM today!

In this section, we substantiate this third argument by summing up the requirements that we identifi
tomorrow’s network and systems management. In the remainder of our dissertation, we will see how W
fulfills these requirements.

Scalability

The main requirement for tomorrow’s NSM is that wemust improve the scalability of the managemen
architecture for the next management cycle. SNMP-based management is centralized, and there is n
can cope forever with the continuous increase in the amount of management data to move about and
(see Section 2.4.1.1). There are many agents deployed worldwide that are not “dumb” at all and have p
memory and CPU cycles to use.

In WIMA, scalability was the first issue that we addressed. Our push model requires agents to do more
SNMP-based management, but it does not impose on them the footprint of full-blown middleware
CORBA.

1. For instance, Cisco supports it as of IOS 12.1, officially released in March 2000 [57].
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In its early days, SNMP-based management was reasonably inexpensive. The extra cost of adding an
agent to a network device was small for equipment vendors, and the support for SNMP was a good
argument, so vendors did not charge a lot for SNMP. The first management platforms on the marke
perhaps minimalist and concentrated on monitoring, but they were inexpensive. Over time, the initial vis
open management in a commodity market evolved toward a mosaic of secure, niche markets
competition is seriously hampered by peer-to-peer agreements between vendors and costs remain ar
high [132]. With this new business model, the management-platform market has become very unfavor
customers. The marketing concept of apreferred business partnerbasically means that sheer competition do
not work and prices remain high.

In the next management cycle, the business model of the management-platform market should be cha
reduce the costs for both equipment vendors and customers, and to place start-up companies on a
larger equipment vendors. Some customers want to pay less for the same service, that is, only integrate
and systems management in a single management platform. Other customers want to pay the same a
money, or only a little bit more, for a better service: they want full-blown integrated management (see
section “Integrated management”). To meet these demands, vendors must find a way to reduce the am
money that they charge per management task. To do so while preserving their margins, they must signi
cut the development, testing, and maintenance costs of their add-ons (vendor-specific management G

In WIMA, embedded management applets and component-based management platforms allow preci
that.

Higher level of semantics

The third requirement for the next management cycle is to improve the user-friendliness of NSM in t
world. When analyzed by a software engineer of the 2000s, the SNMP protocol and the SNMP manag
architecture seem outdated in many respects. Designers and programmers in industry are used to man
higher levels of semantics, and to working at a higher level of abstraction than what management-pl
APIs typically offer them today in SNMP-based management (see Section 2.4.2.2). These people sh
offered the same kind of user-friendly environments, whether they design and develop a distributed app
for integrated management, aeronautics, or banking. Nothing inherent in management forces app
designers and programmers to work at an instrumentation level: this habit in SNMP-based managemen
due to its development history.

In WIMA, we either use CIM, the object-oriented information model devised by the DMTF during this P
work, or wrap low-level information models like SNMP’s with XML.

Security and firewalls

When SNMPv1 was devised, most enterprises did not care about network and systems security beca
Internet was not what it is today. Security concerns have grown enormously during the 1990s, especial
attacks on well-known Web sites and email-based virus infections were largely advertised by the pres
result, firewalls are now very common, and customers have become much more demanding in te
security. They want management platforms that offer them secure management and management of 

Another requirement imposed by most customers is that the management architecture for the next mana
cycle must not require strong security. Strong security can be implemented at different levels. Da
encryption hardware is the most secure way of simultaneously guaranteeing access control, authen
confidentiality, integrity, nonrepudiation, etc. It works by making the traffic incomprehensible to
eavesdropper. But apart from banks and the military, most enterprises cannot afford this type of har
which is very expensive, and therefore cannot be mandated in a general case.
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Alternatively, strong security can be based on strong cryptography. Cryptographic protocols work with
some public, others private [197, 208]. These keys pose two problems. The first problem is technical. Alt
the complex mathematics of cryptography is now reasonably well understood, the more mundane engi
issue of key management in a geographically dispersed enterprise is still considered an unsolved probl
main issues at stake are key certification, key infrastructure, and trust models [175]. The second prob
commercial. How can we have all NSM vendors agree to abide by the same interoperable security sta
in management when they have been selling proprietary security solutions for years? If we consider ho
it takes major credit-card organizations to convince the industry to adopt and widely deploy a single sta
(Secure Electronic Transaction) for secure e-commerce, in a business that depends entirely on interop
to live, we can easily guess how difficult it will be in the management industry that can live happily wit
security interoperability... In consequence, it would be very unwise to make strong security mandatory in

In the next management cycle, management applications should be able to communicate across firew
support no security, simple security, and medium security (as defined in Section 2.4.2.1, “No si
transparent security”). They should not require strong security, but they could support it as an option.

In WIMA, we actually changed our communication model to facilitate the traversal of firewalls.

Integrated management

The final requirement for managing tomorrow’s IP networks and systems is to support integrated manag
We propose a three-phase integration path for the next management cycle.

First, we should integrate systems management across all markets: network devices, Windows PCs, Lin
Unix workstations, Web-enabled handheld devices, etc. Today, systems management is to a grea
proprietary, especially for Windows PCs. Now that network management has successfully shown th
systems management ought to move to open management technologies and architectures. Today, no
reasons can justify why customers should use separate platforms for managing different types of syst

Second, network and systems management should be integrated. This integration would not only red
running costs of NOCs, it would also allow for a more accurate event correlation. When systems manag
is decoupled from network management, we leave it to a human to correlate network problems (e.g., th
of a router) with systems problems (e.g., the unreachability of a server). Rule-based systems can autom
task provided that NSM is integrated.

Third, for several years, customers have been requesting the full-blown integration of network, sy
application, service, and policy management—that is, integrated management. In particular, they
management platforms to swiftly integrate service management (especially dynamic service deploy
policy management, and QoS management. The rationale is that by integrating all the managemen
administrators will be able to better automate management, to routinely support what is currently except
offered (e.g., QoS management, dynamic service provisioning, etc.), and, in the end, to migrate from a
reactive management paradigm to a more proactive paradigm.

In WIMA, we address the first two levels: integration of systems management, and integration of netwo
systems management. We decided to leave the third level of integration for future work, although prelim
investigations suggest that WIMA can easily be extended to application, service, and policy managem

2.6 Summary

This concludes our problem statement. In Section 2.1, we defined the terminology used in this disserta
Section 2.2, we reviewed the main characteristics of SNMP-based management and described the con
“dumb” agent, polling, vendor-specific management GUIs, etc. We saw that in the IP world, monitoring
notification driven. In Section 2.3, we summarized the main strengths of SNMP-based management
though this Ph.D. work is primarily about replacing SNMP with a new management architecture, better
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to today’s requirements, it is important to keep in mind that SNMP-based network management has
tremendous success in the 1990s. In Section 2.4, we identified the main problems in SNMP
management. Some of them are due to the scalability of the management architecture and the efficienc
communication protocol. Other problems result from the lack of support for certain important features
third type of problems are nontechnical. They are related to management platforms, domain-specific ex
and the capacity of SNMP to evolve in a timely manner. Finally, in Section 2.5, we explained why we n
new solution to a new problem, and summarized the main requirements for the next management cyc
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Chapter 3

OVERVIEW OF THE SOLUTION SPACE1

How could we manage IP networks and systems tomorrow?

Our goal in this chapter is to provide administrators with sound technical grounds to choose manag
paradigms and technologies, and to take an evolutionary rather than a revolutionary approach to NSM
so, we endeavored to classify all open2 technologies into a limited set of paradigms, and to propose criteri
assess and weigh the relative merits of different paradigms and technologies. One contribution of our w
to show that there is no win-win solution: different technologies are good at managing different network
distributed systems. Evolving networks and evolving user requirements call for evolving NSM solutions
aim of vendors is to sell revolutionary solutions, because they bring in more revenue in the short term
purpose of administrators is to find an evolutionary path in the midst of these revolutionary approaches,
money in the short and long run.

In this chapter, we introduce two ways of categorizing NSM paradigms; we call them thesimple taxonomy3

and theenhanced taxonomy. In Section 3.1, we present our simple taxonomy, based on a single criterion
organizational model. In this taxonomy, all paradigms are grouped into four broad types: centralized, w
distributed hierarchical, strongly distributed hierarchical, and strongly distributed cooperative paradigm
then expose the strengths and weaknesses of this simple taxonomy, and explain why we need to enha
Section 3.2.1, we draw a parallel between the ways in which enterprises and networks are organiz
delineate a common trend, and identify the delegation granularity as a criterion for our enhanced taxo
We then introduce the concepts of microtask and macrotask. In Section 3.2.2, we study the three other
retained for our enhanced taxonomy: the semantic richness of the information model, the degree of auto
of management, and the degree of specification of a task. This leads us to our enhanced taxonomy, de
Section 3.2.3.

1. Early versions of the material presented in this chapter were published in a journal article [133] and a workshop paper [13
2. This chapter does not cover proprietary solutions such as Microsoft’s DCOM.
3. In organization theory, people generally refer totypologiesrather thantaxonomieswhen they meanclassifications by types[95]. So

did we, in early versions of this work [130, 131]. Since then, it was pointed out to us that usage has opted fortaxonomiesin computer
science at large and network management in particular, so we now use this word. In the meaning of interest to us, both w
synonymous.
39
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3.1 Simple Taxonomy of Network and Systems Management
Paradigms

With the terminology defined in Section 2.1 in mind, let us now introduce our simple taxonomy of N
paradigms. When we built it, we tried to meet seven objectives:

• provide an intuitive categorization of NSM paradigms;
• identify a small number of types;
• clearly separate centralized from distributed paradigms;
• highlight the differences between traditional and new paradigms;
• distinguish paradigms relying on vertical and horizontal delegation;
• enable administrators and NSM application designers to find out easily what paradigm is implemen
a given technology; and

• help classify quickly a new NSM technology.

To keep this taxonomy simple, and thereby meet the first two objectives, we decided to base it on a
criterion: the organizational model. This is the approach taken by most authors [97, 124]. To meet th
objective, we began with two types: centralized paradigms and distributed paradigms.Centralized paradigms
concentrate all the management-application processing in a single node, the manager, and reduce all th
to the role of “dumb” data collectors1 (seeThe Myth of The Dumb Agent[242]). Distributed paradigms,
conversely, spread the management application across several machines.

To meet the fourth objective, we further divided thedistributed paradigmstype. By studying the different
technologies that implement distributed management, we discovered that regardless of their idiosyn
they could all be classified into two categories, according to the role played by the agents in the manag
application. We called themweaklyandstronglydistributed technologies; they implement weakly and strong
distributed paradigms.

Weakly distributed paradigmsare characterized by the fact that the management-application processi
concentrated in only a few nodes. Usually, the network is split into different management domains, wi
manager per domain. In this scenario, all the agents remain limited to the role of “dumb” data colle
Another example is to keep a single manager but to make a few agents smarter than the others. In bot
we have one or two orders of magnitude between the number of smart machines and the number of “
machines. Only a small proportion of the machines are involved in the management-application proce

Strongly distributed paradigmsdecentralize management processing down to every agent. Management
are no longer confined to managers: all agents and managers are involved. Many strongly dist
technologies have been suggested in the recent past. As we will explain in Section 3.1.6, we found it na
group them into three sets of paradigms: mobile code, distributed objects, and intelligent agents. The fi
implement vertical delegation; we call them thestrongly distributed hierarchical paradigms. The third
implements horizontal delegation; we call this family thestrongly distributed cooperative paradigms. This
distinction allows us to meet our fifth objective.

Thus our simple taxonomy consists of four types:

• centralized paradigms
• weakly distributed hierarchical paradigms
• strongly distributed hierarchical paradigms
• strongly distributed cooperative paradigms

1. Actually, agents are not always “dumb”. They can send unsolicited notifications to managers, and some can even process a
SNMPset of several MIB variables, which is not a trivial task. But the bulk of their activity is to collect usage data and be p
by managers, whereas the manager does all the real management work.
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NMPv2.
We refer to the first two as thetraditional paradigms, and to the last two as thenew paradigms. The strong
distribution of the management application is a characteristic of new paradigms. The fourth type is also
cooperative paradigmsfor short, because the cooperative paradigms that we consider in NSM are al
strongly distributed1.

Our first five objectives have now been met. Let us delve into the details of these management paradig
review the main technologies that implement them. We assume that the reader is familiar with the trad
management paradigms and protocols, that is, the different variants of SNMP, OSI management, Telec
nications Management Network (TMN), and Remote MONitoring (RMON)2. New paradigms and new
protocols will be presented in more detail. At the end of this section, we will summarize our simple taxo
in a synthetic diagram that will allow us to meet our sixth and seventh objectives.

3.1.1 Centralized Paradigms

Centralized paradigms are characterized by a single manager concentrating all the management-ap
processing, and a collection of agents limited to the role of “dumb” data collectors. The two typical exam
are SNMP-based management and HTTP-based management (based on the HyperText Transfer Pro

3.1.1.1 SNMP-based management

To date, in the IP world, most real-life networks and systems are managed with centralized platforms ba
SNMPv1 [42]. The success of this management architecture has been phenomenal. Within a few ye
networking industry, which was entirely dominated by proprietary equipment and management durin
1980s, turned to open systems and open management. Undeniably, the management of IP networks
one of the greatest successes of open systems.

Nonetheless, three independent evolutions soon exposed a major weakness in the SNMPv1 man
architecture, and more generally in the centralized paradigm: scalability. First, the IP world has been exp
for years at a very fast pace. Once limited to Unix machines, the TCP/IP stack became available o
network devices in the early 1990s, and on most PCs in the mid-1990s. Today, it is virtually ubiqu
Second, the size of networks has grown dramatically. The number of PCs installed worldwide increa
several orders of magnitude during the past decade. The proportion of networked machines is now c
100%, whereas many PCs were standalone machines when the SNMPv1 specification was released
Third, the size of SNMP MIBs increased, too. In LANs or WANs, IP routers and hubs had just a few F
(Fiber Distributed Data Interface), Ethernet, and Token Ring ports to manage a few years ago. No
switches, ATM switches, and intelligent hubs have many more entities to manage (ports, cross conne
virtual LANs, etc.), and require much more data to be brought back to the manager.

The very success of the SNMPv1 architecture was the cause of its decline. It proved to be good at ma
relatively small networks, but could not scale to large networks (e.g. geographically dispersed enterprise
could not cope with ever more management data. A new paradigm was needed to address scalabil
telecommunications world had already shown how to solve this problem: by distributing the load ac
hierarchy of managers (see next section). But strangely enough, the distribution of management wa
priority at the IETF until the late 1990s. Since SNMPv1, four management architectures have been re
SNMPv2p, SNMPv2u, SNMPv2c, and SNMPv3. The first three only support centralized manage
SNMPv2p has been rendered obsolete by the IETF in 1996 [166]. SNMPv2u had little success and “s
significant commercial offering” [166, p. 14]; it is thus no longer used. SNMPv2c is often used to manage
backbone routers, because it supports 64-bit counters and offers better error handling than SNMPv1
brings nothing new as far as distribution is concerned. As for SNMPv3, its main focus was on security
not scalability. We saw in Section 2.4.3.3 that major vendors only began supporting it in 2000. Its use

1. This is not necessarily true in other fields; e.g., in DAI, some forms of cooperation can rely on a central entity.
2. These are presented by many authors [97, 124, 176, 195, 204, 207]. Perkins [166] wrote a good summary of the variants of S
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expected to remain marginal in production environments in the foreseeable future. Note that the MIBs
the support for one kind of distribution in SNMPv3 were issued only in 1999, so it will take even more
before they are implemented and deployed.

In short, vendors of SNMP management platforms are currently forced to resort to proprietary extens
support hierarchies of managers.

3.1.2. HTTP-based management

Since the mid-1990s, with the Web becoming ubiquitous, inexpensive, and so easy to use, many peop
argued that Web technologies were the way to go for NSM in the IP world [100]. New vendors, most no
start-ups, saw an opportunity to enter the lucrative market of management platforms. This led to a large
of approaches calledWeb-based management, which supports different management paradigms. In t
section, we describe the approaches implementing a centralized paradigm. In Section 3.1.6, we will
those implementing strongly distributed hierarchical paradigms. Note that Web-based management
revisited in great detail in Chapter 5, so we remain concise here.

HTTP-based managementconsists in using HTTP (either HTTP/1.0 [21] or HTTP/1.1 [74]) instead of one
the three SNMP protocols to transfer management data between agents and managers. For this to w
agents must have an HTTP server embedded.

The simplest form of HTTP-based management relies on simple Web pages written in HyperText M
Language (HTML) [137, 150]. The manager retrieves HTML pages from the agent and displays them in
browser, without processing them any further. Agents can send two types of documents: static and d
HTML pages. Static pages do not change over time and are stored in the agent (e.g., in Erasable Progra
Read-Only Memory, or EPROM for short). A typical example is a Web page for configuration manage
Dynamic pages are generated on-the-fly by the agent in reply to a request received from the manage
reflect the state of the agent at a certain time. A typical example is a Web page for performance mana

A second form of HTTP-based management consists in running an applet in a Web browser, or a Ja
application, on the manager side, and using HTTP to communicate between the manager and the ag
134, 242]. Management data can be pushed by the agent or pulled by the manager. Within HTTP, the d
be encoded in XML, HTML, strings, etc.

An alternative to this consists in using SNMP instead of HTTP to communicate between the manage
applet or application) and the agent. Bruins calls itJava-based SNMP[35]. Clearly, this case cannot be
classified as HTTP-based management. This approach changes very little compared to standard SNM
management platforms: the technology used to build the GUI is different, but the same communi
protocol is used underneath. The agent cannot tell whether it is communicating with a traditional SNMP
or a Java-based management platform.

Compared with SNMP-based management, there is no change whatsoever in all these scenarios with
to the management paradigm. We only change the communication protocol between the manager and th

3.1.3 Weakly Distributed Hierarchical Paradigms

Weakly distributed hierarchical paradigms spread the management application across several machin
telecommunications world has followed this management paradigm for years with TMN. In the IP world
saw one failed attempt with SNMPv2p and one successful, but partial, attempt with RMON.
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3.1.4. In the telecommunications world

Unlike the SNMP management architecture, which proved to be successful in many sectors of activity, th
management architecture [49, 50, 250] encountered very little success in data networks. But in 1992, the
adopted it as the basis for its TMN model [108, 190] and for the specification of some of the TMN inter
that mandate the use of CMIP [52] and CMIS [51]. Since then, OSI management has flourished in the
market of telecommunications networks, where it is used to manage both networks and systems.

TMN/OSI is based on a weakly distributed management paradigm that distributes management alo
hierarchical tree of the managers, each in charge of a management domain. If the contact is lost be
mid-level manager and the top-level manager, independent corrective actions can be undertaken
mid-level manager. If the contact is lost between a mid-level manager and an agent, the agent is left on i

One of the management services offered by CMIS isM_ACTION. It allows for the delegation of very simple
tasks from a manager to an agent. In practice, this service is rarely used. But it is conceptually rich: any
can execute a static, pre-defined task when requested by the manager. This gives us a flavor of s
distributed management.

3.1.5. In the IP world

To date, the IP world is still waiting for a viable solution for distributing management across a hierarc
managers. The first attempt was made in April 1993, when a new management architecture now
SNMPv2p was issued [83]. It relied on a new protocol and three new MIBs. Distributed managemen
supposedly made possible by a new protocol primitive,inform , and the Manager-to-Manager (M2M
MIB [43]. We call it theSNMPv2p+M2M management architecture. This architecture was primarily targeted
at geographically dispersed enterprises. But the SNMPv2p security model (based on the conc
party [142]) and the M2M MIB were flawed and proved to be “unworkable in deployment” [141]. In 19
SNMPv2p was superseded by SNMPv2c and SNMPv2u, both of which only support a centralized manag
paradigm.

Nonetheless, the IETF managed to successfully define a weakly distributed management paradigm by
some agents smarter than others. RMON probes were the first and simplest form of delegation adde
SNMPv1 architecture. They supported the RMON1 MIB, issued in 1991 [234] and updated in 1995 [
RMON2 was released in 1997 [236] and became widely supported by intelligent hubs and switching hu
gathering usage statistics in RMON-capable equipment, administrators can delegate
network-management tasks to these specialized network devices, thereby relieving the manager of the
of the corresponding processing and decreasing the amount of management data to move about. Tasks
by RMON are static, in the sense that only the gauges and traps hard-wired in the RMON MIB are ava
together with all kinds of combinations thereof (via thefilter mechanism). If contact is lost between th
RMON-capable agent and the manager, statistics are still gathered, but no independent corrective ac
be undertaken by the agent. RMON is well suited to manage fairly active LANs, and is widely used tod
the IP world.

3.1.6 Strongly Distributed Hierarchical Paradigms

Weakly distributed hierarchical paradigms address the main shortcoming of centralized models, scalabi
they also exhibit a number of limitations. First, they lack robustness. If the contact is lost between the
and the manager (e.g., due to a network link going down), the agent has no means to take corrective a
case of emergency. Second, they lack flexibility. Once a task has been defined in an agent (via RMO
CMIP/CMIS withM_ACTION), there is no way to modify it dynamically: it remains static. Third, they can
expensive in large networks. By concentrating most of the management-application processing in ma
they require powerful (hence expensive) management stations.
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To address this, a new breed of technologies emerged, based on strongly distributed hierarchical par
The full potential of large-scale distribution over all managers and agents was first demonstrated in NS
Goldszmidt with his Management by Delegation (MbD) architecture [88], which set a milestone in
research field. The novelty of his work stems on the simple, yet insightful, idea that with the constant inc
in the processing power of every computer system and network device, NSM no longer ought to be lim
a small set of powerful managers: all agents could get involved and become active in the manag
application. For the first time with MbD, network devices were suddenly promoted from “dumb” d
collectors to the rank of full-fledged managing entities.

MbD triggered a lot of research in strongly distributed NSM. The impact of the novel concepts it broug
this community was taken advantage of by many promising technologies that emerged, at about the sam
in other research communities. Most of these technologies came from software engineering, especial
the object-oriented and the distributed-application communities. Let us now present the paradigms und
these technologies. They are grouped in two broad types: mobile code and distributed objects.

3.1.6.1 Mobile code

Mobile-code paradigms encompass a vast collection of very different technologies, all sharing a single i
provide flexibility, one can dynamically transfer programs into agents and have these programs execu
the agent. The program transfer and the program execution can be triggered by the agent itself, or by a
external to the agent such as a manager or another agent.

Remote evaluation, code on demand, and mobile agents

Fuggettaet al. [82] made a detailed review of mobile code, where they clearly define the boundaries bet
technologies, paradigms (what they calldesign paradigms), and applications. As far as mobile-cod
technologies are concerned, they definestrong mobilityas the ability of a Mobile-Code System (MCS) to allow
an execution unit (e.g., a Unix process or a thread) to move both its code and its execution state to a d
host. The execution is suspended, transferred to the destination host, and resumed there.Weak mobility, on the
other hand, is the ability of an MCS to allow an execution unit on a host to dynamically bind code coming
another host. The code is mobile, but the execution state is not preserved automatically by the MCS. (I
possible to program this preservation explicitly, of course.)

By analyzing all existing MCSs, Fuggettaet al. identified three different types of mobile code paradigms1:

• Remote EValuation(REV [210]): When a client invokes a service on a server, it not only sends the n
of the service and the input parameters, but also sends along the code. So the client owns the code
to perform the service, while the server owns the resources. This is a form ofpush.

• Code On Demand(COD): A client, when it has to perform a given task, contacts a code server, downl
the code needed from that server, links it in dynamically (dynamic code binding), and executes it. Th
client owns the resources and the server owns the code. This is a form ofpull.

• Mobile Agent: It is an execution unit able to autonomously migrate to another host and resume exec
seamlessly. So the client owns the code, while the servers own the resources and provide an envir
to execute the code sent either by the client or another server.

A number of technologies can be used to implement these three paradigms. Some of them are just lan
others are complete systems that possibly include a virtual machine, a secure execution environme
Agent Tcl, Ara, Emerald, Sumatra, Telescript, and Tycoon are examples of strong MCSs, whereas
Facile, Java (or rather, to be precise, a Web browser integrating a JVM—Java Virtual Machine
supporting Java applets), M0, Mole, Obliq, and Tacoma are examples of weak MCSs (see references i
Some technologies can be used to implement several paradigms [82].

1. These should be compared with the client-server paradigm, where the client invokes a service on a server, while the server o
the code and the resources (that is, it provides the environment to execute the code).
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Management by delegation and variants

Mobile-code paradigms were first used in NSM by Goldszmidt and Yemini, in 1991, when they de
Manager-Agent Delegation [251]. This management architecture was later enhanced and re
Management by Delegation (MbD); it was fully specified in 1995 [88]. MbD is a mixture of the REV parad
(to send delegated agents to elastic servers) and the client-server paradigm (to remotely control the sch
and execution of delegated agents).

Burns and Quinn [39] were among the first to describe a prototype of a mobile agent used in NSM. Sinc
MCSs have encountered a growing success in NSM [15, 24, 25, 33, 181]. Baldi and Picco [16] studi
network traffic generated by MCSs implementing REV, COD, and mobile-agent paradigms, and m
quantitative theoretical evaluation of the effectiveness and suitability of mobile-code paradigms in ne
management. The ISO integrated mobile-code concepts in its OSI management architecture by spec
new management function: the Command Sequencer [113]. In 1999, the IETF DISMAN Working G
defined a series of MIBs allowing managers to distribute tasks to agents with SNMPv3. The most relev
us is the Script MIB [126, 185], which allows a manager to delegate management tasks to an agent in th
of scripts. We call it theSNMPv3 + Script management architecture.

Active networks

One area where mobile code paradigms have recently encountered a large success is known asactive networks.
There are two approaches to active networks. The evolutionary approach, called theprogrammable switchor
the active node,provides a mechanism for injecting programs into network nodes to dynamically prog
them [4, 252]. These programs may perform customized computations on the packets flowing through
and possibly alter the payload of these packets (e.g., compress and decompress data at the edg
network). Clearly, this breaks the principle that transport networks should opaquely carry user data
revolutionary approach, also known as thecapsuleor smart packet, considers packets as miniature program
that are encapsulated in transmission frames and executed at each node along their path [224].

The concept of active networks was first proposed in 1995 by Tennenhouse and Wetherall [224]. It wa
applied to network management by Yemini and da Silva in 1996 [252]. Research is now extremely ac
this field [36, 118, 159, 170, 172, 188, 198]. In NSM, active networks are of great interest because they
in flexibility and robustness. Network monitoring and event filtering [72, 223] are especially good candid
as monitoring programs can easily be dispatched through the network. These programs are high-leve
that watch and instrument packet streams in real time. They maintain counters and report results bac
manager. Another example is active congestion control [72]. The main problems associated with
networks are security, performance, and interoperability [159]. A lot of work is under way to solve t
including coupling active software with active hardware in the area of Field-Programmable Gate A
(FPGAs) [99].

3.1.6.2 Distributed objects

Parallel to mobile code, a second type of strongly distributed hierarchical paradigms has emerged, ba
distributed object technologies. We describe the four main approaches in this section: the Common
Request Broker Architecture (CORBA), Java Remote Method Invocation (RMI), Web-Based Ente
Management (WBEM), and the Open Distributed Management Architecture (ODMA).

CORBA

Faced with the issue of interoperability in the object-oriented world, the Object Management Group (O
standardized the Object Management Architecture, now commonly referred to by its main comp
CORBA [191]. CORBA 2.0 [158] was released in 1995. Unlike its predecessors, this release proved
successful in the software-engineering community, particularly for large corporations with huge invest
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in legacy systems. Because OSI is object-oriented and SNMP managed objects can be mapped onto o
took little time for NSM researchers to begin working on the integration of CORBA with existing manage
architectures. Pavlou was among the first when he proposed to use CORBA as the base technol
TMN [161, 163].

The Joint Inter-Domain Management (JIDM) group, jointly sponsored by the Open Group and the Ne
Management Forum (NMF)1, was created to provide tools that enable management systems based on C
SNMP, and CORBA to work together. The SNMP/CMIP interoperability was previously addressed b
ISO-Internet Management Coexistence (IIMC) group of the NMF, which specified the translation betwe
SNMP and CMIP/CMIS services, protocols, and information. Both CMIP/CORBA and SNMP/CORBA [1
interworking were solved by JIDM, who addressed specification translation and interaction transl
Algorithms were defined for the mapping between GDMO/ASN.1 (Guidelines for the Definition of Mana
Objects / Abstract Syntax Notation 1) and CORBA IDL (Interface Definition Language) [139], and betw
SNMP SMI and CORBA IDL [140]. The JIDM mappings allow CORBA programmers to write OSI or SNM
managers and agents, without any knowledge of GDMO, ASN.1, or CMIP. Inversely, these mapping
allow GDMO, CMIS or SNMP programmers to access IDL-based resources, services or applications, w
knowing IDL.

CORBA has also been integrated with Web technologies. One example from the industry is IO
OrbixWeb, a Java Object Request Broker (ORB) coded as an applet. Once loaded into a Web browser
as a CORBA server communicating via the Internet Inter-ORB Protocol (IIOP). Another examp
CorbaWeb [145], from academia.

CORBA has been well accepted in the telecommunications world, where it is becoming ade factostandard, a
rarity in this industry traditionally based onde jurestandards. One of the achievements of the Telecommu
cations Information Networking Architecture (TINA [19, 20]) has been to add a DPE to TMN, and COR
proved to be a natural choice for the DPE [164, 165]. Several major equipment vendors are now turn
CORBA to manage their telephone switches and networks.

Java RMI

Java RMI makes it possible to program a management application as a distributed object-oriented appl
Everything is an object, and all objects can interact, even if they are distant (that is, if they are runni
different machines). When Java RMI is combined with Object Serialization, which allows the state of an o
to be transferred from host to host, management-application designers have a powerful technology
disposal whereby they can mix mobile-code and distributed-objects paradigms.

Distributed Java objects can be mapped directly onto SNMP or OSI managed objects. In this case, t
low-level. They can also be high-level; e.g., the set up of a Virtual Path (VP) across multiple ATM swit
can be defined by a single method call on a remote object living in the source switch. This high-level
will take care of all subsequent method invocations on all switches along the path to the destination. W
discuss this important concept in Section 3.2.

To date, Sun Microsystems and the Java Community have released three specifications leveraging Ja
in NSM: the Java Management Application Programming Interface (JMAPI [221]), the Java Manage
eXtensions (JMX [218]), and the Federated Management Architecture (FMA [220]). These three apro
will be described in Section 5.6. JMAPI is now obsolete, but it was a successful proof of concept. JM
concentrated so far on the agent side and FMA on the manager side of the management application. Th
frameworks are expected to converge in the future.

1. Since then, the NMF has become the TeleManagement Forum (TMF).
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JMAPI, JMX, and FMA have shown that distributed Java-based management allows for a very powerfu
of building a strongly distributed management application. But it mandates that all managers and
support Java, or that all agents be accessed via a Java-capable management gateway, which is
requirement. FMA also relies on Jini, which is even more demanding.

WBEM

In the IP and telecommunications worlds, open standards have virtually wiped out proprietary NSM solu
due to the large success encountered by the SNMP and OSI/TMN management architectures and pro
these markets. But in the rest of the industry, proprietary management platforms are still the rule an
platforms are the exception. A few years ago, the DMTF issued the Desktop Management Interface (DM
specification and tried to promote open management for desktops. But this effort encountered
success [38, p. 2]. To date, most networked desktops are either unmanaged or managed with pro
solutions.

The situation could soon change, however. Enterprises are now bearing the costs of two parallel mana
platforms: one to manage their IP-based network equipment, and another to manage their desktop PC
companies, who did not attach much importance to open management a few years ago, are now payin
price for this lack of interoperability; and they are pushing the industry to integrate the management of al
of network and systems equipment: PCs, routers, printers, switches, etc.

To address this need, a new management architecture called Web-Based Enterprise Management (W
currently defined by the DMTF [69]. WBEM will be presented in detail in Section 5.5.1. WBEM has evo
quite a lot since its early days in 1996. So far, the main outcome of this effort has been the specificatio
new information model: the Common Information Model (CIM [38]). Its main strength is that it
object-oriented, unlike the SNMP information model. Its main drawback is its terminology, which de
radically from the SNMP and OSI-management terminologies and mixes up database and object-o
concepts such as schema and model. WBEM’s communication model relies on two standard techno
HTTP for the communication protocol, and XML for representing management data in HTTP message
unlike CORBA and Java RMI, the communication between distant objects does not rely on a distr
object-oriented middleware, but on a serialization via HTTP. WBEM is backed by most vendors in the
industry; it is likely to emerge as one of the main management architectures of the decade.

ODMA

The purpose of ODMA [106] is to extend the OSI management architecture (thus also the TMN archite
with the Reference Model of the ISO Open Distributed Processing (RM-ODP) architecture, which provid
the specification of large-scale, heterogeneous distributed systems. This joint effort of the ISO and the
has led to a specialized reference model for the management of distributed resources, system
applications. It is based on an object-oriented distributed management architecture composed of compu
objects. These objects offer several interfaces, some of which are for the purpose of management.

In ODMA, there are no longer managers and agents with fixed roles, like in the OSI management archit
Instead, computational objects may offer some interfaces to manage other computational objects (m
role), and other interfaces to be managed (agent role). Moreover, by adopting the computational viewp
ODP, ODMA also renders the location of computational objects transparent to the management appli
As far as the management application is concerned, computational objects may live anywhere, not nec
inside a specific agent or manager. Consequently, agents may execute advanced management ta
managers. In short, the ISO and the ITU-T have gone from a weakly distributed management paradigm
the OSI management architecture, to a strongly distributed management paradigm, with ODMA.
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3.1.7 Strongly Distributed Cooperative Paradigms

Unlike centralized and hierarchical paradigms, cooperative paradigms aregoal-oriented. What does this mean?
For example, in REV-based mobile code technologies, agents receive programs from a manager and
them without knowing what goal is pursued by the manager. Managers send agents the “how”, w
step-by-stepmodus operandi(coded in the program), and keep the “why” for themselves. Agents execute
program without knowing what it is about, they are “dumb”. Conversely, with intelligent agents, manager
send the “why”, and expect agents to know how to devise the “how”. In this sense, agents used in coop
paradigms are “intelligent”. Obviously, there is a price to pay for this: cooperative technologies are much
complex to implement than centralized or hierarchical technologies. They also consume considerabl
resources (processor, memory, and network bandwidth).

Cooperative technologies were only recently considered by the distributed NSM community. Until rec
most NSM authors simply ignored them [88, 97, 124, 146, 195, 207]. They originate from DAI, and
specifically from Multi-Agent Systems (MASs), where people are modeling complex systems with
groups of intelligent agents. This research field is fairly recent, so its terminology is still vague. Specifi
there is no consensus on the definition of an intelligent agent. Many authors have strong and different o
about this (Franklin and Graesser [79] listed 11 definitions!), which does not help. In 1994, Wooldridg
Jennings took a new approach. Instead of imposing on others what an intelligent agent should or should
they defined a core of properties shared by all intelligent agents, and allowed any other property
application specific. This approach has encountered a great deal of success, and contributed significant
dissemination of MASs outside the realm of DAI. For these authors, intelligent agents (or, to be precise
they callweak agents) must exhibit four properties [248]:

• autonomy: An intelligent agent operates without direct human intervention, and has some kind of co
over its actions and internal state.

• social ability: Intelligent agents cooperate with other intelligent agents (and possibly people) to ac
their goals, via some kind of agent-communication language.

• reactivity: An intelligent agent perceives its environment, and responds in a timely fashion to change
occur in it.

• proactiveness: An intelligent agent is able to take the initiative to achieve its goals, as opposed to s
reacting to external events.

Proactiveness is a very discriminating property. While most intelligent-agent implementations are rea
only a few of them qualify for proactiveness, particularly outside the AI community. We believe that this i
main difference between mobile agents from the software engineering community, and intelligent agen
the DAI community.

For Wooldridge and Jennings, optional properties of weak agents include mobility, veracity (intelligent a
do not knowingly communicate false information), and rationality (intelligent agents are not chaotic, the
so as to achieve their goals). In addition, they definestrong agentsas weak agents modeled with human-lik
characters, e.g. by using Rao and Georgeff’s Belief, Desire, Intention (BDI) model [171]. Strong agents a
type of intelligent agents generally used by the DAI community, whereas weak agents are the type ofte
by other research communities.

Two years later, Franklin and Graesser [79] compared the approaches taken by many authors
Wooldridge and Jennings, distinguished between mandatory and optional properties. For them, inte
agents must be reactive, autonomous, goal-oriented (proactive, purposeful), and temporally continu
intelligent agent is a continuously running process). Optionally, they can also be communicative (that i
to communicate, coordinate, and cooperate with other agents,), learn (they improve their skills as time g
storing information in knowledge bases), be mobile, and have a human-like character. In our view, the fa
intelligent agents should be continuously running processes is an important property. It also disting
intelligent agents from mobile agents.



Overview of the Solution Space 49

ability
o learn
to be

re need
working
ty [2].
nipu-

ed a

49, 168,
digm)

and
oth
ously,

very
adminis-
way to

y only
radigm
gement
at the
Because we consider intelligent agents in the context of cooperative paradigms in distributed NSM, their
to communicate, coordinate, and cooperate should be, in our view, a mandatory property. The ability t
is often expected from intelligent agents in NSM; but like many authors, we do not consider this property
mandatory. We therefore propose that in distributed NSM, intelligent agents should always be:

• goal-oriented (proactive)
• autonomous
• reactive
• cooperative (communicative, coordinating)
• temporally continuous

When intelligent agents are cooperative, they are exposed to heterogeneity problems, and therefo
standards for agent management, agent communication languages, etc. Two consortia are currently
on such standards: the Foundation for Intelligent Physical Agents (FIPA [76]) and the Agent Socie
Among all the agent communication languages that emerged in DAI [248], the Knowledge Query and Ma
lation Language (KQML [75]) and the Agent Communication Language (ACL [77]) have encounter
certain success in the distributed NSM community.

More and more researchers are now trying to use intelligent agents to manage networks and systems [1
199, 253]. But we should remember that the limits between mobile agents (following a mobile-code para
and intelligent agents (following a cooperative paradigm) are sometimes fuzzy. And when Knapik
Johnson [120] advocate the use ofOO agents(object-oriented agents), to combine the advantages of b
worlds, the classification becomes even trickier. In fact, OO agents implement two paradigms simultane
distributed objects and intelligent agents, and can even implement a third: mobile code.

3.1.8 Synthetic Diagram

Our simple taxonomy is summarized in the following synthetic diagram:

The chief contribution of this simple taxonomy is that it highlights some similarities between apparently
diverse approaches. Despite the fact that new technologies appear at a fast pace, network and systems
trators are no longer overwhelmed by the variety of approaches offered to them: they have a simple
analyze them and group them, which reduces the scope of their investigation.

The main disadvantage of this simple taxonomy is that it is more of academic than industrial interest. B
considering the organizational model, it remains theoretical, and does not give many clues as to what pa
or technology should be used in the context of a given enterprise. Administrators and designers of mana
applications need more pragmatic criteria. They have difficult software-engineering decisions to make

centralized
paradigms

hierarchical
paradigms

cooperative
paradigms

not
distributed

SNMPv1,
SNMPv2c,
SNMPv2u,
SNMPv3,
WBEM,
HTTP

weakly
distributed

SNMPv1 + RMON,
SNMPv2p + M2M,

OSI/TMN

strongly
distributed

SNMPv3 + Script,
mobile code,
Java RMI,

distributed objects

intelligent agents

Table 1. Simple taxonomy of NSM paradigms
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analysis and design levels. They need to think twice before investing in expensive technologies s
CORBA, or before embarking for uncharted territories inhabited by roaming intelligent agents! Administr
would rather base their choices on sound technical grounds. Ideally, they would like case-based stu
“cookbook recipes”. The purpose of our enhanced taxonomy is precisely to fulfill this need.

3.2 Enhanced Taxonomy of Network and Systems Management
Paradigms

The first criterion of our enhanced taxonomy, delegation granularity, is derived by comparing the orga
tional models used in NSM with organization structures considered in enterprise management. The thre
criteria were identified by comparing the technologies introduced in the previous section.

3.2.1 A stroll through organization theory

The topology of an enterprise computer network tends to be modeled after its organization chart. Th
reason for this is that the people accountable for the smooth operation of these networks and systems
to this chart, and it makes their life a lot easier if different managers (people, this time) have a hold on dif
computers and network devices. In addition, such a network topology is often justified in terms of bu
different departments pay for their own equipment. Sometimes, it also makes technical sense, for in
when different departments are located on different floors or in separate buildings. In short, NSM
orthogonal to enterprise management.

In this section, we show that the first criterion of our enhanced taxonomy was derived by comparing the o
zational models in NSM with organization structures considered in enterprise management. To do
studied how delegation works in enterprises, how it maps onto organization structures, and how th
fundamental paradigms that we identified in NSM (delegation and cooperation) map into the enterprise

3.2.1.1 Organization Structures in Enterprise Management

Mullins [152] distinguishes eight ways of dividing work in an enterprise:

• by function (one department per function: whether in production, R&D, marketing, finance, or sale
staff share a common expertise within a department);

• by product (autonomous units, all functions are present in each unit);
• by location (geographically dispersed companies, subsidiaries abroad);
• by nature of the work to be performed (e.g., by security clearance level);
• by common time scales (e.g., shift work vs. office-hours work);
• by common processes (e.g., share a production facility in the manufacturing industry);
• by the staff employed (e.g., surgeons, doctors, and nurses in a hospital); and
• by type of customer or people to be served (e.g., home vs. export sales).

For Mullins, delegation can take place at two levels: enterprise or individual. At the enterprise level
depicted in the organization chart (at least it is supposed to be!) and relies on federal or functional dec
zation.Federal decentralizationis defined as “the establishment of autonomous units operating in their
market with self-control and with the main responsibility of contributing profit to the par
body” [152, p. 276]. As for functional decentralization, it is “based on individual processes o
products” [152, p. 276]. At the individual level, delegation is “the process of entrusting authority and res
sibility to others” [152, p. 276] for a specific task.

Weinshall and Raveh [241] identify three basic managerial structures: entrepreneurial, functiona
decentralized. Theentrepreneurial structureis typical of an organization recently created, fairly small, an
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growing fast. It must be managed in an informal and centralized fashion in order to survive. Everyth
centered on one person, the entrepreneur who created the enterprise. When organizations grow beyond
size, they must go through a major transformation. An entire set of rules by which the work is manage
carried out needs to be formalized, “in order to cope with the growing quantities of product and services
variety, and the complexity of the organization” [241, p. 55]. This is called thefunctional structure. The chief
executive officer directly controls the various functional heads, such as the production manager, the ma
manager, the sales manager, etc. The formalized and centralized nature of the functional structure m
some point, give place to thedecentralized structure. As a result of expansion, the number of manage
(people) grows far beyond the number that can efficiently report to a single person. At this stage, the o
zation must slow down its growth and introduce a new formal and decentralized structure, organiz
product/service line or by geographical area.

These three structures are uniform, in the sense that “all subordinates of the chief executive are structure
in an entrepreneurial, or a functional, or a product line or area structure” [241, p.188]. Beyond a certai
this uniformity cannot be maintained: the decentralized structure needs to change into amultistructure, i.e. a
federated managerial structure where “different building blocks may be combined into different kin
structures” [241, p. 189]. The Japanese, according to Weinshall and Raveh, were the first to operate the
organizations in multistructures, in a type of organization known aszaibatsu. The multistructure is inherently
flexible, in that it enables changes in the composition of the federated basic structures. This natural ev
as enterprises grow from the entrepreneurial structure to the multistructure is depicted in Fig. 5. The
values of the time on the x axis and the logarithm of the size of the organization on the y axis depend
sector of activity of the enterprise, and change dramatically from one type of industry to another.

To conclude with enterprise management, let us take a look at theevolutions and revolutions cycledepicted in
Fig. 6, an evolution trend that Greiner identified back in 1972. In retrospect, it is amazing to see how this
devised for enterprise management, suits NSM well. If the first three phases look similar to those identif
Weinshall and Raveh, the last two, coordination and collaboration, are incredibly visionary and predicted
decades ago what intelligent agents are now striving to achieve in NSM! It is also interesting to notice th
last crisis is left as unknown. Would the combination of hierarchical and cooperative paradigms be the u
solution? Or was the idea of collaboration so new in the enterprise world that Greiner, lacking hard evid
did not want to speculate on what could go wrong then?

Fig. 5. The effect of size on the enterprise structure
(adapted from Weinshall and Raveh [241, pp. 56–57])
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3.2.1.2 Delegation granularity

What do Mullins, Greiner, and Weinshall & Raveh tell us that could apply to NSM? First, all the manage
paradigms they consider are hierarchical, except for the last two phases described by Greiner, which are
terized by a mix of hierarchical and cooperative paradigms. Likewise, most distributed NSM paradigm
hierarchical today, and cooperative paradigms have only just begun to appear in hybrid structures sim
Weinshall and Raveh’s multistructures. Second, delegation schemes should evolve as enterprises grow
otherwise they become inefficient. Similarly, distributed NSM should rely on different distributed N
paradigms as networks grow in size and complexity. In this respect, the recent explosion of new distr
paradigms seems justified, because networks have grown by at least an order of magnitude in terms of
complexity since the SNMPv1 and OSI management architectures were devised.

Third, if there are many ways of dividing up enterprise organization structures, depending on the gran
of the analysis, most authors agree with Weinshall and Raveh that they all coalesce in three broad ty
function, by product or service, and by geographical area. We can see some similarities here between en
management and distributed NSM. The division of management domains by geographical area, for ex
makes sense in both worlds. But there are clear discrepancies too, since the basic entities are people in
and machines or programs in the other. The division by function only makes sense in the enterprise wo
instance, it takes many years for a person to become an expert in accounting or electrical engineering
accountant cannot be turned into an engineer overnight; conversely, a computer can be equipped w
competencies in a matter of minutes or hours, by simply transferring a few programs. We will show nex
Mullins’s federal decentralization and Weinshall and Raveh’s decentralized structure map onto ourdelegation
by domainscheme in distributed NSM, while Mullins’s functional decentralization and Weinshall and Rav
functional structure map onto ourdelegation by task scheme.

The fourth and most important thing we can learn from enterprise management is this common evolution
of which Greiner and Weinshall & Raveh give two different, but compatible, versions. There is a na
evolution of companies from centralized structures to decentralized ones, and from lightly decentr
structures (organized by function) to more decentralized ones with independent units (organiz
product/service or by geographical area), to even more decentralized structures based on federa
cooperation. In NSM terms, these four stages map easily onto the different types presented in our
taxonomy. The evolution which occurred in enterprise management over the 20th century suggests
same evolution may take place in NSM in the next decade or so. The time scale may be different, b
evolutionary trend toward more distributed and cooperative management is the same.

Fig. 6. The five phases of organization development
(adapted from Greiner [91, p. 39])
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Delegation by domain vs. delegation by task

How do the eight types of delegation identified by Mullins translate into NSM terms? We saw that deleg
by geographical domain applies equally well to both worlds, but what about the other types? In
Boutaba [29] identified a number of criteria to define domains in NSM. Resources are grouped into do
when they share a common feature. This may be the organizational structure (same department, sam
the geographical location, access permissions (resources accessible to a user, a group of users, or ev
the type of resource (same vendor, same management protocol), the functionality of the resource (print
system), or the systems management functional area [48]. Some items in this list resemble Mullins’s
although they were made in very different contexts. But both of these lists are far too detailed for our taxo
In NSM, we propose to group all possible delegation policies in just two types: delegation by domai
delegation by task.

Delegation by domainrelies on static tasks. The manager at level (N) assumes that the manager at level
knows all of the management tasks to be completed within its domain (N=1 for the top-level man
N=2,3,4... for the mid-level managers). In today’s networks, delegation by domain typically translate
delegation by geographical domain, to manage geographically dispersed enterprises. For instance
suppose that the headquarters of a multinational organization are located in Sydney, Australia. This en
cannot afford to manage its large subsidiaries in the USA, Asia, or Europe over expensive and relative
transcontinental WAN links. Let us consider its European subsidiary, located in Geneva, Switzerland
manager in Sydney delegates the entire management of the Swiss subsidiary to the manager located in
and expects it not to report that a local printer goes down, but to report that the number of errors per
exceeds a given threshold on the Switzerland-Australia WAN link. The point here is that the Aust
manager does not tell the Swiss manager what to report; instead, the Swiss manager is expected to m
decision by itself. In practice, this translates into a human being, the LAN administrator, hard-coding
Swiss manager what to report back to Sydney and how to manage the rest of the LAN. There is no mec
for the Australian manager to alter the way the Swiss manager manages its domain: it is acarte blanchetype
of delegation, whereby the Geneva-based manager has total control over its own LAN. Network manag
is not automated, and there is no way for the Australian network administrator to enforce a managemen
over all of its subsidiaries. Clearly, these are serious limitations.

Delegation by task, conversely, offers a finer-grained vision at level (N) of the management proces
occurring at level (N+1). As a result, the manager at level (N) can see the different tasks at level (N+1), a
as other tasks of its peers at level (N). Tasks need no longer be static and hard-coded in every manag
can also be modified dynamically. This idea was first applied to NSM with Management by Delegation,
saw in Section 3.1.6.1. Goldszmidt departed from the well-established notion of static tasks underlyi
centralized paradigm, and introduced the notion of dynamic tasks, transferable from the manager
subordinate agents. This paradigm was later generalized to transfer dynamic tasks from a manager at l
to a manager at level (N+1).

Microtasks vs. macrotasks

A manager at level (N) has several ways of driving a subordinate at level (N+1). With traditional appro
such as SNMPv1, the basic unit in the manager-agent dialog is the protocol primitive: the manager is
series ofget andset requests to the agent. The data manipulated are MIB variables, which are stat
defined when the MIB is designed. With large MIBs or large networks, this leads to the micro-manage
syndrome [88], which entails significant network overhead and a poor use of the resources of the ma
managed devices, and managed systems.

Recent approaches avoid this syndrome by splitting the management application into many different u
tasks, and by distributing these tasks over a large number of managers and agents, while still lettin
manager at level (N) be in control of what subordinates at level (N+1) do. The underlying mechanism o
distribution is independent of the tasks being delegated; it can rely on program transfer, message p
Remote Procedure Calls (RPCs), etc. The focal point for the management application is the granularity
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delegation, that is, the way the work is divided. Clearly, there is a wide spectrum of task complexities, ra
from the mere addition of two MIB variables to the entire management of an ATM switch. We propo
distinguish only two levels in our enhanced taxonomy: microtasks and macrotasks.

A microtask(µ-task) simply performs preprocessing on static MIB variables, typically to compute statisti
is the simplest way of managing site-specific, customized variables. There is no value in these dataper se,
which still need to be aggregated by the manager one level up. If contact with the manager is lost, statis
still gathered, but there is no way for the subordinate to take corrective action on its own. In the cas
macrotask(M-task), the entire control over an entity is delegated. A macrotask can automatically re
network device, or build an entire daily report, etc. If contact is lost with the manager one level up, corre
actions can be automatically undertaken.

3.2.2 Other Criteria for Our Enhanced Taxonomy

In previous work [130], we studied the features that designers of management applications want from s
distributed management paradigms. We identified a number of criteria and showed that in addition to in
erability and scalability, which are already addressed by weakly distributed management paradigms, t
most critical criteria for designers are (i) the semantic richness of the information model, and (ii) the deg
automation of management allowed by a paradigm.

3.2.2.1 Semantic Richness of the Information Model

The semantic richness of the information model of a management application is an indication of the exp
power of the abstractions used in this model. It measures the facility for designers of management appli
to specify a task to be executed by a manager or an agent. The higher the level of abstraction used to
management application, the higher the semantic richness of the information model, and the easier
someone to build and design a management application.

It is well known in cognitive sciences that computers can easily be programmed to deal with low-
abstractions, but cannot easily manipulate higher level concepts; people, conversely, find it easier to th
high level of abstraction, but are easily overwhelmed by too many low-level concepts. This is also tru
NSM administrators, particularly when they design large or complex management applications. Unfortun
management architectures have traditionally offered fairly poor APIs, thereby constraining designers to
management applications with low-level abstractions.

In this section, we show that this limitation has been addressed recently by some of the new mana
paradigms. Today, designers of management applications have the choice among three types of abstra
build an information model:

• managed objects, offering low-level abstractions
• computational objects, offering high-level abstractions
• goals, offering very high-level abstractions

Let us review these three types of abstractions. We will introduce and compare the concepts of protoc
and programmatic API, and will identify a new criterion for our enhanced taxonomy: the degree of sp
cation of a task.

Managed objects

Both the SNMP and the OSI management architectures offer aprotocol API. In these architectures, there is
one-to-one mapping between the communication model and the information model, to use the ISO/
terminology [50]. The semantics offered to the designer of a management application—that is, the k
entities and actions that can be defined in the information model and constitute the building block
management application—are constrained by the communication protocol primitives used undernea
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protocol is not transparent to the application; this breaks a well-established rule in software engineerin
instance, with the APIs available in the different SNMP architectures, administrators have to think in ter
SNMPget  andset  when they write a management application (e.g., with Perl [238] or Tcl [160] script

We call this themanaged-objectapproach, as both the IETF and the ISO use this term to describe a unit o
information model in their respective management architectures. All technologies based on centrali
weakly distributed hierarchical paradigms share this approach. When a management application is d
with managed objects, a protocol is automatically imposed; the managed objects must live in full-blown
(in the case of TMN, these agents need to implement a large part of the OSI stack, including especially
and CMIS); and the manager-agent style of communication is imposed. These are very strong con
imposed on management-application designers.

We stress that the identity between the communication and information models has nothing to do w
protocols themselves. It is implicit in the SNMP and OSI management architectures. The limitations en
by this approach reflect on the apparent limitations of some technologies. In the recent past, some Jav
management platforms used a simple port of the very basic SNMPv1 API developed at Carnegie M
University in the early 1990s (thesnmpget andsnmpset C programs). But nothing inherent in Web-base
management prevents Java-based technologies from using richer APIs that deal with higher-level abstr

To address this, some people developed richer APIs to managed objects. One of the authors prop
API [254] based on the Structured Query Language (SQL) to leverage the natural mapping between
tables and tables found in relational databases. One advantage of making SQL queries from the mana
application, rather than SNMPget ’s, is that table handling in SQL is less tricky than SNMP-table handlin
(SNMPv1 is fairly poor at dealing with sparse tables.) But SQL-based APIs have not encountered much s
so far, probably because relational databases are too slow and too demanding in terms of resources to
widely available in agents.

Computational objects

Protocol APIs for distributed systems are based on ideas that began to be criticized in the late 1970s a
1980s, in particular by the software-engineering research community which was then promoting the c
of objects. Since the mid-1980s, this community has been advocating the use ofprogrammatic APIsinstead,
which have been one of the selling points of the object-oriented paradigm for distributed systems. Wit
APIs, any object belonging to a distributed system is defined by the interface it offers to other objects
distributed object model is independent of the communication protocol: it only defines a program
interface between the invoker and the operations (methods) supported by the invoked object
programmatic API relies on a protocol at the engineering level, but this protocol is completely transpar
the management-application designer.

We call this thecomputational-objectapproach, with reference to the terminology used by the ISO for O
and ODMA. In this approach, designers of management applications can use class libraries that offer hig
views of network devices and systems. Few constraints are imposed on the design: objects may be dis
anywhere, they need not live in the specific agents that implement specific protocol stacks. The only man
stack is the one that implements the distributed processing environment. No specific organizational m
imposed or assumed. The management application relies solely on object-to-object communicatio
administrator may define site-specific classes and use them in conjunction with libraries of classe
implement standard MIBs.

The computational-object approach is the main strength of many recent management technologie
notably distributed object technologies. In NSM, it accounts to a large extent for the recent success of
the IP world. Strangely enough, it is not responsible for the even greater success of CORBA in the telec
nications world: CORBA has mostly relied on a managed-object approach so far. Telephone switches a
complex to manage, considerably more than IP routers. The sole fact that, with CORBA, the millions o
of code necessary to manage a switch could be written in parallel by many independent programmer
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different companies, in different languages, was in itself a blessing. And dealing only with well-kn
managed objects was a guarantee of interoperability. Even though CORBA objects could have co
higher levels of abstraction than OSI managed objects, the telecommunications industry has been happ
to simply translate managed objects into CORBA objects. Will the success of Java-based managemen
IP world suggest new ways of using CORBA in telecommunications in the future?

Goals

The third type of abstraction that may be used in information models is thegoal. In Section 3.1.7, we saw tha
cooperative paradigms are goal-oriented. The management application is split into tasks, which are m
with very high-level abstractions and partially specified with goals. Once these goals have been sent
manager to the agent, it is up to the agent to work out how to achieve these goals.

This approach is fundamentally different from the one taken by weakly or strongly distributed hierarc
paradigms, whereby the management application is broken down into fully specified tasks. Wheth
implementation of the task relies on calls to communication-protocol primitives or method calls on objec
agent is given by the manager a step-by-stepmodus operandito achieve its task. With strongly distributed
cooperative paradigms, it is not.

Goals may be specified via a programmatic API, a protocol API, or both. They do not require an object-or
distributed system to be used underneath. But the coupling of agents and objects looks promising in
Knapik and Johnson [120] describe different styles of communication between intelligent ag
object-oriented agents rely on remote method calls, whereas plain agents rely on communication lan
such as KQML [75]. The primitives (performatives) of KQML are considerably richer than those of SNMP
CMIP, thus goals are less limited by protocol APIs than managed objects.

To date, goals represent the highest level of abstraction available to management-application designe
rely on complex technologies known asintelligent agents(see Section 3.1.7), which often support some kin
of inference engine and pattern learning, and are generally not available on managed systems or n
equipment. There is still a large market for simpler technologies that support computational objects, o
simpler technologies that support only managed objects. But goals are a type of abstraction that m
possible to manage very complex networks, systems or services, for which simpler abstractions are no
They are particularly well suited to support negotiation, load balancing, or resource usage optimization

Degree of specification of a task

Managed objects and computational objects rely on fully specified tasks, whereas goals rely on pa
specified tasks. In other words, the semantic richness of the information model and the degree of speci
of a task are tightly coupled. We decided to retain the latter as a criterion for our enhanced taxonomy, b
it shows two very different ways of specifying tasks in a management application. But we must keep in
that these two criteria are not independent.

management-application unit
(= information model abstraction)

managed object computational object goal

abstraction level low high very high

where does it live? MIB object intelligent agent

how do we access it from the
management-application code?

management protocol
primitives (SNMP,

CMIP, HTTP)
method call

1) agent communication
language primitive (KQML)
2) method call

degree of specification full full partial

Table 2. Semantic richness of the information model
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3.2.2.2 Degree of Automation of Management

Until a few years ago, the main drive behind the automation of management was to relieve network and s
support staff from the burden of constantly staring at GUIs and of solving problems manually as they
As systems and networks grow yearly in size and complexity, administrators become increasingly ea
automate their management:ad hocmanual management is not sufficient anymore. Yemini claimed a f
years ago that “management should pursue flexible decentralization of responsibilities to devices and m
automation of management functions through application software” [250, p. 28].

Today, the need for more automation of management is also determined by two factors: the deregulatio
telecommunications industry worldwide and the explosion of new services offered to end-users. First, t
fierce competition in the telecommunications market. Monopolies (or near monopolies) have given wa
plethora of competing network operators, service providers, service traders, content providers, etc.
service provision today is likely to cross several networks, managed by different companies, with equi
from several suppliers [3]. Second, more and more services are offered: mobile telephony, ele
commerce, video on demand, videoconference, teleteaching, telemedicine, etc. Videoconferenc
example, used to be booked by fax on anad hocbasis. End-users would contact support staff several day
advance; support staff would fax the single provider on the market (the local network operator); they
receive a reservation confirmation and an invoice within a day or so, sometimes less; and finally, they
inform the end-user that the booking had been made. This process was time consuming, very inefficie
error prone. Today, end-users want to deal directly with a service trader via a user-friendly GUI, get th
possible deal for a videoconference scheduled at most a couple of hours in advance, and make an e
transaction with a click of a mouse. Tomorrow, videoconferences will not be scheduled but will be provis
immediately, like telephone today. Such demands are much more stringent than they used to be, and
considerably more work than mere faxes. As the number of such transactions grows within enterprise
once a month to once an hour to once a second), and as the demands become more stringent, manual
becomes less often an option. Service management must be automated to offer the online GUI that the e
expects. Network management also has to be automated, e.g., to handle resource reservations and
rerouting. Eventually, systems management must in turn be automated, e.g., to provide for automatic f
(hot stand-by) for video-on-demand servers.

As we show in Fig. 7, microtasks poorly automate distributed NSM; but macrotasks are very good at it, be
they enable remote agents to take corrective actions independently from the manager. Intelligent age
typically used in negotiation, e.g., to get the best deal for a cross-Atlantic videoconference from com
service providers. But they are also good at dealing with the dependencies between service, netwo
systems management. To summarize the need for automation, the larger and the more complex the n
or the systems, the more automated the management application should be.

3.2.3 Synthetic Diagram

Our enhanced taxonomy is now completed. It consists of the four criteria presented in the previous se

• delegation granularity
• semantic richness of the information model
• degree of automation of management
• degree of specification of a task

These criteria are not independent. The semantic richness is closely linked to the degree of specificat
task, as is the delegation granularity to the degree of automation.

Note that in Fig. 7, the axes take discrete values, not continuous values. In other words, the relative pla
of different paradigms in the same quadrant is meaningless.
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Note that we do not list all existing technologies in our enhanced taxonomy. For strongly distrib
management, for instance, only paradigms are depicted. The reason for this choice is threefold. First, w
to keep this taxonomy readable. Second, technologies evolve so quickly, and this market is currently so
that any such effort would be doomed to fail: such information would be obsolete as soon as it is pub
Java, for instance, has blurred the boundaries between mobile code and distributed objects in the rec
Third, we believe that the criteria we selected and presented are easy to understand, and that potential
such technologies should be able to decide where to locate a given release of a given technology in Fig.
on a short technical description of it.

By counting the quadrants that are populated in Fig. 7, we see that our enhanced taxonomy consists
types:

• no delegation with low-level semantics;
• no delegation with high-level semantics;
• delegation by domain with low-level semantics;
• delegation by domain with high-level semantics;
• delegation by microtask with low-level semantics;
• delegation by microtask with high-level semantics;
• delegation by macrotask with low-level semantics;
• delegation by macrotask with high-level semantics; and
• delegation by macrotask with very high-level semantics.

Fig. 7. Enhanced taxonomy of NSM paradigms
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3.3 Summary

In this chapter, we proposed two taxonomies to classify all major management paradigms and techn
available to date for managing IP networks and systems. In oursimple taxonomy, all NSM technologies were
classified according to their underlying organizational model. We grouped them into four different typ
NSM paradigms: (i) centralized paradigms, (ii) weakly distributed hierarchical paradigms, (iii) stro
distributed hierarchical paradigms, and (iv) strongly distributed cooperative paradigms. Faced with doz
commercial or prototype NSM technologies on the market today, with new ones appearing every m
designers of management applications run the risk of being overwhelmed by the abundance of choic
this simple taxonomy, they now have a simple tool to find out quickly which management paradigm
behind a given technology.

The purpose of ourenhanced taxonomywas to go beyond the sole understanding of the management para
by providing criteria to actually select a paradigm first, and then a technology. To this end, we identified
criteria: (i) the granularity at which the delegation process takes place (by domain, by microtask,
macrotask); (ii) the semantics of the information model (managed object, computational object, or
(iii) the degree of automation of management (high, medium, or low); and (iv) the degree of specificatio
task (full or partial). This enhanced taxonomy complements the previous by being more practical. It gives
arguments for designers of management applications to select one paradigm rather than another, bas
issues they face during the analysis and design phases.
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Chapter 4

ANALYSIS OF THE SOLUTION SPACE

Our objective in this chapter is to analyze the solution space described in Chapter 3 and draw some hig
conclusions for our management architecture. In particular, we explain why we selected Web technolog
weakly distributed hierarchical management in our proposal.

This chapter is organized as follows. In Section 4.1, we show that there is no single winner among
solutions described in Chapter 3, and that different solutions are best suited for different management t
Section 4.2, we highlight that it is important that administrators do not focus immediately on select
technology. In Section 4.3, we perform a reality check on the different technologies and paradigms inves
in Chapter 3. The issues of support and technical maturity lead us to eliminate cooperative managem
Section 4.4, we explain why themy-middleware-is-better-than yourssyndrome leads us to rule out th
solutions based on distributed object-oriented middleware. In Section 4.5, we investigate why mobile c
not ready yet, and why we need to prepare for its future integration. In Section 4.6, we come to the conc
that the distribution of NSM should rely on a weakly distributed hierarchical management paradig
Section 4.7, we decide to adopt Web-based management for the next management cycle. Fina
summarize this chapter in Section 4.8.

4.1 No Win-Win Solution

The first conclusion that can be drawn from our taxonomies is that there is no win-win solution for the
management cycle. Depending on the size and complexity of the network, depending on the natu
complexity of the system, application, service, or policy to manage, some paradigms are better suite
others. This diversity gives us flexibility. Certain paradigms, e.g. mobile code, encompass a large num
technologies and can be further subdivided into several paradigms. This yields a wide variety of fine-g
designs. Designers should thus no longer feel constrained when they model management applications.
all available paradigms, they should select the one that allows them to model the problem at hand in th
natural way. The days of protocol APIs are over, when the focus was on the nuts and bolts of
management applications can now rely on programmatic APIs, where the focus is on software develo
and user friendliness.
61
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To illustrate that different solutions are best suited to different tasks, let us study a simple scenar
illustrates the growing management needs of an enterprise over time. In this scenario, we are concern
with the design qualities of the management paradigms. Their practicality will be investigated in subse
sections.

In a small company, to manage a small LAN or a distributed system comprising a dozen machines or so
is no need for an expensive technology offering a high level of automation with computational objects, o
goals: a less expensive solution based on managed objects and microtasks is sufficient. Cen
management is suitable in this case.

Over time, this enterprise develops and opens branches abroad. It is now a geographically dispersed
enterprise, but still has fairly simple needs (data network, no multimedia services). A weakly distributed h
chical technology is well suited. The required degree of automation is medium, and managed obje
sufficient to deal with simple needs. RMON is a good candidate for monitoring and performance manage
When the bandwidth of the WAN links connecting the main office to the remote offices (or, at a larger s
the headquarters to the subsidiaries) becomes too expensive, it is time to migrate from centralized to
distributed hierarchical management: each subsidiary is equipped with a local management platform.

As people in this enterprise begin using multimedia services on a more regular basis, there comes a tim
the semi-automated handling of reservations and bandwidth allocations is no longer an option: a higher
of automation is required. Inexpensive, distributed object technologies usually suffice. But some cases
better handled by intelligent agents. Typically, when confronted by a new service, an intelligent agent can
a decision automatically, without any human intervention, based on what it learned in the past with
services. For instance, it can make a trade-off between the (usually too high) requirements set by
end-user and the cost that the user’s department is willing to pay for reserving network bandwidth. M
intervention by an administrator is performed afterward only when the trade-off turns out to be poor.

As this enterprise develops, the number of entities to manage grows so large that the management ap
becomes too complex and cumbersome. It becomes difficult to use, awkward to modify, and any chang
cause a new problem due to unforeseen side-effects. The semantic richness of the information mode
poor: managed objects have become inadequate. Even for simple day-to-day management tasks, it is n
to use computational objects instead. As new services are adopted by users, new intelligent agents a
on anad hoc basis.

The midsize company has now become a large enterprise. Intelligent agents are no longer restricted to
with novel services. They can be used for complex tasks such as distributed pattern learning or data
For example, they can dynamically learn the peak and slack hours of a VPN overlaying an ATM networ
automatically readjust the bandwidth rented from the service provider in order to reduce the running co
the enterprise. Intelligent agents can also learn dynamically at what time of the day voice-over-IP an
traffic must be routed over different WAN links to guarantee the required QoS, and when it becomes po
to route them through the same WAN links (slack hours); this, too, allows the enterprise to temporaril
less bandwidth and thus to reduce its bill.

Later, this enterprise is bought by a large multinational with tens or hundreds of thousands of managed s
and devices. The degree of automation of management then becomes critical. This time, day-to-da
should entirely rely on distributed objects, and managed objects should be banned from interactive APIs
is no way the operators can find the time to go down to instrumentation types of abstraction to underst
correct a problem: they must have only high-level decisions to make. Clearly, if day-to-day NSM is al
based on distributed objects prior to the merger, the integration of a smaller management application
larger one is considerably easier.

Finally, in the large multinational, the number of requests for high-level services (e.g., multimedia se
requiring bandwidth reservation) gradually increases. So does the diversity of the services that are us
daily basis. The number of specialized intelligent agents is now high, and it no longer makes sense to s
this knowledge. This calls for elaborate multi-agent systems, whereby a large number of intelligent a
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cooperate in order to optimize network-bandwidth usage and reduce the number of reservations tha
have, but were not, granted. Note that no one has already tested such systems on a large scale in NS

We hope to have highlighted one important thing in this series of examples: the relative weights given
administrator to the different selection criteria of our enhanced taxonomy give a clear indication of th
suited management paradigm.

4.2 Do Not Focus on the Technology Immediately

The second conclusion that can be derived from our enhanced taxonomy (see Fig. 7, p. 58) is that ther
a unique relationship between a quadrant, a management paradigm, and a technology. Several paradig
over multiple quadrants and therefore offer different degrees of automation, or different levels of sem
richness of the information model. Similarly, a single technology can support different paradigms, and ca
offer different degrees of automation, different delegation granularities, different degrees of specificatio
task, or different levels of semantic richness.

The practical consequence of this remark is that selecting a technology solves only a fraction of the prob
although many administrators today focus mostly on this step. Initially, the most important is to determi
criteria of our enhanced taxonomy that are the most relevant to a specific enterprise. Once this has bee
the management paradigm can easily be derived from our enhanced taxonomy. Once these two steps h
made, it is time to select a technology with our simple taxonomy.

This is illustrated by the following example. Convinced by an advertising campaign, an administrator de
that mobile code is the solution to manage his/her network. Before delving into the design of a new, po
management application, he/she decides to investigate the market of mobile-code technologies. All v
claim to sell the best product, so what technology should he/she choose? With our enhanced taxono
administrator can see at a glance that under the same name, he/she can actually purchase four very
types of technologies, because mobile code spans over four quadrants. Some technologies offer lo
semantics, others high-level semantics; some offer a high degree of automation of management, o
medium degree; some support delegation by microtask, others by macrotask. The administrator al
immediately that mobile code encompasses three finer-grained paradigms: remote evaluation, code on d
and mobile agents. In the end, our taxonomies allowed this administrator to realize that mobile c
multifaceted, and to choose the technology offering the best value-for-money according to the relative w
that he/she gave to the four selection criteria of our enhanced taxonomy.

4.3 Reality Check: Support and Technical Maturity

In our two taxonomies, we classify and compare many different technologies and paradigms that can b
in NSM. The fact that these potential solutions are all presented side by side does not imply that they are
ready to be used in industry, let alone appropriate for a large market such as NSM. We structured the s
space in technical terms, based on the elegance and promises of the designs rather than the feasibili
solutions. But in order to select an appropriate solution for the next management cycle, it is important to
candidate solutions go through a reality check. Among the technologies we described in the solution
many lack proper support and are confined to the research community. Some do not even go beyond th
of concept... To deploy a solution in a production environment, as opposed to prototyping in a te
environment, it does not suffice that the design be technically appealing: the technology itself must b
tested and well supported. In addition to its technical qualities, the solution retained for the next manag
cycle should therefore exhibit two important qualities: support and maturity.

Supportincludes commercial and technical support.Commercial supportis necessary in almost all production
environments. If a management application does not work, the only guarantee of the customer is
supplier be legally bound to delivering quality software. Many solutions presented in Chapter 3 ar
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commercially supported, because they are research prototypes simply demonstrating a good idea.Technical
supportis equally important; it is primarily about maintenance. In case a major problem occurs, the cus
must be able to receive technical support by its supplier’s support team. This, too, is mandatory in a prod
environment. As far as the management architecture is concerned, we should therefore select a solutio
commercial and technical support are available.

To put it simply, technical maturitymeans that a solution is not appropriate until it has been sufficien
debugged by others. If the provider has not yet acquired enough experience by working with other cust
the management platform is not really a commercial software, it is rather a prototype for beta-test field
And many enterprises do not have the skills, manpower, and organization to enroll as a beta-test field s
important aspect of maturity is that it takes time before a technical support team becomes efficient: th
needs to be trained through a variety of problems at many sites and a lot of trial-and-error stum
Consequently, the market for the paradigm that we select for the next management cycle shoul
commodity market: it would be too hazardous to select a technology that is still confined to a niche ma

These two criteria, support and technical maturity, lead us to eliminate all the technologies that per
cooperative management. The DAI community is still at an early stage of research with respect to inte
agents and multi-agent systems. Many technological problems are still unsolved. For instance, it is no
what language should be used to communicate between agents (KQML, ACL, etc.), or what format sho
used by the agents to exchange “knowledge” (KIF, etc.). In the specific case of NSM, it is not clear at al
ontology should be used for managing IP networks and systems. Worse, it is not even clear what pro
should be exhibited by a “good” agent-communication language, a “good” ontology, etc. All of these prob
are very exciting to study, but it will take years before the DAI community builds thecorpusof knowledge
necessary for the cooperative-management paradigm to be usable in application domains. We are still
from a commodity market. Until this level of maturity is reached, it remains unrealistic to base the manag
architecture of the next management cycle on intelligent agents, multi-agent systems, or more generally
cooperative management paradigm. The slow pace at which the FIPA consortium is progressing in the te
munications application domain is an indication that these problems are not yet well understood and n
to solve.

In short, WIMA should be based on a management paradigm for which there are commodity technologi
are both technically mature and well supported.

4.4 TheMy-Middleware-Is-Better-Than-Yours Syndrome

There is a fundamental problem with using object-oriented middleware in NSM. This problem is well pic
by the following analogy with viruses:

The my-middleware-is-better-than-yourssyndrome is a disease that has spread in the software
industry in the second half of the 1990s. It is known to have already infected most middleware
platforms on the market, be they based on open standards such as CORBA and Java, or o
proprietary solutions such as Microsoft’s DCOM. The symptoms of this syndrome are common
to all well-known forms of infection:

• Only consenting individuals can be infected.
• Once infected by a middleware, an individual is obliged to use it to communicate with all
other individuals because it immediately loses all its previous communication skills.

• Once infected, an individual takes time to learn to live with a middleware.
• Unlike what happens with most diseases, an individual can replace its middleware with
another at any time. But because of the previous point, this should be avoided.

• Once an individual is infected, its middleware quickly takes up most of its CPU, memory, and
disk resources. A middleware likes to have a large footprint on individuals.

• A middleware is very exclusive: to communicate with an infected individual, you must have
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already caught the same disease. This trait is the sheer result of adaptation through darwinian
selection: the disease spreads by consent, so there must be an incentive for individuals to
voluntarily get infected!

• A middleware loves gambling: you must be infectedbeforeyou know what middleware will
be supported by the majority of the population in the future.

• A middleware is antisocial: it prevents individuals from communicating with a large
proportion of the population (that is, the individuals infected by another middleware).

• A middleware is merciful: if an individual cannot get infected but really needs to
communicate with an infected individual, it can use a translation service calledgateway. This
service is slow, cumbersome to use, and loses some semantics. But how could you possibly
argue once you have been pardoned...

In other words, middleware packages, especially in the object-oriented market, have largely diverge
their initial objective: to allow all machines to interoperate in an open way, with a high level of semantic
standard interfaces, with a standard protocol, through an object-oriented DPE. Due to diverging comm
interests, the middleware market has been segmented, with different vendors or consortia trying to justi
their middleware is better than the others. Today, when you choose a middleware package, you must
your camp: CORBA, Java, DCOM, etc. And of course, you can make the “wrong” choice—that is, the m
can coalesce around another middleware two years after you have invested a fortune in the “w
middleware. We believe that this situation will last a long time: there will be no winner in the middlew
battle, at least for many years. As a result, a management architecture cannot reasonably rely on one p
middleware to be available on all network devices and systems worldwide.

The two messages that we try to capture in the catchphrase “themy-middleware-is-better-than-yours
syndrome” are (i) the fight between vendors who think they know better, and (ii) the risk factor for custo
because they must choose their camp.

Another problem shared by most middleware platforms is their large footprint on the agent. In the te
world, this is not very important because the agents are usually not resource bounded: the cost of addin
memory or processing power to a $1,000,000 telephone switch is negligible. In Section 3.1.6.2, we men
the growing acceptance of CORBA as the standard object-oriented middleware in the telecom world. No
in the telecom world, agents can even afford to support several DPEs simultaneously (although they
always easy to integrate).

In the IP world, conversely, the footprint of CORBA or J2EE (Java 2 Enterprise Edition, based on EJBs)
agent is a no-no. Even J2SE (Java 2 Standard Edition, based on standard Java) or a mere JVM are no
an option. In the IP world, most agents have limited resources available to management. The cost
middleware is also an important issue in the IP world: when a simple network device costs less than $10
do not want to double its price just to pay for the CORBA licence!

In conclusion, for WIMA, high-profile, object-oriented middleware platforms such as CORBA, Java
DCOM are not an option. We must limit ourselves to a lower-profile solution, with a low footprint and a
cost per agent.

4.5 Mobile Code and Security

Mobile code has received a lot of attention in the recent years, as we explained in Section 3.1.6.1. So
NSM, we have not really seen a good reason for using mobile code instead of more standard technolog
a case-by-case basis, remote evaluation, code on demand, or mobile agents can perform better
client-server model that underlies most other solutions. But we still have not found a management task
always better performed by mobile code.
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The situation is very different in service management, where mobile code has proved to be very use
dynamic service provision, especially in the area ofactive services[36]. It is currently consideredtheway to
go by the people who believe that we cannot possibly have the same middleware on all machines wo

The main problem with mobile code is security. This is the main obstacle to its wide deployment. The
actually two different problems: we must secure the host from a malicious code [179] and the code f
malicious host [116]. In integrated management, the first problem is the one that is generally considered
But both need to be solved before we can use mobile code in a new, general-purpose management arch
These security problems have proved harder to solve than people initially expected. For a good introdu
the range of issues at stake, see Vigna [229].

Because these security issues are still unsolved, it is too risky to base the next management cycle on
paradigm. Software engineers first need to understand how to secure mobile code in general. Then
specialists will be in a position to leverage it in management. But since it is very likely that some peopl
use mobile code for service management in real life, it seems appropriate to devise a management arch
that can easily integrate mobile code technologies as soon as they have been secured.

In WIMA, we did precisely that. Our organizational and communication models do not require mobile c
but we offer a simple means of integrating it with XML.

4.6 Distribution

As we saw in Chapter 3, the way to address the scalability issue in SNMP-based management is to di
management. In Section 4.3, we ruled out cooperative management. So we are left with two altern
weakly and strongly distributed hierarchical management (see p. 40).

In Section 3.1.6, we grouped strongly distributed hierarchical management paradigms into two cate
mobile code and distributed objects. We explained in Section 4.4 that because of
middleware-is-better-than-yourssyndrome, we must eliminate distributed objects. We cannot expect all ag
worldwide to support the same smart middleware. In Section 4.5, we concluded that mobile code is a pro
paradigm, but it cannot be used as the basis for the next management cycle until security issues are co
understood and solved—and most of the research community expects this to take some time.
distributed objects nor mobile code are a viable option; we therefore eliminate strongly distributed hierar
management.

In conclusion, WIMA should be based on weakly distributed hierarchical management. At first, this m
appear to be a setback, if we compare this solution with the more advanced solutions that were investig
Chapter 3. But as we describe, chapter after chapter, all the features supported and all the SNMP proble
are solved by our management architecture, we hope to convince the reader of the relevance of this d

4.7 Web-Based Management

Our simple taxonomy gives two examples of weakly distributed hierarchical management paradigms:
and RMON. TMN is not appropriate in the IP world, as we mentioned already. As for RMON, it is too lim
for what we envision to do. We therefore ruled out both of these solutions.

In the end, we decided to devise a new weakly distributed management paradigm that does not appea
taxonomies. WIMA is a form ofWeb-based management. This expression groups together different types
management paradigms, centralized or distributed, which all share the same characteristic: they u
technologies. This explains why Web-based management does not explicitly appear in our simple taxo
it does not qualify for the criterion retained to build this taxonomy. It does not constitute a typeper se, but
overlaps several types.
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The scope of Web-based management will be precisely defined in Chapter 5. This will allow the reader to
the WIMA’s innovations that are detailed in the subsequent chapters. The distribution aspects of WIM
be described in Section 6.1.4.4 and Section 6.3.5.

4.8 Summary

In this chapter, we analyzed the solution space presented in Chapter 3. In Section 4.1, we saw that the
win-win solution: different solutions are best suited to different management tasks. We studied a se
examples where different management paradigms are considered solely with respect to their design e
without taking into account any deployment constraints. In Section 4.2, we highlighted a frequent prob
NSM: administrators generally focus on the selection of a technology rather than a management paradig
two taxonomies can help solve this problem. In Section 4.3, we explained that cooperative manag
technologies do not survive the reality check of support and technical maturity. In Section 4.4, we des
themy-middleware-is-better-than-yourssyndrome and explained that it prevents us from using solutions ba
on object-oriented middleware, especially CORBA and Java. In Section 4.5, we investigated the case of
code and concluded that security issues are not yet understood well enough, thus it is too risky to bas
management architecture on this paradigm. But mobile code will probably be used in service managem
the future, e.g. for dynamic service provisioning, so it is a good idea to pave the way for it in NSM
Section 4.6, we investigated the distribution aspects of the new management architecture and selected
distributed hierarchical management. Finally, we concluded in Section 4.7 that the best candidate for th
management cycle is Web-based management.
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Chapter 5

STATE OF THE ART IN WEB-BASED MANAGEMENT

Web-based management is an ill-defined concept, because it has greatly evolved over the past year
people confuse it with the use of a Web browser to perform a management task—a very simple approa
we call browser-based management. The extent of this confusion is such that Harler entitled his bo
“Web-Based Network Management: Beyond the Browser“ [92], to stress that there is more to Web-
management than a mere Web browser. Other people confuse Web-based management with WBEM,
of the considerable marketing hype that plagued WBEM in its early days, before its takeover by the D

The state of the art presented in this chapter highlights the multiple facets of Web-based management
increasing richness of the solutions that are based on it. In its full meaning, Web-based management
leveraging any Web technology in any area covered by integrated management. In this dissertation, we
our scope to NSM. The Web technologies considered here are Web browsers, HTTP (HyperText T
Protocol), HTML (HyperText Markup Language), XML (eXtensible Markup Language), CGI (Comm
Gateway Interface), Java applications, Java applets, and Java servlets. Proprietary technologies
Microsoft’s ActiveX and Active Server Pages are not presented here: compared to their standard count
they add no general-purpose features but simply make it easier to work in a specific proprietary enviro
For the sake of completeness, we include Java RMI (distributed Java), although we already ruled o
solution for the next management cycle in Section 4.4.

The remainder of this chapter is organized as a taxonomy based on the type of Web technologies supp
the manager and the agent. These types are sorted by increasing order of sophistication and complexi
manager and the agent. Initially, we describe them in chronological order, as the first uses of Web techn
in NSM were also the simplest. Later, we depart from history because some advanced solutions were p
several years before less advanced solutions were adopted by the market. In Section 5.1 through Sec
we introduce different techniques called browser-based metamanagement, browser-based managem
three-tier management. They all work with plain SNMP agents and are characterized by a growing so
cation of the manager. In Section 5.4 through Section 5.6, we detail HTTP-based management, XML
management, and distributed Java-based management. These three types correspond to an increasing
cation of the agent, and thus of the agent-manager interactions. In Section 5.7, we give references
ever-growing number of commercial products in this active field. Finally, we summarize this chapt
Section 5.8.
69
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5.1 Browser-Based Metamanagement

In our view, the epoch of Web-based management was is 1993, when NCSA Mosaic began spreading
the planet [247, pp. 12–14]. This year is often considered the outset of the Web, when it left a closed ci
initiated researchers and reached out for the world. Early Web technologies (that is, Web browsers,
HTML, and CGI) were used in NSM from almost day one. For instance, the author used them in
environment in early 1994, and in a production environment from mid-1994. Discussions in Web-re
mailing lists and Usenet newsgroups showed that many people were doing similar experiments at th
time. Web technologies did not actually replace SNMP-based management, but rather complemente
collateral tasks—what we callmetamanagement. Browser-based metamanagement, which we will no
describe, is typical of the early days of Web-based management. It is characterized by the interactive u
Web browser for performing metamanagement tasks.

5.1.1 Online problem reporting, online usage reports

In a first phase, administrators learned how to use the early Web technologies by developing a few
HTML pages and CGI programs (scripts or binaries). For instance, by writing a dozen HTML forms
interfacing them with a simple database via CGI programs, one can standardize and automate p
reporting and troubleticketing. This significantly simplifies and decreases the work of calldesks [151]. To
another example, network and systems usage is often monitored with daily, weekly, monthly, and
reports providing usage statistics. The goal is to detect in advance that a resource is used close to its c
so as to increase this capacity (or reduce the need for this resource) before problems arise. This is a sim
well-known form of proactive management. With Web technologies, instead of printing these usage re
an administrator can put them online (e.g., in the form of Postscript files) on an open or restricted-a
internal Web server, and make them accessible via simple HTML forms with option menus, multiple-c
boxes, etc. Once in electronic format, usage reports can automatically be archived on tape: it is no
necessary to store print-outs in binders. Clearly, this saves a lot of time and space.

Note that all these tasks could already be done in the past with expensive, proprietary solutions. Bu
technologies enabled administrators to do it themselves, simply, at a low cost, in a very short time. An
allowed users to access the same data from a PC, a Mac, a Unix workstation, etc.

5.1.2 Online management procedures, online documentation

In production environments, operators (that is, the staff constantly monitoring the health of the network
systems, 24 hours a day, 7 days a week) typically follow well-defined management procedures to iden
cause of a problem and correct it. This is mandatory in heterogeneous environments where no single
can know by heart how to troubleshoot thousands of problems on different types of equipment from dif
vendors. Web technologies gave administrators the opportunity to transfer online all the manag
procedures that used to be printed on paper and kept in binders, filling up entire shelves. This requi
transcription of thousands of files (the originals of the procedures) into HTML pages, but it did not inv
writing elaborate applications. The indexing system used by the operators to work their way throug
procedures remained the same. But instead of flipping through many binders of procedures, the opera
online access to all the procedures from their own machine. Their navigation through the procedures c
facilitated by using hypertext navigation or search engines. Once the procedures had been converted to
the search engine allowed operators to identify and retrieve a procedure by typing in a few keywords—a
could be implemented in only a few hours with WAIS (Wide-Area Information Servers [203]).

At about the same time, equipment vendors began distributing their documentations in electronic
instead of paper, e.g. on CD-ROM (Compact Disk - Read-Only Memory). By putting these document
online, administrators made them easier to access. But they also made it possible to embed hyperlink
relevant manual pages within the HTML procedures.
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5.1.3 Online troubleshooting assistance

In a third phase, administrators helped operators identify the cause of routine problems with online tr
shooting assistance. This involved writing more elaborate applications, with numerous HTML forms an
programs. Symptom-driven navigation through HTML forms would help operators narrow down the orig
a network or systems problem to only a few possibilities. Operators were asked simple questions such
type of equipment, the type of fault, the error message displayed on the console, the severity of the notif
received by the management platform, etc. With a few clicks, an operator could save a lot of browsing th
the catalogs of procedures.

The integration of online management procedures, online vendor documentations, and online troubles
assistance proved to be an important step forward in production environments. The interactive Web int
were more user-friendly than the thick binders full of procedures that operators were used to, and
procedures were simpler to update for administrators and operational staff.

5.2 Browser-Based Management

Chronologically, the next step for administrators and operators was to manage agents interactively via
browser, what we callbrowser-based management. They did not only execute ancillary management tasks
a browser, they also properly managed equipment. At that time, in the IP world, the agents had on
embedded servers: one for SNMP, and another fortelnet . Thus, in browser-based managemen
manager-agent interactions are either based on SNMP ortelnet .

5.2.1 Troubleshooting scripts executed via the Web browser

Certain management procedures can be automated, because they consist only of commands to exec
do not require that the operator be physically present in front of the faulty equipment to handle hardware
of the troubleshooting operations can easily be coded as scripts. For instance, an operator can use thesnmpset
command to reset an interface via SNMP, or theping command to test the reachability of a host. But oth
troubleshooting operations are not straightforward to automate, because some client-server programs
work in interactive mode (e.g., the connection to a remote device viatelnet ). A well-known problem with
SNMP is that, for most pieces of equipment, not all the commands supported by the Command-Line In
(CLI) have an equivalent in an SNMP MIB. In other words, some commands can only be performed fro
console or, and this is generally the case for NOCs, viatelnet . For years, such commands could not be cod
in scripts. This problem was solved in 19941 by expect , a Tcl-based toolkit for automating interactive
programs [127]. By wrapping interactive commands withexpect , administrators could code them as scrip
and execute them automatically, in unattended mode. Since then, all the management procedures tha
require hardware handling can be automated.

By sheer coincidence, 1994 is also the year when Web technologies spread out in NSM. A useful fea
CGI is that troubleshooting scripts can easily be turned into CGI programs, or invoked by CGI prog
Coupling HTML pages with troubleshooting CGI programs allowed administrators to automate manag
procedures one step further. Instead of simply displaying the management procedure to follow, they
make operators run it via their Web browser, in case the procedure could be automated. This was ty
achieved by using an HTML form: a proposed action would be displayed to the operator, and by clickin
push button, the operator would trigger the execution of the adequate script—with no chance of ma
mistake while typing in the commands in atelnet session. This possibility to interactively launch th
execution of a troubleshooting procedure was a useful complement to symptom-driven HTML pages

1. Note that some sites solved this problem before, on anad hocbasis, by modifying the source code of thetelnet client. But there
was no general solution to this problem, and many NOCs relied on operators totelnet into a device and type in some command
in interactive mode.
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technologies enabled operators to perform online troubleshooting, as opposed to simply getting
assistance.

5.2.2 Configuration management

Browser-based management also allows for a simple form of configuration management that levera
ability of some agents to download their configuration file from a remote server upon reboot; e.g., Cis
routers use the Trivial File Transfer Protocol (TFTP) for that purpose. By interacting with HTML fo
specific to the agent, the administrator generates a new configuration file on the Web server where th
program is executed. Then, this file is moved to the server where all of the agents’ configuration files are
Finally, when the agent is rebooted by the operator, either manually or via the Web browser, it automa
loads its new configuration file. The advantage of this solution is that it works with legacy SNMP agents:
technologies are only used to generate new configuration files. In Section 5.4.2, we will describe a
elaborate type of configuration management.

5.2.3 Java applet with an SNMP stack

Another type of browser-based management appeared several years later, with Java. In 1997–98, w
number of start-ups (AdventNet, Metrix, etc.) come up with new management applications developed pa
or entirely in Java. In this scenario, the new, Java-based management application is independen
traditional SNMP-based management platform. It complements it and runs in parallel. The Java
management application provides operators with more user-friendly GUIs than HTML forms, which
somewhat limited in terms of graphics. The interaction with the agent still relies on well-known technolo
typically SNMP, or possibly others (e.g.,telnet wrapped intoexpect scripts, orping ); but the front-end
that operators interact with is now highly graphical. The management application can be implemented as
applet running in the operator’s browser, or a standalone Java application—the difference in the code is l
In the case of a Java application, the expressionbrowser-based managementis stretching it a bit, but the
principle remains exactly the same.

This type of browser-based management is well suited to the sites who need simple online perfor
monitoring. Via a Web browser, it is possible to configure an SNMP agent (e.g., an intelligent hub supp
RMON) via a Java applet, then retrieve management data via SNMP for several minutes, process it wit
applet, and finally display it with elaborate graphics.

The commercial market of Web-based management has thrived on this concept, with a slight nuan
Java-based management application did not run parallel to, but instead of, the SNMP-based mana
application. Most of the start-ups in this market jumped on the bandwagon because it allowed them to
share of a market that was until recently dominated by the near monopoly of the four main SNMP-
management-platform vendors. Note that, over time, several freely available software packages ha
become available, including MRTG (Multi-Router Traffic Grapher [156]) and WebtrafMon [101].

5.3 Three-Tier Management

The last step before using HTTP end-to-end between the manager and the agent is to go via an e
management gateway, typically an HTTP-SNMP gateway. We call itthree-tier managementbecause it relies
on a three-tier management architecture. In this scenario, the communication between the Web brow
the gateway can be tightly or loosely coupled with the communication between the gateway and the
When it is tightly coupled, each request from the Web browser triggers a request from the gateway to the
When it is loosely coupled, the gateway independently retrieves and processes data from the agen
requests from the Web browser are directly served from this aggregated data.
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5.3.1 Deriet al.: SNMP-to-URL mapping

In 1996–97, the IBM Zurich Research Laboratory ran a project called Webbin’. This project leveraged on
technologies to hide the idiosyncrasies of the SNMP and CMIP communication protocols to
management-application developer [18]. The core element of this project is the Liaison architecture. On
of this work is a precursor of HTTP-based management: Deri’s mapping [59, 60] between SNMP and Un
Resource Locators (URLs [22]). In Liaison, an external management gateway1 performs the translation
between HTTP and SNMP. For instance, to retrieve the MIB variablesysDescr (description of the agent) in
MIB-II, a manager can request the following URL from the management gateway:

http://kis.zurich.ibm.com/SNMP/GET/sysDescr.0?Host=bal.zurich.com&Community=public

In this example,kis.zurich.ibm.com is the management gateway andbal.zurich.com is the agent.
A CGI program calledGETprocesses the input on the gateway. It receives the OIDsysDescr.0 in input
with two attributes:Host (the agent) andCommunity (the community string in SNMPv1 and v2c). In this
scenario, the communication between the three tiers is tightly coupled: the manager sends an HTTP re
the gateway, which translates it into SNMP, sends an SNMP request to the agent, receives an SNMP r
from the agent, translates it into HTTP, and sends it to the manager.

5.3.2 Kasteleijn: HTTP and SNMP

A second type of three-tier management was described by Kasteleijn in 1997 [117]. At that time, a
high-speed ATM backbone called SURFnet4 was deployed in The Netherlands. Kasteleijn develo
prototype called the Web-based ATM-Switch Management tool (WbASM) to allow institutions connect
the backbone to have access to management information related to it. SNMP data was prefetched
WbASM server via SNMP, and stored in files. Users could later access the WbASM server from their
browser and, after having authenticated themselves, access various usage statistics (e.g., link utilizat
instantaneous measurements (e.g., uptime per link). In this scenario, communication between the brow
the WbASM server relies on HTTP, while communication between the WbASM server and the agents
on SNMP. These two communications are loosely coupled.

5.3.3 Integration of a Web browser in the SNMP-based management platform

Another form of three-tier management is the integration of the Web browser into the SNMP-b
management platform. Instead of using proprietary graphical interfaces, management-platform vend
recode their GUIs as Java applets. For instance, by using the Java Native Interface (JNI), they can
interface the Java servlets, which interact with the applets for the graphical part of the management appl
with the rest of the application, which does the real work and is usually written in another language (e.g
C++) for a question of efficiency. In this scenario, operators use their Web browser as a single interfac
management tasks, while the SNMP-based management platform becomes an external HTTP-SNMP
that can operate in loosely and tightly coupled modes.

5.3.4 Deri: Java RMI and SNMP

In 1998, Deri described a three-tier approach to locate mobile equipment for asset management: JLoca
This is the most sophisticated of all the approaches considered here in three-tier management, becaus
Java RMI to communicate between the Java applets (JLocator clients) loaded in the Web browser a
external management gateway (JLocator server). In other words, the JLocator server is an external RMI
gateway, as opposed to the external HTTP-SNMP gateways presented in the previous examples. For i
once he/she is authenticated, the administrator can access detailed information about a roaming PC

1. In Liaison, this is called aproxy. But we use the termmanagement gatewayto comply with the terminology defined in Section 2.1.5
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Web browser: the Java applet displays information retrieved by the JLocator server from a database a
via Java DataBase Connectivity (JDBC). Different JLocator servers can communicate via Java RMI,
allows management to be distributed. As in all the approaches presented in this section, the e
management gateway communicates via SNMP with the agents. Note that JLocator is not simply a pro
is has been deployed in production networks by Finsiel, Italy to locate thousands of assets in different

5.4 HTTP-Based Management

The agents that we have considered so far do not support any Web technology. A milestone in Web
management was the advent of embedded HTTP servers in network devices and systems. This
HTTP-based management, whereby the manager and the agent communicate via HTTP. This type comp
two small variants. The first is depicted in Fig. 8. The user (administrator or operator) manages the age
management GUI running in a Web browser. This GUI is coded as a Java applet. On the agent, we ca
different kinds of internal HTTP-SNMP gateways, as we will see in this section. TheSNMP MIBsicon1

represents all the MIBs supported by the agent, be they generic or vendor specific.

The second variant is illustrated in Fig. 9. The agent side remains unchanged, but the management
coded as a Java application on the manager side: the user does not use a Web browser.

1. This icon is graphically represented as if the MIBs were stored on local storage, because a MIB is a virtual managem
repository. In practice, this data is not stored persistently (e.g., on disk or in EPROM) because that would be grossly ineffici
it stays in volatile memory, generally as C data structures. An SNMP MIB is often implemented by agents as a collection of C p
to proprietary data structures. Note that depending on the degree of optimization of the code run by the agent, the HTTP
gateway can directly access the MIB data structures in memory or do an explicit SNMPget  or set .

Fig. 8. HTTP-based management via a Java applet

Fig. 9. HTTP-based management via a Java application
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Note that HTTP-based management is not necessarily interactive, unlike browser-based managem
instance. The Java applet or application running on the manager side can perfectly communicate with th
independently of any user action. As far as the agent is concerned, it makes no difference whether the m
side is an applet or an application, and whether it is running in attended or unattended mode.

HTTP-based management is still rarely used to date, except for configuration management. But des
novelty, it is now a realistic option in NSM. In November 1998, at the Networld+Interop trade show in P
France, the author was told by three leading vendors in the IP networking market (Cisco, Nortel Network
3Com) that they were routinely embedding HTTP servers in all their devices, except bottom-of-the-range
Most network devices sold today support HTTP, and most systems can easily support HTTP (many
servers are freely available on the Web). If we consider that the average lifetime of a network device or s
is about four years, we can state that a large proportion of the deployed equipment supports HTTP to

5.4.1 CLI-to-URL mapping

In Section 5.2.1, we described the usefulness ofexpect scripts for wrapping interactive commands an
running them in unattended mode. By emulating atelnet session, we have access to the entire CLI of a pie
of equipment (unlike SNMP MIBs, for instance). This approach is not as flexible as it may first appear, th
Theexpect toolkit is good for executing routinely the same group of commands, but it is not appropria
a general-purpose gateway to the agent’s entire CLI. For instance, you do not want to create onetelnet
session per command line, because of the overhead incurred by the agent and the slowness of the
Writing oneexpect script per command supported by the CLI does not scale. Another, more serious pro
is the exposure to unexpected side-effects. To avoid the creation of onetelnet session per command line
one could envision putting several command lines in a textual file and sending them in input
general-purposeexpect script. The problem with this approach is that theexpect script needs to know
exactly what the output looks like, in order to parse it and act accordingly. But the output of a command
not always depend on this command alone: sometimes it also depends on the sequence of comma
preceded it. Under these circumstances, if you allow for a random sequence of commands, you
guarantee that you know exactly what the output of the commands looks like. In real life, this is a no-no
do not want to halt the operation of an agent by sending it a new, untested sequence of commands whos
does not correspond to what you expected. In production environments,expect scripts are normally confined
to doing repetitive tasks, for which they are well debugged.

Embedded HTTP servers solve this problem: they make it possible to do via HTTP whatever is suppor
the CLI—and especially whatever cannot be achieved via SNMP. Bruins [35] reports an experimen
CLI-to-URL mappings conducted by Cisco in 1995. For instance, a manager requests the following UR

<http://router_name/exec/show/interface/ethernet0/>

The destination router is identified by its fully qualified domain name or IP addressrouter_name . It runs
an HTTP-SNMP gateway that translates this URL into the corresponding standard CLI command:

show interface ethernet0

The gateway forwards this command to the command-line interpreter, which interprets it as if it had been
in interactively. The output of the command is sent to the gateway in return. The gateway translates it i
HTML page and sends it to the manager. The user can thus use his/her Web browser or Java applicat
it were the console of the managed device or system.

This scheme presents two advantages. It is very simple to implement for vendors, because of the s
forward mapping between the CLI and URLs. It is also very easy to use for operators, because they are
somewhat familiar with the CLI of the different vendors and do not have to learn yet another lang
CLI-to-URL mappings therefore open new doors for configuration management and symptom-driven H
forms, as there is no need totelnet into network devices or systems anymore. The operators who kno
CLI by heart can also create URLs interactively, without having to write anexpect  script.
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5.4.2 Embedded HTML pages and CGI programs

With embedded HTTP servers soon appeared embedded HTML pages, that is, static HTML pages t
locally stored on the agent, typically in EPROM. Some of these pages can be read-only, for instance to d
the characteristics of the system or network device. But the full potential of static HTML pages is unle
when they are coded as HTML forms and coupled with embedded CGI programs. In this case, they are
ularly useful for configuration management, because they enable administrators to set up network devi
systems in a more user-friendly way than what we saw in Section 5.2. By directly interacting with the
via HTTP, administrators no longer have the inconvenience of first generating an external configuratio
then moving it to the right server, and finally loading it into the agent: they directly configure the agent

Embedded CGI programs do not only work with static HTML pages: they can also generate dynamic H
pages, on demand. This feature is particularly useful for performing simple performance monitorin
updating a GIF image and refreshing the Web browser at regular time intervals1. This approach coincides with
the rationale behind Management by Delegation, which promotes the delegation of a part of the mana
application to the agent itself. Clearly, a trade-off must be made between the agent’s CPU cycles dedic
management and the cycles devoted to the agent’s operational task.

Static and dynamic embedded HTML pages, as well as embedded CGI programs, were all described
by Mullaney when he reported on a prototype developed by Cabletron [150]. Similar work at Cisco
reported in 1997 by Maston [137]. Over time, these features have gained a growing popularity in rea
especially for configuration management. A growing number of equipment vendors are now supp
embedded HTML pages and CGI programs. We expect that, in the near future, it will be the common w
configuring agents in interactive mode. Of course, interactive configuration is not always an option, esp
in large networks. (We will solve this problem in our own management architecture.)

5.4.3 Embedded management application

The concept ofembedded management applicationwas described (and criticized!) by Wellens and Auerba
in 1996 [242]. Because agents are typically managed via vendor-specific management GUIs (ad
integrated in a management platform, these two authors argue that this add-on could be stored and ru
the agent itself. This is basically a variant of Goldszmidt’s Management by Delegation, with different tech
implementation details. The embedded management application is coded as a collection of HTML pag
CGI programs, and the operator directly interacts with it from his/her Web browser.

As with the previous approaches, this one uses HTTP rather than SNMP to vehicle data between mana
agents. The main advantage is that the network device or system is directly sold with its manag
application. The main drawback is that a person must sit in front of a Web browser to manage the
management cannot easily be automated. Another problem, not mentioned by Wellens and Auerbach
cost of management. With one add-on, you can manage an infinite number of devices of the same typ
the same SNMP-based management platform. But if you now have to buy one embedded mana
application per managed device, the cost of management skyrockets when you manage many devices.
this, you need to define a new business model for management software. A third problem, still not men
by the authors, but inherent in the concept of delegation, is that many CPU cycles are burnt on the ag
mundane tasks such as generating graphics and formatting the output for the user. The primary task of a
is to fulfill its operational role, not to perform management tasks; so the amount of management overhea
be limited. In this scenario, with just a few clicks, an operator can unwillingly clog up an agent
management overhead, and thus temporarily hinder the execution of its operational tasks.

1. Netscape’s Web browser supports a proprietary extension for refreshes: <META HTTP-EQUIV=”Refresh” CONTENT=X
where XXX is the number of seconds that the browser must wait between two successive retrievals of the same URL [153
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5.4.4 Minimize the footprint of the embedded HTTP server

Two research teams have focused on the minimization of the embedded HTTP server’s footprint on the
Reedet al. at IBM Almaden Research Center and Honget al. at Postech, Korea.

In 1996–97, Reedet al. developed a minimal HTTP server that fits into a single C++ class. To achieve
they had to remove several features of HTTP. HTML forms are not processed by external CGI progra
by the minimal HTTP server itself, which is multithreaded. Incoming HTTP requests specify what ha
should process them (a handler is an HTTP server with a specific HTML-form parser). RPCs are u
perform the systems-management tasks requested via HTTP. This minimal server was used in NetF
distributed management tool for PCs. The authors benchmarked their minimal HTTP server and show
it uses less CPU than a conventional HTTP server that spawns a CGI program for each incoming HTTP r

In 1999–2000, Honget al.developed the POStech Embedded Web Server (POS-EWS) [56]. Its design
were to minimize the overhead of HTTP-based management on the agent and to maximize the efficienc
HTTP server. POS-EWS is a very compact piece of C code (30 kbytes). Its average runtime memory fo
is only 64 kbytes, which is remarkably low. Instead of being multithreaded as most HTTP servers
available today, it is singlethreaded and runs multiple finite state machines to handle concurrent conn
(see Welsh [243] for a description of the advantages of event-driven servers over threaded servers). PO
was integrated in a commercial IP router developed by Hana Systems, Korea.

5.5 XML-Based Management

The next degree of sophistication in Web-based management is characterized by the use of XML to re
management data. We call this approachXML-based management. The most famous example is WBEM
which is backed by an important industrial consortium and currently has a lot of momentum. We will
describe a hybrid solution devised by Johnet al., which uses both SNMP and XML for manager-age
communication. In Chapter 6, we will see that our own proposal (WIMA) can also be classified as a ty
XML-based management.

5.5.1 Web-Based Enterprise Management (WBEM)

So far, WBEM’s history has been exactly the opposite of SNMP’s: after initially receiving a cold welc
from the research community, it is now raising high hopes. We explain this bizarre situation by reviewing
of history. We then summarize the main technical aspects that have already been specified by the DM

A bit of history

The Web-Based Enterprise Management (WBEM) initiative was launched by an industrial consortium
Microsoft in 1996 [26]. Its precise technical objective was blurred by sensational marketing announce
that it would integrate management by changing all existing management protocols and architectures.
initially consisted of high-level definitions of a new information model called the HyperMedia Managem
Schema (HMMS), a new communication model limited to a new communication protocol called HyperM
Management Protocol (HMMP), and a sketch of a new organizational model whereby clients a
HyperMedia Object Managers (HMOMs) [100]. All deployed systems and devices worldwide were consi
legacy systems that should be managed via management gateways, necessarily slow and awkward to
adopting this revolutionary approach and pretending to render obsolete all deployed management so
WBEM did not gain much credibility. Clearly, this was an instance of theReinvent the Wheelantipattern [34].
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Over time, the WBEM Consortium (that is, the vendors backing and specifying WBEM) became more rea
In the communication model, new, domain-specific solutions were replaced with existing, standard
HMMP, which was supposed to be layered on top of HTTP, was dropped in favor of the well-known
pervasive HTTP; and the eXtensible Markup Language (XML) was selected to represent manageme
inside HTTP messages [27]. More importantly, the WBEM Consortium delivered at last: the inform
model, once known as HMMS, was renamed Common Information Model (CIM), and CIM 1.0 was offic
released in April 1997 [226]. CIM 2.0, which is close to what we call CIM today, was released in March 1
Finally, in the organizational model, HMOM became CIMOM (Common Information Model Obj
Manager).

In the summer of 1998, the responsibility for specifying the WBEM management architecture was for
handed over to the Distributed Management Task Force (DMTF), who integrated it into a global
plan [37]. This gave WBEM a much-awaited guarantee of independencevis-à-visany particular vendor’s
interests. Since then, a lot of progress has been made, and the focus has clearly shifted from plain mark
real technical work. WBEM, once considered vaporware, has now grown into a large-scale standard
process involving virtually all the major vendors on the market, especially in the areas of networking
systems. At the time of writing, the DMTF’s work on WBEM is split across 17 Working Groups, all work
on management issues ranging from applications to events, from databases to networks, and from se
SLA. In the entire 1990s decade, we have never had such a flavor of integrated management in the IETF
The DMTF has also learned from the IETF’s mistakes, and is not only working on instrumentation MIBs
also on high-level MIBs. As a result, a number of enterprises have moved the bulk of their NSM engine
forces from the IETF-backed SNMP management architecture to the DMTF-backed WBEM manag
architecture.

Let us now go through WBEM’s main contributions to date: CIM (metaschema, schemata, and opera
CIM-to-XML mapping (xmlCIM), the CIM operations over HTTP, and DEN.

CIM metaschema

In DMTF parlance, a schema is (i) a collection of class definitions that describe managed objects an
namespace for these classes. This is what we are used to calling a MIB in NSM, or a model in inform
modeling (OMG). Similarly, a metaschema corresponds to a metamodel in information modeling or NSM
termsschemaandmetaschemacome from the database world, from which Thompson, the father of CIM 1
originates. The termsmodelandmetamodelare well established in the OMG community. The IETF, ITU-T
and ISO are familiar with the termmodel. This change in the terminology has created some confusion in
NSM world, which is traditionally tied to the OMG world rather than the database world, especially du
CORBA. Note that to add to the confusion, a model for the DMTF is a large set of schemata, whereas a
set of schemata is still called a schema [38].

The main characteristic (and strength) of CIM is that it is object oriented. The CIM metaschema is speci
a document known as theCIM Specification[65]. The metaschema (metamodel) defines the entities that
be used to define CIM schemata (models): classes, properties (state), methods (behavior), qu
(metadata), etc. Version 2.2 of the CIM Specification was released in June 1999 and is now stable. Apa
this document, all WBEM-related specifications are regularly updated and should be considered ongoing

CIM schemata

CIM schemata are organized into three groups: the core schema, the common schema, and the e
schemata. Classes defined in the common schema are subclassed from those defined in the core
Classes defined in the extension schemata are subclassed from those defined in the core and common s
Finally, a management application can subclass from any of these schemata.

Thecore schemacaptures information that pertains to all areas of management. It contains high-level c
such as ManagedElement, ManagedSystemElement, PhysicalElement, LogicalElement, Service, Sys
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The common schemais a set of schemata that are produced by different DMTF Working Groups. Its la
version (2.3) consists of eight schemata: User, Application, System, Device, Physical, Network,
(Distributed Application Performance), and Support. New ones are expected to appear in 2.4. The d
between these schemata roughly corresponds to the different management areas that we consider in in
management: networks, systems, applications, services, policies, etc.1 The common schema therefore define
classes that are specific to a management area. For instance, the System schema defines classe
UnitaryComputerSystem, SystemPartition, Cluster, ClusteringService, etc.

Finally, theextension schemataare specific to a given technology or vendor and are not directly controlled
the DMTF.

New versions of the core and common schemata are released jointly by the DMTF as a set of documents
tively called theCIM Schema. Version 2.3 was released in February 2000. Version 2.4 is currently under
review and is expected to come out shortly.

If we compare CIM with the SNMP information model, vendor-specific MIBs roughly map onto exten
schemata, while generic MIBs map onto common or extension schemata. There is no equivalent to t
schema in the SNMP world.

CIM operations

CIM supports two types of methods (operations).Extrinsic methodsare standard methods defined in a schem
Intrinsic methodsare special methods directly invoked on a namespace. They provide a means to discov
another class is formed, and possibly modify remote classes or objects (instances of classes). This pr
known asreflection in object-oriented software engineering. Some of these methods are read-only,
EnumerateClasses , EnumerateInstances , GetProperty , andGetQualifier . Others allow
for modifications, e.g.,DeleteClass , DeleteInstance , CreateClass , CreateInstance ,
ModifyClass , ModifyInstance , SetProperty , etc. Because all namespaces are instances of
class__NameSpace, or instances of a class subclassed from it, and because all CIM servers must supp
root namespace, all standard operations on classes and instances also apply to namespaces. For
reasons, CIM intrinsic methods are specified in Section 2.4 of the specification for CIM operations
HTTP [68], although they are totally independent of HTTP.

CIM-to-XML mapping (xmlCIM)

The representation of CIM in XML is known asxmlCIM in the DMTF realm. As this name is a bit bizarre, w
call it CIM-to-XML mappingin this work, because we find it more self-explanatory. The latest specificatio
version 2.0, released in July 1999 as two separate documents: an XML Document Type Definition (DTD
and a clear text explaining the conventions cast in iron in the DTD [67]. The CIM-to-XML mapping def
XML elements, entities, and attribute lists to represent the information stored in CIM schemata. For ins
these documents specify how to represent a class, a method, a property, etc. We will come back
CIM-to-XML mapping in detail in Section 8.2. In particular, we will explain that the DMTF opted for
metamodel-level mapping.

CIM operations over HTTP

The specification for CIM operations over HTTP complements the previous document. Version 1.0
released in August 1999 [68]. Unlike the previous specification, which is independent of the communic
protocol used to transfer XML documents, this one is specific to HTTP.

The encapsulation of CIM operations in HTTP uses a number of standard HTTP header fields, and d
several error codes that are compliant with the HTTP/1.1 specification [74]. It also uses HTTP exte

1. One aspect that we did not take into account is user administration, covered by the User schema.
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headers [155], an add-on to HTTP/1.1 that allows HTTP clients and servers to add new, application-s
HTTP header fields to the standard HTTP/1.1 header fields. An HTTP server is warned that an inc
request uses extensions by the use of the prefix “M-” in front of the HTTP method. CIM operations over H
use theM-POSTHTTP method. The prefix “M-” means that this HTTPPOSTrequest contains at least on
mandatory extension header field. Upon receipt of such a request, and prior to processing it, the HTTP
must tell the HTTP client whether it understands all the extensions used in the HTTP header. Six
extension headers have been defined by the DMTF:CIMOperation , CIMProtocolVersion ,
CIMMethod , CIMObject , CIMBatch , andCIMError . Note that HTTP extensions are currently publishe
as an experimental RFC, and are far from being supported ubiquitously.

DEN

Directory-Enabled Networks (DEN) is a simple concept popularized by Strassner [214], initially promote
Cisco, and now backed by many vendors under the umbrella of the DMTF. DEN consists of a data rep
and a naming service. The data repository is called adirectory, but we call it aDEN directoryto avoid any
confusion with Unix directories, Windows directories, etc. DEN has a strong flavor of object-orie
modeling, although Strassner insists that DEN is not object oriented. The naming conventions and the c
of a directory treeare simplified versions of X.500 [109]. Information is stored hierarchically. Each en
(object) is stored as a set of attributes. DEN directories distribute management information across m
machines through a process known asdirectory replication. There are built-in mechanisms for ensurin
replication and synchronization between different machines. DEN directories are typically accessed
Lightweight Directory Access Protocol (LDAP), which supports three types of protocol operations: q
update, and authentication. The schema of the DEN directory is defined as the complete set of clas
attributes for that directory. Version 1.0 of the guidelines for CIM-to-LDAP directory mapping was rele
in May 2000.

5.5.2 Johnet al.: XNAMI

Another example of XML-based management was described by Johnet al. in 1999 [114]. In the XNAMI
architecture, the agent maintains an explicit runtime representation of its MIBs (unlike most SNMP agen
uses XML to represent managed objects internally. For each OID, the agent stores Java bytecode for tGET
andSET methods. The agent’s SNMP server is modified so as to execute theGETmethod of an OID upon
receipt of an SNMPv3GET(ditto with SET). This feature allows the agent to support dynamically extensi
MIBs, as opposed to standard, statically defined SNMP MIBs. OIDs can be added or removed at runt
using the Document Object Model (DOM [232]) API. The agent supports a new MIB called the XNAMI M
which defines two new OIDs:methods_proxy and mib_proxy . By sending an SNMPSET PDU
containing the OIDmethods_proxy , the XNAMI manager can transfer compressed Java bytecode for
GETandSETmethods of any OID (mobile code paradigm). By sending an SNMPSETPDU containing the
OID mib_proxy , the XNAMI manager can transfer an XML string specifying that a new OID should
created, an existing OID deleted, etc. The compressed Java bytecode and the XML string are both tran
as BER-encoded SMIv2 strings. The XNAMI manager is implemented as a Java servlet, the XNAMI ag
a Java application. The XNAMI manager and agent exchange management data via SNMPv3, while th
browser and XNAMI manager communicate via HTTP. The two communications are tightly coupled. W
this approach hybrid because XML data is transferred via SNMPv3 rather than HTTP.
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5.6 Distributed Java-Based Management

The highest degree of sophistication in Web-based management is what we calldistributed Java-based
management. It is based on Java RMI for distribution aspects and is a variant of the distributed-ob
approach described in Section 3.1.6.2. We already ruled out this option for the next management c
Chapter 4, because of themy-middleware-is-better-than-yourssyndrome. But it is a valid form of Web-based
management, so we summarize it here for the sake of completeness. The main industrial supporters
technology are Sun Microsystems and the Java Community; so far, they have proposed three solutions:
JMX, and FMA. Anerousis has also developed an elegant solution based on Java RMI: Marvel.

5.6.1 Java Management Application Programming Interface (JMAPI)

Java RMI was officially released in early 1997 with JDK (Java Development Kit) 1.1. At the end of 1996, w
RMI was still a beta release, Sun Microsystems leveraged it to specify a radically new way to manage ne
and systems: the Java Management API (JMAPI [221]). This API is a set of tools and guidelines to
management applets supporting Java RMI. In this approach, everything is an object: every managed o
every SNMP MIB is mapped onto a full-blown Java object, and the manager can interact directly wit
JMAPI managed objects in the agent. On the manager side, a JMAPI object acts as an SNMP trap h
receiving all incoming SNMP traps from non-JMAPI agents and converting them into JMAPI events.
Notification interface allows administrators to develop event-driven management applications. I
evaluation code that Sun Microsystems made freely available on the Web in 1997, MIB-II was en
translated into JMAPI managed objects.

Strangely enough, one of the main reasons of JMAPI’s success eventually became the main caus
dismissal. In those days, the JDK was still lacking a proper library of graphical components. Swing d
exist, and programmers had to interact directly with the low-level AWT (Abstract Window Toolkit). JMA
came with its own library of high-level graphical components, offering most of the widgets then availab
Motif, and many people used it to build all sorts of applications, not necessarily related to management.
once Sun Microsystems had released JavaBeans and Swing, JMAPI was swiftly abandoned. But by the
already demonstrated the possibility of viewing management as a distributed object-oriented applicati

5.6.2 Java Management eXtensions (JMX)

In the Java world, Jini [216] promotes a vision similar to Microsoft’s Universal Plug and Play in the Wind
PC world: you buy a device, you connect it to your network; by itself, the device finds its IP address, reg
with a naming service, describes what functionality it supports, gets its configuration data, etc. A real ad
trator’s dream! Unfortunately, Jini’s vision of management is simplistic and limited to automated registr
and configuration in a DEN-directory-like repository. JMX [218] filled this void with a comprehens
management framework, in the object-oriented sense of the term.

Once known as JMAPI 2.0, JMX was officially released to the public in May 1999, at the JavaOne confe
It is a form of object-oriented and component-oriented Web-based management. Most of the work so
concentrated on the agent side [219]. JMX does not define a new information model: it interfaces with ex
ones. Two APIs have been specified for SNMP and WBEM/CIM, and a TMN API is currently under defini
The agent and the manager can communicate via Java RMI, HTTP, or SNMP. As far as SNMP is conc
JMX relies on a general-purpose SNMP-to-Java MIB compiler that translates the managed objects def
any SNMP MIB into components calledMBeans(short for Management Beans). It is not yet clear what
technology should underpin the manager side, possibly EJBs. The latest JMX specification leaves its de
for a future phase [219, p. 21].
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5.6.3 Federated Management Architecture (FMA)

Independent of JMX, the Federated Management Architecture (FMA [220]) was devised in 1999 b
industrial consortium in charge of developing Jiro, a Java technology for storage management. Initially
as an effort to standardize management in the storage industry, FMA grew into a full-fledged, general-p
management architecture. The initial concept ofFederatedBeanswas dropped in favor of standard JavaBea
and EJBs, thereby addressing the main problem with Jiro. With FMA, all agents must be Jini-enabled
defines static management services (e.g., the event service, the log service, and the controller servi
dynamic services that extend Java RMI semantics to the management-application level. FMA also sp
management aspects related to security, transactions, persistence, etc. Manager-agent communication
on any protocol: SNMP, HTTP for WBEM, etc. The manager side of FMA is completely specified. Some
is under way to unify JMX and FMA into a single management architecture for Java-based manageme

5.6.4 Anerousis: Marvel

Work on distributed Java-based management has not been confined to Sun Microsystems and t
Community. In the research community, we have also seen several proposals and prototypes that use Ja
The most sophisticated and comprehensive solution published to date is Marvel by Anerousis [7, 9]. Ma
a distributed, object-oriented management architecture, as well as an NSM platform. At the architectura
it supports Java RMI, CORBA, SNMP, CMIP, and DMI for manager-agent communication; but in prac
object services are implemented with Java RMI. Marvel’s information model supports the generati
computed views of management information [8], thereby increasing the level of semantics available
management-application designer. Computed views consist of monitoring, control, and event vie
management data collected from agents. This data is aggregated into Marvel objects (also known asaggregated
managed objects) using spatial and temporal filters. Marvel objects can reside in the agents or in ext
repositories, depending on the amount of processing required (some aggregations can be very CPU int
This makes Marvel’s management architecture very scalable. Note that this aggregation in externa
applies to the IP world the TMN concepts of element-level MIBs and network-level MIBs: Marvel objects
serve as the building blocks to a full-fledged Network Information Model (NIM) in the IP world.

5.7 Commercial Products

The Web-based management market is currently very active, with many start-ups coming in this luc
market every year. Publishing an up-to-date list of commercial products in this area is therefore doom
failure. For instance, in 1999, Harler [92] published a book that includes a 141-pages list and analy
commercial software packages in the area of Web-based management. Terplan [225], the same year, p
a similar list of 79 pages. One year later, both of them are already obsolete. For instance, AdventNet, M
Rapid Logic, and SNMP Research all offer Web-based management packages today, but none of
referenced by Harler or Terplan.

A more practical approach is to publish such compilations on the Web, to allow for dynamic update
instance, during several years, Lindsay maintained a very useful list of commercial packages on Web
management [128]. Unfortunately, this list does not appear to be updated anymore. The SimpleWeb is
Web site maintaining a list of commercial network-management software packages [192]. Note that it
dedicated to Web-based management.



State of the Art in Web-Based Management 83

gan with
asks. In
s no Web
detailed
gement
agent is

ticated
een the
h that is
, we
reby the
borate
f

tigated
aches in
5.8 Summary

In this chapter, we have presented the state of the art in Web-based management. In Section 5.1, we be
browser-based metamanagement, an entry-level approach that deals with collateral management t
Section 5.2, we described browser-based management, a simple approach whereby the agent support
technologies and the manager directly accesses the agent via a Web browser. In Section 5.3, we
three-tier management, whereby the manager and the agent communicate via an external mana
gateway. The manager can use advanced techniques to communicate with the gateway, whereas the
still a plain SNMP agent. In Section 5.4, we reviewed HTTP-based management, a more sophis
approach that leverages an embedded HTTP server in the agent to communicate via HTTP betw
manager and the agent. In Section 5.5, we studied XML-based management, an advanced approac
epitomized by WBEM. This time, the agent not only supports HTTP, but also XML. In Section 5.6
completed our taxonomy of Web-based management with distributed Java-based management, whe
manager and the agent communicate via an object-oriented middleware. Unfortunately, this very ela
approach is exposed to themy-middleware-is-better-than-yourssyndrome. Finally, we gave pointers to lists o
commercial software packages in Web-based management.

This concludes the first part of our dissertation. Now that we have defined the problem at stake, inves
the possible solutions, selected Web-based management, and reviewed in detail all the current appro
Web-based management, lets us now present our contributions in the next chapters.
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Chapter 6

A NEW MANAGEMENT ARCHITECTURE : WIMA

In this chapter, we propose a new management architecture for IP networks and systems in replaceme
SNMP management architecture used today. Our architecture is called WIMA (Web-based Inte
Management Architecture) and consists of two parts: a push-based architecture for regular managem
notification delivery, and a pull-based architecture forad hocmanagement. Our main innovations lie in th
former, which combines Web and push technologies to communicate between agents and manag
between managers in distributed hierarchical management). We claim that WIMA solves the pro
identified in SNMP-based management in Section 2.4, and meets the new requirements set by the mar
also propose an elegant way of dealing with legacy agents which, at the same time, paves the way fo
agents supporting yet-to-be-defined information models.

Although we actually used both top-down and bottom-up approaches to devise WIMA, this chap
organized in a top-down manner for the sake of clarity. In Section 6.1, we draw the main lines o
management architecture (analysis phase) and outline its novel organizational and communication mo
Section 6.2, we present our main design decisions (design phase) and point out the most significant diff
between the SNMP and WIMA management architectures. In Section 6.3, we describe our push
architecture (WIMA-push) and its organizational model; we also propose a migration path to grad
implement them in real-life networks. In Section 6.4, we introduce our pull-based architecture (WIMA-
and its organizational model, and again describe a migration path. Finally, we summarize this cha
Section 6.5. The communication model of our management architecture will be presented in Chapter
XML complements in Chapter 8.

6.1 Main Architectural Decisions (Analysis Phase)

In this section, we analyze the main architectural decisions behind our proposed management architect
the main differences between the SNMP and WIMA management architectures. We also explain w
focused our attention on the organizational model (WIMA-OM) and communication model (WIMA-CM
85
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6.1.1 One management architecture, four models

In NSM, management architectures are traditionally broken down into four models1: an information model, a
communication model, an organizational model, and a functional model [98, 50]. Which of these m
should be changed to solve the problems listed in Section 2.4?

New functional model?

For many years, there has been a great consensus around the management tasks defined by the f
model. These tasks are traditionally grouped into five functional areas: fault, configuration, accou
performance, and security [48]. Even the OSI and SNMP research communities agree on this! A
techniques appear or are better understood, new functions are defined; recent examples include the C
Sequencer [113] in the OSI world and the Script MIB [126] in the IP world. But there is no fundame
questioning of the OSI/SNMP functional model itself. We therefore chose to keep it unchanged in WIM

Apart from the functional model, there is no consensus at all in the research community as to which
should be preserved and which should be changed to address SNMP issues.

New organization model?

Throughout the 1990s, we saw many proposals to radically change the organization model (see Chapter
most relevant to us are the following:

• Management by Delegation [88] proposed a new organizational model, but it did not go as f
specifying a new communication model. Goldszmidt’s prototype used a new communication protoco
Remote Delegation Protocol), but it was a proof of concept to demonstrate the gains of his new org
tional model rather than a plea to use a specific communication model.

• Along the same line, the Script MIB [126] proposed a change in the SNMP organizational mod
delegate tasks to agents. It defined a new management task, thereby complementing the SNMP fu
model, and a new MIB for storing related management data. But it kept the SNMP communication m
unchanged.

• Many proposals based on mobile code were also made: some in the area of active networks, o
mobile agents, etc. (see Section 3.1.6.1). In NSM, we still have not seen any proposal mature eno
specify a new organizational model. The main problem with mobile code is security, and as long a
problem remains unsolved by software engineers, mobile-code technologies will remain confin
prototyping in NSM (see Chapter 4).

• Finally, the engineering problems in multi-agent systems, and DAI in general, are such that we a
where near seeing a detailed proposal for a new organizational model for NSM, let alone a new, co
hensive management architecture (see Chapter 4).

New information model?

During the same decade, we also saw two attempts to replace the SNMP information model:

• The OSI management metamodel, made up of GDMO [53] and the General Relationship M
(GRM [112]), is much richer than the SNMP metamodel (SMIv2 [44]). Said otherwise, the expressiv
and semantic richness of information modeling are much higher in OSI management. The
management metamodel is object-oriented and supports named relationships, actions, etc. [85]
these are missing in SNMP, so programmers and modelers resort to ugly workarounds su
programming by side-effect2. To address these deficiencies in SNMP, some people suggested usin
information modeling in the IP world. This led to a “religious war” between the IP and telecom world [

1. Hegeringet al. call themsubmodels[98].
2. You set an MIB variable to a certain integer value, which makes the agent invoke a certain action, e.g. “reboot”.
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Although the expressiveness of OSI information modeling was undoubtedly superior to SNMP’s
market did not adopt it because of the very design of OSI. The four models of the OSI manag
architecture are deeply intertwined; by snowball effect, the adoption of its information model require
adoption of its communication model (CMIP and CMIS), its seven-layer OSI stack,
connection-oriented transport layer, etc. SNMP was created precisely to avoid this complexity, thu
information modeling never made it to the IP world.

• Several years after this “religious war” was over, the DMTF issued a new object-oriented inform
model for the IP world: CIM [38]. By being object-oriented, CIM addresses the main shortcoming o
SNMP metamodel, and increases the expressiveness and semantic richness of information mod
NSM. Another advantage of using CIM is that it can be independent of the communication m
adopting CIM does not mandate the adoption of an entire protocol stack1.

New communication model?

Despite well-known problems in the SNMP protocol (see Chapter 2), little attention has been paid
communication model in the past decade. Only the DMTF has made a proposal [68]. After erring for som
with a new transfer protocol (HMMP), the DMTF decided that agent-manager transfers should rely on
instead of SNMP. This proposal specifies the encapsulation of XML-encoded CIM operations in HTTP
HTTP/1.1 extensions to facilitate the traversal of firewalls. But it leaves several aspects of the commun
model unspecified.

New management architecture?

The DMTF actually claims to have defined a brand-new management architecture: WBEM. WBEM in
includes a new information model. The CIM metamodel2 is now fairly stable [65], and many CIM schemat
are currently under development. But we just saw that its communication model is only partially specified
it does not at all specify the nature of agent-manager and manager-manager interactions (organiz
model). So, as it stands today, the WBEM management architecture consists of (i) an information mod
a partially specified communication model, (iii) an implicit functional model, and (iv) no organizational mo
As a result, Web-based management-platform vendors (mostly start-ups today) are encouraged to sim
support for a new information model to their existing SNMP-based platforms, and to tweak HTTP proxie
servers to support the DMTF’s HTTP/1.1 extensions for going across firewalls, without changing anyth
the way managers and agents interact. Therefore, the WBEM management architecture cannot be co
today as an alternative to the SNMP management architecture.

WIMA

In summary, many efforts have been devoted in the past decade to defining new organizational model
efforts to defining new information models, and none to defining both a new organizational model and
communication model. This might explain why none of them are widely adopted today, and why the S
management architecture is still the only reasonable alternative in the IP world.

We filled this void with WIMA, our new management architecture. We changed the way managers and a
interact and exchange management data, we studied how this change affects the four different models
specified new communication and organizational models. We also kept the information model orthogo
the communication and organizational models, which allows us to deal with agents supporting any inform
model: SNMP MIBs, CIM schemata, etc. Let us investigate these different architectural decisions in
detail in Sections 6.1.2 through to 6.1.5.

1. We will see in Chapter 10 that the DMTF has now bound its communication model to its information model, so the two a
necessarily independent in WBEM. But they can be made independent, as we will demonstrate in Chapter 7 with WIMA-C

2. Ormetaschema in DMTF parlance, see Section 5.5.1.
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6.1.2 No need to define yet another information model

The integrated-management community has been plagued for many years by “religious wars”. One of t
about informations models. Whenever a new problem (or idea) comes up, some people believe that it
be solved (or implemented) by inventing a newad hocinformation model. For instance, we saw this proble
already with network-topology information management [157]. Saperia and Schönwälder also expose
policy-based management [180]. This rationale “forgets” that the success encountered by the
management architecture in the 1990s owes a great deal to two facts: we had a single information m
manage IP networks, and a very stable metamodel (only two variants in 10 years: SMIv1 and SMIv2). Th
it takes to educate a large market with new information modeling techniques should not be underestimat
the number of information models that need to be mastered by management-application des
programmers, and administrators should be kept to a strict minimum.

The DMTF recently released a new information model: CIM. By replacing data-oriented SNMP MIBs
object-oriented CIM schemata, CIM addresses the main shortcoming of the SNMP information model. In
of the number of vendors now backing the DMTF, there is little doubt that CIM will get some share o
information-modeling market. Whether CIM schemata will eventually replace SNMP MIBs, or sim
complement them, remains to be seen and will only partially be based on technical merits. But now th
have two information models at our disposal in the IP world (one, very simple and widely deployed
another, conceptually rich), we believe that we have enough information models to cover all our needs
next management cycle in NSM and beyond (that is, in integrated management at large). What are
today are new SNMP MIBs or new CIM schemata, not a new metamodel, not a new way of mod
management information. In WIMA, we therefore did not specify yet another information model.

6.1.3 Dissociation of the communication and information models

We actually went one step further and decided that our management architecture should be orthogona
information model(s) supported by the agents and managers. In other words, WIMA does not prescribe
of a specific information model but copes with any information model. With a single communication m
we can transfer management data pertaining to many different information models: SNMP MIBs or
schemata for IP networks and systems, OSI MITs for hybrid networks (when we mix IP and tele
networks), etc. We made this possible by completely dissociating the information and communication m
Each bundle of management data sent by an agent to a manager is self-describing, with metadata indic
type of management data being transferred (e.g., SMIv2-compliant MIB variable encoded in BER, or CI
object encoded in XML). To make this possible, we dropped the SNMP communication protocol in fav
HTTP, and proposed an original way of structuring data in persistent HTTP/TCP connections. The det
our solution will be presented in Chapter 7.

With this architectural change, new information models can be defined over time, if need be, without al
the communication model. If CIM were replaced tomorrow with a new, more efficient object-orie
information model, we could still use the same communication model in our management architecture.
a new information model comes up, we only have to define a way to encode management data and enc
it in HTTP. This characteristic is very important to deal with legacy systems, especially already dep
SNMP MIBs (see Section 6.2.7). It is also important for the future because it does not mandate an infor
model that could prove to be too limiting in the future (as we experienced with SNMP, for instance).

Our architectural decision to completely dissociate the information and communication models repres
major breakaway from the SNMP and OSI management architectures. The close ties between these two
are, in our view, a conceptual mistake in the OSI and SNMP management architectures. The DMTF h
yet fully defined a communication model for its WBEM management architecture, but the definitio
CIM-oriented HTTP extensions to facilitate the traversal of firewalls leads us to believe that the same m
is about to be repeated (we will come back to this in Chapter 10).
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6.1.4 A new organizational model: WIMA-OM

In our organizational model, we changed the way agents and managers interact and specified how man
should be distributed. One of our main innovations is to use push technologies for transferring notific
andregular management data between agents and managers (or between managers in distributed hie
management), and not simply for delivering notifications as in SNMP-based management. Let u
summarize the main differences between the push and pull approaches. We will then present the advan
push over pull to transfer regular management data, and justify why the pull model should be preservedad
hocmanagement. Finally, we will describe how to distribute management.

6.1.4.1 Push model vs. pull model: two organizational models

In software engineering, the pull and push models designate two well-known approaches for exchangi
between distant entities. The newspaper metaphor is a simple illustration of these models. If you want
your favorite newspaper everyday, you can either go and buy it every morning, or subscribe to it once an
receive it automatically at home. The former is an example of pull, the latter of push.

In NSM, the pull model is based on the manager-agent paradigm, a variant of a standard paradigm in s
engineering: the request-response paradigm, typically used in client-server architectures. The client
request to the server, then the server answers, synchronously or asynchronously. In SNMP-based mana
this is calleddata polling,or simplypolling. It is functionally equivalent to the client “pulling” managemen
data off the server. In this approach, the data transfer is always initiated by the client, i.e. the manage
model is the basis for most management-data transfers in the SNMP and OSI management architectu

The push model, conversely, is based on a variant of the publish-subscribe design pattern1 [40]. In this model,
the agent (or the mid-level manager in distributed hierarchical management) advertises what inform
model it supports (SNMP MIBs, CIM schemata, etc.), and what notifications it can send (SNMPv1 t
SNMPv2 notifications, CIM events, etc.). Then, the administrator subscribes the manager (or the top
manager in distributed hierarchical management) to the data he/she is interested in, specifies how o
manager should receive this data, and disconnects. Later on, each agent individually takes the initiative
data to the manager, either on a regular basis via a scheduler (e.g., for network monitoring) or asynchro
(e.g., to send SNMP notifications). In the SNMP and OSI management architectures, only notification de
follows the push model.

In WIMA, our organizational model uses both approaches. The push-based organizational model is
WIMA-OM-push; the pull-based organizational model is called WIMA-OM-pull.

6.1.4.2 WIMA-OM-push for regular management and notification delivery

For IP networks and systems, the pull model has been used for over a decade for regular managemenad
hoc management, while the push model was used only for notification delivery. Yet we claim that the
model is better suited to regular management than the pull model. In WIMA, we use push technologies fo
regular management (data collection and monitoring) and notification delivery. The advantages of usin
technologies in NSM are fourfold: we save network bandwidth, we transfer some workload to the agen
improve scalability, and we facilitate the support for redundant managers, thereby improving the robustn
the management application.

Save network bandwidth

Much of the network overhead caused by SNMP polling is due to the fact that data collection and moni
are very repetitive: there is a lot of redundancy in what the manager keeps asking all the agents. For in

1. The publish-subscribe design pattern is called theObserver pattern by Gammaet al.[84].



90 Chapter 6

quest
s

cycle,
ID once,

is no
ent to
anager

uce the

te for

that
The
t
t of

agents
ID, we

sals or
o:
should
caused

aused

nager to
ment).

ing. This
it also

, where
s where
essing
e entire
m the
ns and
in SNMP-based network monitoring, a common way to check if a machine is still up and running is to re
the same MIB variable, typically itssysObjectID (MIB-II), every few minutes. This scheme works but i
very inefficient, as the manager marshalls and sends the same OID to all the agents, at every polling
endlessly. Instead, with the push model, the manager contacts each agent once, subscribes to this O
and specifies at what frequency the agent should send the value of this MIB variable. Afterward, there
more traffic going from the manager to the agent (see Fig. 10). All subsequent traffic goes from the ag
the manager (except in the rare cases when the administrator wishes to update the list of OIDs that the m
is interested in, or change a push frequency). So, by using push technologies instead of polling, we red
network overhead of management data, thereby saving network bandwidth.

How much do we save? Is this difference significant or marginal? For instance, in SNMP, the error ra
inbound traffic through interface #3 is given by the OID1.3.6.1.2.1.2.2.1.14.3 in MIB-II [143], as
depicted in Fig. 10. The manager issues aget request to the agent. It consists of a small header specifying
this is aGetRequest PDU, and a long OID that indicates the MIB variable of interest to the manager.
agent sends a reply that consists of a small header (GetReply PDU), a long OID, and a short value for tha
MIB variable. So, with an SNMPget , the same OID is sent twice over the network, and accounts for mos
the network overhead. With push technologies, the manager no longer sends aget request for each MIB
variable for each agent. Once the subscription is performed, the network overhead is only due to the
pushing {OID, value} pairs to the manager. As the value and header take little space compared to the O
roughly halve the traffic by going from pull to push technologies.

Under certain circumstances, the network-bandwidth saving can be even greater. In SNMP, MIB traver
table retrievals are usually achieved withget-next . In this case, three OIDs are transmitted instead of tw
in its reply, the agent not only includes the OID described above, but also the next OID that the manager
request. By using push technologies instead of pull, we then divide by about three the network overhead
by transfers of management data.

In short, compared with SNMP polling, push technologies significantly reduce the network overhead c
by management data.

Transfer some of the workload to the agents

The second advantage of using push technologies is to delegate some of the processing from the ma
the agents (or from the top-level manager to the mid-level managers in distributed hierarchical manage
In the SNMP management architectures, the agent is supposedly dumb, so the manager does everyth
makes it easy to cope with bottom-of-the-range, as well as top-of-the-range, network equipment, but
causes significant CPU overhead on the manager. SNMP was really designed to cope with small LANs
the aggregated overhead is easily bearable for the manager. With large networks, or with small network
the manager has to execute a large number of rules (e.g., LANs experiencing instability), the total proc
overhead can be unbearable for the manager, which can become a bottleneck and slow down th
management application. One way to solve this problem is to transfer some of the CPU burden fro
manager to the agents, as advocated by Goldszmidt with Management by Delegation [88], or Welle

Fig. 10. Network overhead of an SNMPget

1.3.6.1.2.1.2.2.1.14.3GetRequest

GetResponse 1.3.6.1.2.1.2.2.1.14.3 0

Manager Agent
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Auerbach when they exposed the Myth of the Dumb Agent [242]. The main argument behind this tran
that more and more agents have powerful microprocessors and significant memory, thereby render
vision of a “dumb” agent obsolete.

By transferring some of the workload to the agents, we not only free the manager from some of its CPU
but we also decrease the requirements put on the manager in terms of CPU and memory. In large ne
management platforms are often big servers that cost a fortune to buy and maintain. Agents, on the oth
are more powerful than they used to be, and most agents can reasonably do a bit of processing locall

Improve scalability

The third advantage of push technologies is that they improve the scalability of NSM. This is the direct
of saving network bandwidth and transferring some of the workload to the agents. By reducing the ne
overhead per transferred management data (e.g., per SNMP MIB variable), we make it possible to t
more management data, that is, to manage more agents from a single manager or to transfer more man
data per agent. And by transferring some of the CPU workload to the agents, we free some resource
manager, thereby allowing it to cope with more management tasks. As we expect the management
traffic to increase in the future, we improve the scalability of NSM if we transfer data between agent
managers in a more efficient way.

Improve robustness through redundancy

A fourth advantage of the push model is that it makes it easy to support redundant managers, either thr
multicasting or duplicated push. Although most network devices and systems to date are managed by
manager, some environments require two (or possibly more) managers to run in parallel to allow for aut
failover and thereby improve the robustness of the management application.

The way to achieve this is fairly simple with push technologies. When an administrator subscribes to
management data (see Section 6.3.3), he/she tells the agent what manager it should send the data to. I
specifying a single unicast IP address, the administrator can specify a multicast address or several
addresses. For an agent, sending data to a unicast or a multicast address is identical, and sending it
three unicast addresses is not immensely different. The only requirement in the first scenario is that it
support IP multicasting, which modern implementations of the TCP/IP stack generally do. Managemen
is thus sent to multiple managers in parallel, which makes the management application more robu
instance, one manager can crash while another takes over transparently (“hot standby”). Alternatively, s
managers can receive data passively until they are configured to replace the master manager (“cold sta

With pull technologies, we can also have the agent send management data to several managers. But in t
all of the managers have to request the data independently, which increases the network overhead sign
(we multiply it by the number of managers) and consumes more CPU cycles (we multiply the overall
overhead by the number of managers).

Even if this improved robustness is still a long way from fault-tolerance, it can be very attractive to or
zations whose network is of critical importance to the smooth running of their business, but who cannot
expensive, full-blown, fault-tolerant systems.

6.1.4.3 WIMA-OM-pull for ad hoc management

Push technologies beat polling in many respects, but there is a price to be paid: the overhead cause
configuration of the agent during the subscription phase. Obviously, push is superior to pull if, and only i
overhead is outweighed by the network-overhead gains described earlier. This is the case only when th
MIB variable is transferred many times from an agent to a manager.
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For ad hocmanagement, by definition, we are in the opposite situation. We want to retrieve a MIB var
just once, or perhaps ten times in a row. In such cases, the overhead of configuring the agent is not o
the gain of pushing management data from the agent to the manager. So we have a threshold effect. T
of this threshold can only be determined empirically. For troubleshooting, whenever we want to monitor a
variable over a short period of time (typically, up to 5 minutes), we are in the realm ofad hocmanagement and
should use pull technologies; beyond that threshold, we are in the realm of regular management and sh
push technologies. Note that there is an overlap zone where it does not really matter whether we use
pull technologies, as the relative gains or losses are negligible.

6.1.4.4 Distributed hierarchical management

As we saw in Chapter 2, distribution was a late concern in SNMP. When the M2M MIB was rendered ob
and the semantics of theinform PDU, initially destined for manager-manager interaction, was changed
an acknowledged notification, distribution in SNMPv2 was killedde facto. In SNMPv3, manager-to-agen
delegation is based on the Script MIB [126], but manager-to-manager delegation still does not work b
manager-manager interactions are not specified in any SNMP management architecture (v1, v2c, or v
few management-platform vendors that support distributed management in the IP world currently h
resort to proprietary mechanisms (e.g., HP OpenView). As a result, it is exceedingly complex to b
distributed management solution on management platforms developed by different vendors—a situatio
encountered when two large enterprises merge.

To solve this problem and allow vendors to distribute management in an open and interoperable w
decided to specify how management should be distributed in WIMA. In Chapter 3, we saw that we ha
options: hierarchical and cooperative management. Which one should we choose in WIMA?

As we showed in Section 3.2.1, the topology and administration of IP networks often map directly on
organization chart of an enterprise. The issue of distributed management arises when networks grow lar
is, when enterprises grow large. Large enterprises are generally organized in a hierarchical rath
cooperative way, so it makes sense to distribute hierarchically the management of large networks or dis
systems. Distributed hierarchical management is also easier to implement than distributed coop
management, as we said in Chapter 4, because the technologies that support cooperative managem
goal-based multi-agent systems) are still not mature enough to be used in NSM.

Therefore, in WIMA, management is distributed across a hierarchy of managers. To make the deploym
distributed management simple, we decided that manager-agent and manager-manager interaction
work similarly. As a result, everything we say about agent-manager interactions applies equa
manager-manager interactions. In particular, all the figures depicting an agent and a manager in this
tation implicitly also depict a mid-level manager and a top-level manager. Another consequence is
WIMA, we also have the choice between push-based and pull-based interactions to distribute manag
depending on the number of times a management data is transferred from a mid-level to a top-level m

6.1.5 A new communication model: WIMA-CM

Our last architectural decision was to define a new communication model. This was required by th
push-based interactions between agents and managers (or between mid- and top-level managers in di
hierarchical management) and by the dissociation between the communication and information models
we had to split the organizational model into two parts, we also split the communication model into
components: one follows a push model (WIMA-CM-push) to transfer regular management data and
cations, and the other follows a pull model (WIMA-CM-pull) forad hocmanagement data. Both of them wil
be described in detail in Chapter 7.
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6.2 Main Design Decisions (Design Phase)

In this section, we present the main design decisions behind our proposed management architecture:

6.2.1 Web technologies

Our first design decision was to adopt Web technologies: HTTP, HTML, XML, Java applets, Java servlet
The advantages of using them in NSM are numerous. We identified eight.

First, Web technologies are ubiquitous today: they are used throughout the software industry. They are s
as long as developers follow the specifications and do not use proprietary extensions (e.g., browser-
extensions). By going from domain-specific technologies such as SNMPv1, SNMPv2c, SNMPv3,
SMIv2, etc. to standard Web technologies, we make it much easier and less expensive for enterprises
and train programmers, and we decrease the development and maintenance costs of the man
application.

Second, Web technologies increase the portability of code. By coding management GUIs as Java
instead of binaries, we dramatically reduce the development costs faced by vendors. Management G
longer need to be ported to many operating systems and many management platforms offering differen
the same code can run anywhere, as long as proprietary Java extensions are avoided. As management
less costly for vendors, they should be less expensive for customers, too.

Third, by embedding the vendor-specific management GUIs directly in the agent, we address the issue
versioning. We can have different versions of a vendor-specific MIB in the same network, and we no l
require a MIB-discovery protocol. A MIB update on the agent simply requires an update of its embe
management GUI.

Fourth, by embedding the management GUIs directly in the agent, we also bring their time-to-market do
zero. We no longer have a time lag between the availability of a new, highly performing piece of hardwa
the possibility to manage it with a full-blown management GUI ported tothemanagement platform andthe
operating system owned by the customer. This factor is crucial in production environments.

Fifth, by embedding the management GUIs directly in the agent, we also suppress the need for s
management platforms for start-up companies. We properly integrate the management of equipme
different vendors, which puts small and large equipment vendors in fair competition. As a result, start-u
no longer disadvantaged by their difficult or expensive access to the APIs of the major management pla

Sixth, by using HTTP over TCP instead of SNMP over UDP, we simplify the management of remote su
iaries across firewalls (we will explain this in detail in Section 7.2.2.2).

Seventh, by using HTTP instead of SNMP as a transfer protocol, we can easily compress manageme
and consequently reduce the network overhead caused by management data (see Section 7.4.4).

Eighth, XML and JDBC make it easy to store management data in any third-party database (see Section
This frees customers from the impediment of peer-to-peer agreements between management-platfo
database vendors.

6.2.2 Three-tier architecture

Our second design decision was to adopt a three-tier architecture instead of the two-tier architecture ty
used by SNMP-based management platforms. The advantages of adding an application server betw
client and the server are well-known and presented by many software-engineering authors [6, 78, 123, 2
short, they increase reusability and flexibility by allowing implementers to modify the middle tier with
changing the other two. These three tiers are often given different names by different authors. L
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[123, p. 273] calls them the presentation, application logic, and storage tiers. Fowler [78, Chapter 12
them the applications, domain, and database tiers. Wijegunaratne and Fernandez [245, pp. 41–78] call t
client, composite service, and data access server tiers. Ambler [6, pp. 144–148]) calls them the in
business system, business system, and business persistence system tiers, or simply client, applicatio
and server for short. We use Ambler’s simplified terminology in our dissertation.

To adopt a three-tier architecture in WIMA, we must split the manager (that is, the monolithic, SNMP-b
management platform) into three entities (see Fig. 11):

• the management station (any machine running a Web browser)
• the management server (a fixed, dedicated machine)
• the data server (a fixed, dedicated machine)

Our three-tier architecture operates with three types of interactions: between the management station
agent, between the management and the data repository, and between the agent and the data reposi

Interactions between the management station and the agent

In interactive mode, a typical interaction goes from the management station (client), through the manag
server (application server), to the agent (server) and back. Such interactions typically occur inad hoc
management, but also happen during the subscription phase in regular management.

Interactions between the management station and the data repository

During the subscription phase, the configuration data also goes from the management station (client), t
the management server (application server), to the data server (server) for persistent storage.

Interactions between the agent and the data repository

This type of interaction typically occurs during the distribution phase in regular management (data collec
data goes from the agent (client), through the management server (application server), to the data
(server). It also takes place when an agent reboots; if the agent has no local persistent storage, it can
its configuration data from the data server via the management server.

We will detail all of these interactions in Section 6.3.

Fig. 11. Three-tier architecture

Management
server

Data
server

AgentManagement
station
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6.2.3 Management server: COTS components and object-oriented frameworks

Our third design decision was to improve the design of the management server by using COTS comp
and object-oriented frameworks instead of an opaque, monolithic, proprietary piece of code. In the 199
software-engineering research community particularly studied the issue of reusability of code and d
which many researchers regarded as the main failure of object-oriented programming. They came up
new concept to facilitate reusability: component software [222]. One outcome of this work,
component-based programming of distributed applications [107], can be very useful in NSM.

By integrating COTS components and object-oriented frameworks, we increase the competition be
software vendors by making this competition more fine-grained. Today, in SNMP-based managemen
you have opted for a certain management platform, you are forced to buy an event correlator, an acc
system, a billing system, or an authentication system from your management-platform vendor’s catalo
are therefore dependent on the peer-to-peer agreements signed by this vendor with third-party vendor
want to use a certain technology, say SecurId cards from Security Dynamics, you have to pray tha
management-platform vendor has signed an agreement with Security Dynamics. Clearly, for commercia
than technical reasons, not all technologies can be used with all management platforms; and some are a
at an unreasonable price. Said otherwise, the drawback of integrated management is that custome
become captive. Once they have invested a lot of money in a management-platform-specific solution, th
no longer drive prices down by comparing different offers from different competitors.

With a component-based management server, different parts of the management application are wr
different vendors. By design, these components must be interoperable and offer open APIs to work1. In the
component-software industry, we no longer see companies striving to keep their code opaque and pro
to secure a niche market. COTS components and object-oriented frameworks make it possible for a cu
to plug and play a new set of components to add new functionality to an existing management applicat
to replace an old component by a new, smarter one. This new business model requires that existin
applications be restructured entirely. To follow up with the previous example, it is possible to write
security-related code in such a way that the actual security technology used by the customer is transp
the rest of the application. Another example is the event correlator, often considered as the cor
management platform. Almost all management platforms on the market come with an event correlator.
event correlators are difficult to write. To make it easier for customers to work out and specify correlation
new languages keep appearing, either as commercial products or research prototypes. With a compone
architecture, we can plug and play a new event correlator as soon as a company releases a new smar
software; we no longer have to buy a brand-new management platform that necessarily comes with it.

The advantages of using component software to implement the management server are numerous. F
customer is freed of the peer-to-peer agreements between vendors, and is no longer enchained to
vendor by previous large investments. This drives prices down by increasing competition. It also
customers total freedom as to what technology they can use. Second, this makes manager-manager int
more interoperable, as third-party component vendors depend on openness for their market. As a
distributed management solutions are easier to deploy. Third, we gain some flexibility and can c
management platforms fairly easily. This is particularly useful when two companies merge and uni
supervision of their IP networks and systems.

It should be stressed that moving from current, monolithic, SNMP-based platforms to solutions bas
component software is likely to significantly shake the management-platform market and cause new pro
First, new means buggy. Many years of debugging and real-life testing have gone into HP Open
Cabletron Spectrum, and all the major management platforms of the market. It will take year
component-based management platforms to reach the same level of reliability. Second, debugging b
tricky. What if two components from different vendors do not interact as they are supposed to? Whose
it? Who should fix it? This is the usual “It’s not me, it’s him” situation, well-known to the administrators

1. Note that inter-component communication is not specified by WIMA.
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heterogeneous networks. To ease their task, customers can resort to software integrators, whose
precisely to shield customers from the headaches caused by interferences between multiple vendo
integrators reduce the cost savings of going from monolithic to component software: they have to make
profit! They also can (but do not necessarily) reduce the choice of technologies available to customers
a pitfall that customers should be wary about when they select a software integrator.

6.2.4 Management-data transfers across firewalls

Our fourth design decision was to take firewalls into account from the outset and to adapt our manag
architecture to make it firewall friendly. In WIMA, we assume that we can have one or several firewa
between the manager and the agent (or between the mid- and top-level managers in distributed hier
management). Three scenarios demonstrate why this assumption makes sense:

• An on-call administrator might want to use a PC as a management station from outside the enterpris
from home, to investigate a problem occurring in the middle of the night. To access the comp
network, he/she would typically go across a firewall.

• In large, geographically dispersed enterprises, manager-manager interactions typically go acro
firewalls: one at the boundary of the management domain of the top-level manager (headquarter
another at the boundary of the management domain of each mid-level manager (subsidiaries).

• If an enterprise has a small, remote subsidiary, it can make economical sense not to buy a manage
subsidiary, but to manage critical remote equipment across the WAN link. In this case, agent-ma
interactions go across at least one firewall (the headquarters’) and possibly a second (the subsidia

The possible presence of one or several firewall(s) sets new constraints on our communication model
will be detailed in Chapter 7. By taking these constraints into account in WIMA, we made it possible to
single management architecture, whether we have a firewall or not in practice. We also addre
shortcoming in the SNMP management architecture, which did not take firewalls into account from the o1.

Note that the three-tier architecture proposed in Section 6.2.2 fits nicely with firewalls, as stream
accesses to/from agents through a single management server simplifies access control and authentic

6.2.5 Data repository independent of the management platform

Our fifth design decision was to make the data repository independent of the management platform, t
allowing the administrator to use the repository of his/her choice to store management data. This was
our motivations behind the adoption of a three-tier architecture (see Section 6.2.2). To be effectiv
independence must be achieved at three levels:

• the type of data repository: relational database, object-oriented database, DEN directory [214], pla
NFS file system, etc.

• the implementation of this type, that is, the technology that underpins the data repository—e.g., an O
Sybase, Ingres, or mSQL relational database

• the API used by the management application to access the data repository: XML, JDBC, Open Da
Connectivity (ODBC), SQL strings, etc.

To achieve this loose coupling between the data repository and the management application, we assu
the data repository is logically located on a different machine called the data server (see Fig. 11). This m
may physically be different from or identical to the management server; but conceptually, we assume t
two machines are separate. Because the data repository has to be independent of the management pla
management application can no longer embed special hooks that are specific to a given data-rep

1. To be fair with the designers of SNMP, firewalls were very rare in the late 1980s, when the SNMPv1 management architec
communication protocol were devised.
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technology (e.g., vendor-specific extensions to SQL). Instead, the management application must rely o
APIs such as JDBC, ODBC, and XML for relational databases, or XML/DEN for directories, to commun
with the data repository. By imposing the use of open APIs, we fill a void in the SNMP manage
architecture. The latter did not specify that proprietary APIs should be avoided to access the data rep
thereby allowing major management-platform vendors to close this market. Note that the openness o
APIs is required by WIMA, but the APIs themselves are orthogonal to our management architecture.

The independence of the management applicationvis-à-vis the data repository is very consistent with ou
proposed use of component software and object-oriented frameworks (see Section 6.2.3). Some com
give the management application a high-level and technology-independent API to communicate with th
repository. Other components (typically, an object-oriented framework) are specific to a type of
repository. Other components might even be specific to the data repository (e.g., if we want to use th
extensions that are implemented by most vendors, but in different ways). Other components are specifi
API used by the management application to access the data repository.

Making the data repository independent of the management platform frees administrators from the shac
peer-to-peer agreements between database and management-platform vendors, a problem in SNM
management that we described in Section 2.4.3.1. The customer can now choose any type of data rep
any implementation of this type, and any API. Another advantage is that the management application no
has to be ported to Oracle, Sybase, Ingres, mSQL, etc. It can use a generic API such as string-based
all RDBMSs, ODBC for RDBMSs running on Windows platforms, XML for all types of data repositories
all operating systems, etc. This decreases the cost of the management platform for vendors, and cons
for customers (especially with the increased competition caused by the use of component software).

6.2.6 Bulk transfers of regular management data

Our sixth design decision was to facilitate bulk transfers of regular management data, based on the ass
that by going from mere network management to full-blown integrated management, we will face a s
increase in the amount of management data to move about (see Section 2.5). In order to decrease
latency, network overhead, and CPU overhead at the manager and the agent, we want to reduce the n
messages that are exchanged between the manager and the agent in both directions [201]. We also
prevent the manager from having to guess the size of the agent’s response message when it puts to
request message (see Section 2.4.1.2 and Section 2.4.1.3). In WIMA, we meet these goals by allowin
infinitely large answer from the agent. The engineering details of our solution will be presented in Cha

6.2.7 Dealing with legacy systems

Our seventh design decision was to take into account legacy systems in WIMA, instead of assuming t
can start all over again with a clean slate (an error initially made by Microsoftet al.when they issued their first
WBEM proposal in 1996 [26], and later corrected by the DMTF). In Chapter 7, we prove that we can e
replace the SNMP communication protocol with HTTP. In Chapter 6, we show that we can replace the S
management architecture with WIMA. But to be realistic, we must be able to work with the numerous S
MIBs that are deployed worldwide, especially in network equipment. We must also assume that some
do not have an embedded HTTP server, and that other agents have an HTTP server but do not have the
components that we will later propose to include in agents. Legacy systems will be dealt with in Section
and Section 6.4.4, when we describe migration paths from SNMP- to WIMA-based management.

6.2.8 Richer semantics

Our eighth design decision was to facilitate the use of richer semantics for management data. This
presented in Chapter 7, when we detail the communication model of WIMA, and in Chapter 8, whe
describe the advantages of using XML in integrated management. In short, the main implications are tw
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First, because of themy-middleware-is-better-than-yourssyndrome, we saw that we cannot bas
manager-agent interactions on a distributed object-oriented middleware. But this does not prevent u
using objects at all. In WIMA, we simply confine the use of Java, C++, or other objects at the edges—esp
in the managers, but possibly also in the agents. This design decision proved to be useful when we de
our research prototype JAMAP (see Chapter 9). Second, with XML, we can define elaborate composi
structures that are richer, more expressive, and in the end more useful than SNMP varbind lists; we c
define many protocol operations and not only the few protocol operations defined in SNMP.

6.2.9 Easy to deploy

Last but not least, our ninth design decision was to make it easy to deploy WIMA-compliant agents and s
The deployment simplicity was one of the keys to the success experienced by SNMPv1. With SNMP, w
learned that integrating and dealing with deployment concerns is of paramount importance to gain acce
from the industry. WIMA is not simply a good-looking proposal on paper, it is meant to be used in rea
IP networks and systems.

This translates into many details. In particular, we integrate in this dissertation many deployment cons
that are due to the way the SNMP market historically developed, and not simply to SNMP technical const
We also propose a migration path to deal with legacy systems, as mentioned in Section 6.2.7. An
importantly, the amount of extra code and processing that we require the agents and managers to s
perform is reasonable. Last, we use the same communication and organizational models for agent-man
manager-manager interactions (see Section 6.1.4.4).

Now that we have described our main architectural and design decisions, let us study in more detail the
that underlie regular management,ad hoc management, and notification delivery in WIMA.

6.3 Regular Management and Notification Delivery: The Push Model

The push model was recently put in the spot light by the large success encountered by push system
Web [96], e.g., Pointcast, BackWeb, or Tibco’s TIB software suite1. Even though this model is well-known in
software engineering, it has always been confined to notification delivery in SNMP-based management.
best of our knowledge, no SNMP-based management platform uses it for monitoring or data collection
Yet, as we explained in Section 6.1.4, its very design makes it better suited to regular management than
model that underpins SNMP-based management.

In WIMA, the push model underlies both regular management (that is, monitoring and data collection
notification delivery. Although we commonly say that the push model is based on publish-subscribe, it ac
involves four phases. Supposing that the agent supports SNMP MIBs (but the rationale remains the sam
other information models), these phases are:

• Publication phase: Each agent maintains a list of Web pages that advertise the MIBs that it support
the notifications that it may send to a manager.

• Discovery phase. The administrator finds out the URLs of these Web pages. Some of them are well kn
others are vendor specific.

• Subscription phase: Agent by agent, the administrator (the person) subscribes the manager (the pro
to different MIB variables and notifications via subscription applets. The push frequency is specifie
each MIB variable.

• Distribution phase: At each push cycle, the push scheduler of each agent triggers the transfer of MIB
from the agent to the manager.

1. Note that despite their name, many push systems found today on the Web still follow the pull model at the implementatio
Tibco’s TIB Rendez-Vous is one of the few exceptions.
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In this section, we present the details of our push model: WIMA-push. We first study successively the
phases of the push model, then discuss some issues related to the distribution of management, an
present a migration path from SNMP- to WIMA-based management.

6.3.1 Publication phase

In the first phase, each agent (or mid-level manager in distributed management) publishes:

• What information model(s) it supports (e.g., SNMP or CIM).
• For each supported information model, what virtual management-data repositories it supports. In th
of SNMP, these are the generic MIBs (e.g., MIB-II, ATM MIB, or RMON MIB) and the vendor-spec
MIBs. In the case of CIM, these are the core, common, and extension schemata.

• What notifications it can send to the manager (e.g., “interface down”).

To publish this data, the agent embeds several management applets, typically stored in EPROM. These
are available at URLs that remain constant over time for a given agent.

6.3.2 Discovery phase

In the next phase, the administrator discovers the following information for each agent:

• The information model(s) supported by the agent: SNMP, CIM, etc.
• The virtual management-data repositories supported by the agent: SNMP MIBs, CIM schemata, e
• The URLs of the agent’s subscription applets.

The simple way to discover all of this information is to have all equipment vendors follow the same
naming scheme for all their embedded HTML pages and Java applets. Experience has shown tha
unrealistic, because vendors have a natural tendency to do things their own way. A similar problem sh
in a different but related area: vendor-specific MIBs. A comparison between the proprietary MIBs of the
equipment vendors highlights a remarkable heterogeneity: they all have different structures and
different naming schemes. In other words, the discovery phase cannot be fully automated.

Conversely, if we have no automation whatsoever—that is, if the URLs where the agent publish
subscription applets are totally random and unpredictable—, we have to manually configure the manage
by agent. In practice, this means that an operator must type in a multitude of URLs for all the subscr
applets of all the agents... Clearly, this is not an option either because it does not scale and is error p
short, the discovery phase must be partially automated.

In this section, we propose a scheme whereby some URLs are well-known, because they follow a con
adopted by all vendors, and other URLs are discovered via interactive browsing. Browsing requires a s
point, which we call the agent’s management home page. Let us describe how the administrator acce

6.3.2.1 A well-known URL for the agent’s management home page

In order for the administrator to access the agent’s management home page, the manager must know w
to download. We have five options:

• The manager is manually configured by an operator, for all the agents in its management domain
• There is an automated way for the agent to tell the manager what the URL of its management home p
• There is an automated way for the manager to retrieve this URL from the agent.
• There is an automated way for the manager to retrieve this URL from an external data repository.
• The manager can build this URL automatically because it follows a convention adopted by all ven

The first option is tedious and does not scale. We rule it out.



100 Chapter 6

ged, the
d with

MPv3
tion
notifi-
kes
ssarily
lude it.

e
MIB, a

ded in a
most
HP’s
IETF
sues.
rd and
in our
at it

.

e page
he agent
tion in
ersal”
.2.5);

lution
hould

ituation
some
g strong
urity

at a

.3 and
l URL
ention

d both.

h where

defined, it
The second option is based on notifications. Whenever the URL of its management home page is chan
agent sends the new URL to the manager via a notification. This scheme is not robust if implemente
SNMP notifications, because they are not acknowledged (SNMPv3inform ’s are not used in practice). It does
not work with CIM events either, because they are not yet standardized. If we decide to use SN
inform ’s, which are acknowledged, we will still face a major problem: deployment. This new notifica
must be defined in a MIB and supported by deployed agents, which requires extending an existing MIB (
cations are usually defined in vendor-specific MIBs) or defining a new MIB. But deploying a new MIB ta
a lot of time; so does the upgrade of an already deployed MIB. And even worse, new MIBs are not nece
adopted by the market, sometimes for nontechnical reasons. This solution is too risky: we have to exc

The third option cannot rely on Web technologies1. It requires that the URL of the agent’s management hom
page be stored in a virtual management-data repository on the agent. This repository can be an SNMP
CIM schema, etc. In the case of SNMP, the URL of the agent’s management home page can be enco
string and stored in a MIB. This solution requires either extending an existing SNMP MIB supported by
existing agents (e.g., MIB-II), or defining a new MIB and convincing all vendors to support it (e.g., see
approach with the HTTP Manageable MIB [94]). This poses three problems. First, and justifiably so, the
has always been reluctant to change existing and widely deployed MIBs for obvious compatibility is
Second, deploying or upgrading a MIB is time consuming and hazardous (see previous option). Thi
worst, this approach would tightly tie Web-based management to a given information model (SNMP
example, but it could be CIM as well). We do not want this, as one of the requirements for WIMA is th
should not rely on a specific information model (see Section 6.1.3). We therefore eliminate this option

The fourth option combines the previous two. It requires that the URL of the agent’s management hom
be stored in an external data repository, that is, a machine that is neither the manager nor the agent. T
stores (and possibly updates) this URL in the repository, and the manager accesses this informa
read-only mode. This is the approach adopted by Sun Microsystems with its Java-based “univ
plug-and-play technology: Jini [216]. This data repository can be of different types (see Section 6
presently, the typical way of storing such configuration data is to use a DEN directory. Although this so
works, we did not retain it for WIMA because there is no consensus as yet as to how DEN directories s
be designed, structured, etc. Different vendors support different schemes, and it is unclear how the s
will evolve. Another, serious problem with this approach is that it poses security problems. We need
external, untrusted agents to access and store data into an internal, trusted data repository without usin
security (see Section 2.5, “Security and firewalls”)... A security officer’s nightmare! We will address sec
issues in more detail in Chapter 7.

In WIMA, we selected the fifth option2. The agent’s management home page must be published
well-known URL. Let us describe our URL naming scheme.

6.3.2.2 URL naming scheme

The agent’s management home page is not the only URL that must be well known. In Section 6.3
Chapter 7, we will see that several other URLs must be well known. In this section, we define a genera
naming scheme that specifies (i) a number of well-known URLs supported by all vendors, and (ii) a conv
for finding out proprietary URLs via interactive browsing.

To define a well-known URL, we can impose a certain pathname, a certain port number, or both. We nee
If we simply impose a pathname, we can for instance reserve the keywordmgmt for “management”. The
well-known URL for the agent’s management home page is then:

<http://agent.domain/mgmt/>

1. Otherwise, it would lead to an infinite loop. To publish the URL of its management home page, the agent would have to publis
it publishes it. By recurrence, it would have to publish where it publishes where it publishes it, etc.

2. Note that once DEN has made progress at the DMTF and the way to store an agent’s management home page has been
will be very easy to change slightly WIMA to support the new standard DEN directory.
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whereagent.domain is either the fully qualified domain name or the IP address of the agent. The prob
here is that there are already many Web servers running all over the planet, some in embedded eq
(hence difficult to upgrade), and the odds are that some of them already use the reserved pathnamemgmt for
other purposes. In fact, it is impossible to find a pathname that we know for sure is not used y
consequence, imposing a certain pathname is not sufficient.

Alternatively, we can impose a port number. This approach was proposed by Harrisonet al. [94] in 1996. They
recommend the use of the reserved TCP port 280 (http-mgmt ) for Web-based management:

<http://agent.domain:280/>

By not using the default port 80, and by using instead a port that is dedicated to Web-based managem
significantly reduce the risks of URL clashes. Even though port 280 is seldom used today, it is feasible to
all vendors agree to use it. However, this is not enough. Selecting a well-known port is sufficient for retri
a single URL, e.g. the agent’s management home page. But what about the other well-known URLs?

We really need to impose both the port number and the pathname. By doing so, we get the best of both
we avoid URL clashes by not using the default port 80, and we keep the flexibility offered by fixed pathn
to automate management. As port 280 is dedicated to Web-based management, it is now possible to m
vendors agree on a few basic path-naming conventions.

Note that in practice, an agent may run its embedded HTTP server on any port, as long as the configura
of its HTTP server is able to map all incoming requests destined for port 280 to the actual port that its emb
HTTP server is listening on (e.g., port 80). In fact, this trick allows a vendor to support the two ports (8
280) simultaneously, e.g. for backward compatibility.

The naming convention that we propose in WIMA for the well-known URLs is the following. The managem
home page of an agent is served by its embedded HTTP server at the following URL:

<http://agent.domain:280/mgmt/>

whereagent.domain is the fully qualified domain name or the IP address of the agent. We keep
pathname prefix/mgmt/ (although it is redundant, since port 280 is dedicated to management) so as to
clashes with the few existing uses of port 280.

On its management home page, the agent publishes the URLs of different pages that describe the d
management architectures and information models that it supports. The format of these pages is free. E
of pages for multiple management architectures include:

<http://agent.domain:280/mgmt/arch/wima/>

<http://agent.domain:280/mgmt/arch/wbem/>

<http://agent.domain:280/mgmt/arch/jmx/>

<http://agent.domain:280/mgmt/arch/fma/>

Examples of URLs for multiple information models include:

<http://agent.domain:280/mgmt/infomodel/snmpv1/>

<http://agent.domain:280/mgmt/infomodel/snmpv2c/>

<http://agent.domain:280/mgmt/infomodel/snmpv3/>

<http://agent.domain:280/mgmt/infomodel/cim-spec-2.0/>

<http://agent.domain:280/mgmt/infomodel/cim-spec-2.2/>

<http://agent.domain:280/mgmt/infomodel/osi/>

wherecim-spec refers to the DMTF expressionCIM Specification. In general, we are not very interested i
general information about the information models supported by an agent, but rather in getting a list of
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virtual management-data repositories (SNMP MIBs, CIM schemata, etc.) supported by this agent. Th
published at the following URLs:

<http://agent.domain:280/mgmt/infomodel/smiv1/>

<http://agent.domain:280/mgmt/infomodel/smiv2/>

<http://agent.domain:280/mgmt/infomodel/cim-schema-2.0/>

<http://agent.domain:280/mgmt/infomodel/cim-schema-2.2/>

<http://agent.domain:280/mgmt/infomodel/cim-schema-2.3/>

<http://agent.domain:280/mgmt/infomodel/cim-schema-2.4/>

wherecim-schema refers to the DMTF expressionCIM Schema, and versions 2.0 through to 2.4 are the fou
versions currently supported by the DMTF (previous versions have been rendered obsolete). Note tha
case of SNMP, the semantics of the MIBs depends on the metamodel (SMIv1 or SMIv2) rather than the
management architecture (SNMPv1, SNMPv2c, or SNMPv3) for historical reasons. So, for instanc
following URL lists all the SNMP MIBs expressed in SMIv2 that are supported by the agent (or mid-l
manager):

<http://agent.domain:280/mgmt/infomodel/smiv2/>

When a manager wants to discover the preferred version of SNMP or CIM supported by an agent, it re
a generic URL such as:

<http://agent.domain:280/mgmt/infomodel/snmp/default.html>

<http://agent.domain:280/mgmt/infomodel/smi/default.html>

<http://agent.domain:280/mgmt/infomodel/cim-spec/default.html>

<http://agent.domain:280/mgmt/infomodel/cim-schema/default.html>

Whenever the agent receives a request for a generic URL, its HTTP server replies with aRedirection status
code of 301 (Moved Permanently) and aLocation  field indicating its preference, e.g.:

<http://agent.domain:280/mgmt/infomodel/snmpv3/>

<http://agent.domain:280/mgmt/infomodel/smiv2/>

<http://agent.domain:280/mgmt/infomodel/cim-spec-2.2/>

<http://agent.domain:280/mgmt/infomodel/cim-schema-2.4/>

Similarly, a manager can discover the preferred information model of an agent by requesting the foll
URL:

<http://agent.domain:280/mgmt/infomodel/default.html>

This is useful in transition phases, for instance in case CIM gradually takes over SNMP in the years to
The agent then redirects the manager (with an HTTP status code of 301) to the home page of its pr
information model. If it has no preference, it returns the home page of any supported information mod

The same rationale applies to the management architecture. A manager can discover the preferred man
architecture of an agent by accessing the following URL:

<http://agent.domain:280/mgmt/arch/default.html>
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6.3.2.3 From the network map to the agent’s management home page

Now that the manager knows the URLs of the management home pages of all the agents in its mana
domain, it still has to present this information to the administrator for the subscription phase to take plac
propose that direct access to the agent’s management home page be available directly from the netwo
This can be achieved in different ways, depending on whether the network map is implemented in the f
a plain HTML page, a sensitive map, or a Java applet.

With a plain HTML page, we simply display a textual list of agents in the management domain. Each
corresponds to an agent and contains a hyperlink to this agent’s management home page. This app
minimalist and not user friendly, but it works and can be sufficient to manage small networks.

When the network map is a sensitive map, e.g. a Graphics Interchange Format (GIF) image, the operato
on the icon representing the agent. The (x,y) coordinates are mapped to the corresponding agent by a C
running on the management server. The output of this CGI script is an HTTP response message
Redirection status code of 301 (Moved Permanently) and aLocation field containing the URL of the
corresponding agent’s management home page. Upon receipt of this redirection, the browser autom
contacts the agent and retrieves its management home page. The mapping table used by the CGI scri
generated automatically: from the agent’s IP address, it is possible to generate the URL of its mana
home page.

When the network map is coded as a Java applet, we can have an even more user-friendly GUI. For in
by clicking on the agent on the network map, an operator can pop up a menu and select the entry called
page” to retrieve the agent’s management home page. One problem though is the applet security mode
by default forbids an applet loaded from the management server to open a connection to another mac
our case the agent. To work around this limitation, we can use signed applets. Although this solution is
and neat, it is not always applicable because it requires the Web browser to access a configurat
specifying its access-control policies, and this clashes with our decision to enable the administrator to
Web browser onanymachine. There are means to share a configuration file across many machines, e.g
in the Unix world; but there are cases when we need to duplicate the configuration file (e.g., when an o
administrator troubleshoots an urgent problem from outside the enterprise). In short, a network-ma
applet is very user-friendly, but there are cases when we need to revert to sensitive maps.

6.3.3 Subscription phase

In the third phase, the administrator downloads the agent’s subscription applets into the management
(see Fig. 12) and explicitly subscribes the manager to the regular management data (e.g., SNMP MIB va
or CIM objects) and notifications (e.g.,SNMPv2-trap ’s or CIM events) that he/she is interested in. For th
sake of readability, let us assume that the agent supports an SNMP information model (v1, v2, or v3), al
everything we say here for SNMP applies equally well to other information models. We distinguish two c
the interactive mode, where the administrator interacts via a Web browser, and the automated mode
everything is done automatically by programs without human intervention.

6.3.3.1 Interactive, human-oriented mode

In interactive mode, the administrator selects the management applet he/she is interested in from the
management home page. For the subscription phase, two entries are of interest to us: the data sub
applet and the notification subscription applet.



104 Chapter 6

sh
push

en all

she
notifi-

the
cation
ronous.

s that
ate that

e per
NMP

ption
ables

rvlet,
er
sible,
The data subscription appletallows the administrator to interactively select MIB variables and pu
frequencies via a user-friendly GUI. This is commonly achieved through some kind of MIB browser. The
frequency can be different for each individual MIB variable, or it can be the same for an entire MIB or ev
the MIBs supported by a device. In the case of SNMP, this applet is called theMIB data subscription applet.
We will come back to this applet in more detail in Chapter 9, when we describe our prototype.

Thenotification subscription appletallows the administrator to interactively select the notifications that he/
wants the manager to receive. In essence, it defines an event filter on the agent. If we have just a few
cations to filter, the full-blown applet can be replaced with a simple HTML form. Notifications for which
administrator showed no interest are discarded by the agent. Unlike its counterpart, the notifi
subscription applet does not prompt for a push frequency because notifications are inherently asynch

The retrieval of these two subscription applets is illustrated by Fig. 12. The dotted arrows are visual aid
show that the corresponding applet is transferred from one machine to another. The plain arrows indic
two components communicate directly with each other.

We can have one subscription applet for all information models (but this might not be practical), on
information model (e.g., SNMP or CIM), or one per virtual management-data repository (e.g., one per S
MIB or CIM schema). The same rationale applies to notifications. The granularity of the two subscri
applets is vendor specific and not mandated by WIMA. Regardless of the granularity, the MIB vari
subscribed to through the same GUI and their associated frequencies form what we call apush schedule. Push
schedules are created by thepush definitioncomponent. This component can be implemented as a Java se
a CGI binary, a CGI script, etc. To remain generic, we will call it aComponent Launched by an HTTP Serv
(CLHS). This naming convention will be used throughout this dissertation for similar components. If pos

Fig. 12. Push model: discovery and subscription phases (without firewall)
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the push schedules are stored persistently by the agent (e.g., in EPROM). Otherwise, they are kept in
memory and must be retrieved from the data server (via the management server) upon reboot; we will s
in Section 6.3.3.3.

For the SNMPv1, v2c, and v3 information models, the URL of the data subscription applet is one o
following:

<http://agent.domain:280/mgmt/subscribe/smiv1/mibs.html>

<http://agent.domain:280/mgmt/subscribe/smiv2/mibs.html>

In the case of CIM, the URL of the data subscription applet simply depends on the version of the CIM sch
supported by the agent. Examples of valid URLs include:

<http://agent.domain:280/mgmt/subscribe/cim-schema-2.2/schemata.html>

<http://agent.domain:280/mgmt/subscribe/cim-schema-2.3/schemata.html>

<http://agent.domain:280/mgmt/subscribe/cim-schema-2.4/schemata.html>

For each version of the CIM schema, it is possible to distinguish between the three sets of schemata de
the DMTF: core, common and extension. In the case of CIM Schema 2.3, this yields:

<http://agent.domain:280/mgmt/subscribe/cim-schema-2.3/core.html>

<http://agent.domain:280/mgmt/subscribe/cim-schema-2.3/common.html>

<http://agent.domain:280/mgmt/subscribe/cim-schema-2.3/extension.html>

The URLs of the notification subscription applets look like this:

<http://agent.domain:280/mgmt/subscribe/snmpv1/traps.html>

<http://agent.domain:280/mgmt/subscribe/snmpv2/notifications.html>

<http://agent.domain:280/mgmt/subscribe/cim-schema-2.4/events.html>

Note that this time, SNMP traps and notifications depend on the version of SNMP rather than SMI, be
SNMPv2 rendered SNMPv1 traps (trap PDUs) obsolete and replaced them with SNMPv2 notificatio
(SNMPv2-trap PDUs), which remained unchanged in SNMPv3. This inconsistency in our URL nam
conventions is unfortunate, but alas reflects the history of SNMP.

In interactive mode, we only ask that an agent support a well-known URL for its management home page
there, the administrator can navigate to find the SNMP MIB or the notifications he/she is interested in,
some MIB variables or notifications, and submit the subscription to the agent. But in real networks, the n
of devices and systems to manage can be large. In this case, manual configuration is not only tedious a
prone, but also totally unrealistic. As a consequence, our management architecture must not necessa
on interactive configuration. We want to have the option to automate this subscription phase, by cloni
push schedules of similar agents and sending them automatically from the management server to the

6.3.3.2 Automated, machine-oriented mode

In automated mode, the situation is not as simple because a manager is not as smart as an administ
semantic analyzer is very weak compared to the administrator’s brain, so we cannot expect it to naviga
the agent’s management home page to find the pages to subscribe to MIB variables or notifications. If w
to automate this process, the two interactive subscription applets must have two machine-oriented coun
(thesubscriptionCLHS) at well-known URLs. The manager can then use these subscription CLHSs to s
predefined set of push schedules and notification filters to each agent.
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The URLs of the data subscription CLHS(s) supported by the agent look like this:

<http://agent.domain:280/mgmt/subscribe/auto/smiv2/mibs>

<http://agent.domain:280/mgmt/subscribe/auto/cim-schema-2.4/schemata>

Note the termauto in the pathname. Likewise, examples of URLs for the notification subscription CL
include:

<http://agent.domain:280/mgmt/subscribe/auto/snmpv1/traps>

<http://agent.domain:280/mgmt/subscribe/auto/snmpv2/notifications>

<http://agent.domain:280/mgmt/subscribe/auto/cim-schema-2.3/events>

For automated subscriptions, the absence of an extension at the end of the pathname allows for any
subscription CLHS: CGI script, CGI binary, Java servlet, etc. This gives us a lot of flexibility.

6.3.3.3 Data repository

If an agent is not able to store its subscription data (push schedules and notification filters) in EPROM, i
its configuration upon reboot. In interactive mode, it would be very tedious for the administrator to re-en
the subscription data of an agent whenever this agent reboots. Therefore, it is important to store this
persistent storage. Similarly, in automated mode, we need a persistent data repository to retrieve th
schedules and notification filters, clone them from a similar device, and send them to the agent (for th
time or if it has lost its subscription data).

As shown by Fig. 12 and Fig. 13, we use the data repository for storing subscription data. For the s
readability, the details of the different repositories are not shown on this figure. All repositories are virt
merged into a singlegeneral-purpose data repository that includes:

• the push schedules for the management data subscribed to by the manager
• the notifications subscribed to by the manager
• the network topology used by the network-map GUI applet to construct its GUI

In practice, these three logical data repositories may be physically stored into one or several rel
databases (RDBMSs), object-oriented databases (OODBMSs), NFS servers (flat files), DEN directorie

If an agent loses its subscription data, the restoration procedure that intuitively comes to mind is the follo

• the agent asks the manager for its subscription data
• the manager retrieves the agent’s push schedules and notification filters from the data server
• the manager sends the push schedules and notification filters to the agent

We will see in Chapter 7 that, for security reasons, the agent cannot inform the manager that it h
rebooted: the manager must detect it. The procedure to follow must therefore be slightly changed:

• the manager detects that the agent has just rebooted
• the manager retrieves the agent’s push schedules and notification filters from the data server
• the manager sends the push schedules and notification filters to the agent

6.3.3.4 Subscription with firewall

In Section 6.3.3.1, we considered a simplified case without firewall between the agent and the manag
Fig. 12). The manager can then directly interact with the agent (two-tier architecture); this poses no s
threat. This scenario is typically encountered in the management of small intranets, where the internal n
is trusted. But in Section 6.2.4, we explained that we want to allow for the presence of a firewall betwe
agent and the manager. So let us now study the complete scenario with a firewall (see Fig. 13). This s
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applies equally well to the interactive and automated modes, with one exception: in automated mode,
no communication with the management station.

The firewall system typically allows external agents to interact only with one internal machine
management server), as opposed to many internal machines (all the potential management stations, th
internal PCs and workstations). So, in the firewall case, the communication between the management
and the agent must follow a three-tier architecture and be streamlined via the management server.
achieved by thesecure relayCLHS, which forwards unchanged all the HTTP traffic from the intern
management station(s) to the external agent(s), andvice versa. The role of the management server is then fair
similar to that of an HTTP proxy in the World-Wide Web. The internals of the secure relay are not spe
by our management architecture. This CLHS uses access-control lists stored in a data repository tha
physically separate from or integrated with the management server.

One advantage of this setting is that it allows the administrator to monitor the network or take corrective a
from outside the enterprise (see Section 6.2.4). In this case, the communication goes across a firewal
can be similar to or different from the firewall located between the manager and the agent. The identifi
and authentication (not represented here) are performed similarly by the secure relay, whether the admin
works from an internal or an external machine. Obviously, direct access to the agents from ex
management stations must be forbidden for security reasons.

Fig. 13. Push model: discovery and subscription phases (with firewall)
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6.3.4 Distribution phase

In the last phase, the case of data collection and monitoring is only marginally different from that of notific
delivery in WIMA. The organization and communication models are the same. Only the CLHSs
object-oriented components running on the agent and management server (or on the mid-level and to
managers) are different. Let us begin with notification delivery, which is slightly simpler.

6.3.4.1 Notification delivery

Notification delivery from the agent to the management server is depicted in Fig. 14, together with
handling within the management server. Event handling will be studied in Section 6.3.4.3.

The agent runs ahealth monitorthat checks the agent’s own health. This component receives input fro
number ofsensorsthat can be implemented in hardware or software. For instance, the health monitor c
whether the agent’s Ethernet interfaces all sense a carrier, or whether the ventilation of the power suppl
working. (Note that in the IP world, agents are usually not able to monitor many things, unlike the a
typically found in the telecom world.) When a problem occurs and is detected, the health monitor sen

Fig. 14. Push model: distribution phase for notification delivery and event handling
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alarm to thenotification generator. The notification generator translates this alarm (a vendor-specific d
structure) into a standard SNMP notification, CIM event, and so on, depending on the information mo
supported by the agent and on the type of notifications subscribed to by the administrator. This notifica
then marshalled and sent by thenetwork dispatcherto the management server. For the time being, we skip
communication path between the agent and the management server (that is, the question mark on Fig.
will describe it in Chapter 7.

When it arrives on the management server, the notification is handled by thenotification collector, which
unmarshalls it. The notification collector passes this notification on to thenotification filter, whose role is to
protect the management application from misconfigured, misbehaving, or malicious agents. If the man
bombarded with notifications by an agent, this filter silently drops them, tells the notification collector to c
the connection to the agent (this connection will be defined in Chapter 7), logs a single entry in the data
and sends a single event to the event correlator. If the administrator previously set up an event handler
type of event, he/she can be informed immediately that something is wrong with this agent. Once the
cation filter has checked an incoming notification, it sends it to theevent correlator. As in SNMP-based
management platforms, the event correlator is the focal point of monitoring in WIMA. We will come bac
it in Section 6.3.4.3, once we have described another important source of events.

6.3.4.2 Data collection and monitoring

Let us now consider data collection and monitoring. As depicted in Fig. 15, the organizational model re
the same, and the building blocks look alike. The two main differences between this case and the previo
lie in the components and CLHSs running on both sides and in what triggers a management-data tran

When the push scheduler determines that it is now time for the next push cycle, it contacts thedata formatter
and tells it what SNMP MIB variables, CIM objects, etc. to send to the manager. The data formatter ret
the requested data from the virtual management-data repositories (SNMP MIBs, CIM schemata, etc.), f
these vendor-specific data structures into standard SMIv2 entities, CIM objects, etc. and sends them todata
dispatcher. The latter marshalls this data and sends it to the management server. Again, we postpo
description of the communication path between the agent and the manager until Chapter 7. This time,
management server, the data is received by thepushed-data collectorwhich acts just as the notification
collector (we will see in Chapter 7 why we preserve two separate processing units, instead of merging
The data is then unmarshalled and sent to thepushed-data filter, which increases the robustness of th
management application (same function as the notification filter). If this filter is happy with the rate at w
data is coming in from this agent, it passes on the data to an entity which has no equivalent in notifi
delivery: thepushed-data interpreter. At this level, the data forks off, depending on whether it is related
monitoring or data collection.

For data collection, incoming data is not analyzed directly: it is stored into the data repository so as
analyzed offline, at a later stage. The pushed-data interpreter sends incoming data to the data repos
some kind of technology orthogonal to WIMA (e.g., JDBC, ODBC, or NFS). The client-server nature o
storage operation is simply denoted in Fig. 15 with thedata clientcomponent on the management server a
thedata server component on the data server machine.

For monitoring, the data must be analyzed immediately, as it comes in. To achieve this, the pushe
interpreter executes a set ofrules not represented on Fig. 15. Together with the event correlator,
pushed-data interpreter constitutes the smartest part of the management application. In the IP wo
pushed-data interpreter makes up for the lack of self-management functionality in agents (unlike the
typically found in the telecom world). The rules are persistently stored in the data server, and dynam
cached by the management server. They allow the pushed-data interpreter to check that everything is “n
When the pushed-data interpreter detects a problem, it sends an event to the event correlator—for in
when a network device no longer sends a heartbeat. The pushed-data interpreter typically interacts w
finite state machines that represent each agent in the management application, and determines w
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problem is transient or semi-permanent. Transient problems are usually ignored, whereas semi-per
problems are dealt with by event handlers, operators, or both (see next section).

If a piece of data (be it related to monitoring or data collection) does not come in on schedule, the pushe
interpreter generates an event and sends it to the event correlator. This requires the management serv
a scheduler component that is not depicted in Fig. 15.

6.3.4.3 Event handling

In the previous two sections, we have seen two sources of events: the agents, which send notification
they are able to detect problems by themselves, and the pushed-data interpreter, which detects prob
behalf of the agents. The event correlator is situated at the intersection of these two flows of events,
between regular management and notification handling. It is the “clever” part of the management applic
it is able to find out the root cause when an avalanche of problems is reported for one or several mach
For instance, if a router is hung, the hosts behind that router will appear to be down, but no corrective
should be taken for the hosts: only the router should be rebooted. Working this out is the role of the
correlator.

Fig. 15. Push model: distribution phase for data collection and monitoring
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Among all the events that are processed by the event correlator, some are masked (e.g., those relat
hosts in the previous example) and silently discarded; others do not require any action (e.g., infor
events); yet others trigger some action (e.g., the root-cause event in the previous example). So fa
handling is similar in WIMA- and SNMP-based management platforms. The difference is the way action
invoked. We distinguish two types of actions (informative and corrective) and three types of mode (intera
fully automated, and semi-automated).

Informative actions simply aim at informing operators or the administrator that a problem occurred. Wh
something should be done in response to this problem is left for a human to decide. Conversely, cor
actions attempt to automatically solve a problem. Typically, low-severity events always trigger inform
actions (nothing to do immediately), medium-severity problems sometimes trigger corrective action
sometimes trigger informative actions (not all problems can be solved automatically), and high-severity
always trigger informative actions (too difficult to address automatically).

In interactive mode, at least one administrator or operator must register a network-map GUI wit
network-map registryto be told about informative actions. In this case, the event correlator forces an upd
all the registered GUIs when the finite state machine of an agent changes its state. Typically, the icon de
that agent turns red, green, or yellow to reflect the new state of that agent (respectivelyproblem , OK, or
unknown ). If the network-map GUIs display the network topology in a hierarchical manner, the ic
representing the topological hierarchy of this agent will also change their color accordingly.

In fully automated mode, no network map is registered with the network-map registry. NSM is then en
dependent onevent handlersdefined by the administrator, typically components in WIMA. The severity lev
of an event determines the event handler that is invoked by the event correlator. For informative actions
determines the emergency mode used to inform the administrator: an event handler might simply l
problem in the data repository, or send an email to the administrator, or take more drastic actions such as
the administrator or starting off a siren. The way event handlers are configured by the administrator is
sically site specific and totally independent of WIMA.

In real life, management platforms are often configured to operate in semi-automated mode. This mea
some problems are solved automatically by the management application (corrective actions) while oth
not (the operators monitoring the network are simply notified about informative actions). For instance
central IP router crashes in an intranet, an icon will turn red on the network-map GUI to prompt the ope
to take some action (e.g., reboot it, or replace a faulty board). But as other routers take over the failed
hosts with preexisting connections are temporarily hung because they have obsolete entries in their A
Resolution Protocol (ARP) cache. One way to alleviate this problem is to automatically clear the ARP
of all the IP routers of the intranet, as soon as an IP router is deemed to have crashed. In this scena
management application clearly takes both informative and corrective actions at the same time.

When an event handler is invoked, it makes sense to log an entry in the data repository. But we must be
not to run into scalability problems. For instance, when the IP networks and systems being managed
very stable, the event correlator might have to process a continuous flow of incoming events, and mig
result continuously invoke event handlers. Administrators should therefore be careful not to flood the
repository with too much information. Most of the time, onlysomeevents should be logged in the dat
repository. It is often more useful to log event statistics rather than the actual events. The computation o
statistics may be achieved by components running on the management server, and invoked by th
handlers (that then no longer invoke directly thedata clientcomponent). Similarly, icons should not turn to
often red or green on the network-map GUI, otherwise operators would not know what to do. Such oscill
can easily be reduced by adding some dampening in the finite state machines (e.g., it might take at
minute to go from green to yellow, and another minute to go from yellow to red).
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6.3.4.4 Data repository

Compared with Section 6.3.3.3, we have added a number of repositories for the distribution phas
general-purpose data repository now includes nine repositories:

• the push schedules of the management data subscribed to by the manager
• the definitions of the notifications subscribed to by the manager
• the network-topology definition used by the network-map applet to construct its GUI
• the event-handler definitions
• the event-handler invocation log
• the pushed data
• a log of the pushed notifications
• a log of the events generated by the pushed-data interpreter
• statistical summaries of events

As we mentioned in the subscription phase, all these logically different data repositories may physically
in one or more databases, NFS servers, DEN directories, etc.

6.3.5 Distribution

In NSM, scalability issues are typically addressed by distributing management over several machin
Chapter 3, we identified three ways of delegating tasks in distributed NSM: by domain, by microtask, a
macrotask. Delegation by microtask is useful in manager-agent delegation, when the delegatee
moderately smart (e.g., an SNMP agent); but it is not very interesting for manager-manager delegat
managers are supposedly smart and can do much more than mere microtasks. In WIMA-push, we are th
only interested in delegation by domain and delegation by macrotask. Let us describe these two approac
how to combine them.

Management server viewed as a distributed system: delegation by macrotask

In the first scenario, the management server is viewed as a distributed system. The components desc
Fig. 14 and Fig. 15 are now grouped into managementsubsystemsand spread over different machines. W
keep a centralized management paradigm, as we keep a single management domain for all the agents
management application is now distributed over several machines, each fulfilling a particular manag
task. In the case depicted in Fig. 16, mandatory management tasks are split into two subsystems: th
subsystem and the pushed-data subsystem. This way of distributing management tasks makes even m
if we add the optional tasks sometimes found in management platforms (see Section 2.2); e.g., in Fig.
show the billing subsystem; we could also add an accounting subsystem, a security subsystem, etc.

By balancing the load of the management server between several machines, we remain scalable up to
degree. But as the load caused by the management-application processing gradually increases, there
time when a single management task can no longer be executed on a single machine for all managed n
and systems (e.g., the rule-based event correlator of the event subsystem saturates and cannot keep u
the events to process and rules to execute). At this stage, we need to go from one manager running on
machines (centralized management paradigm) to several managers running concurrently and in ch
separate management domains (weakly distributed hierarchical management paradigm).
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Distributed hierarchical management: delegation by domain

In the second scenario, we split one large management domain into several smaller management dom
assign one management server per domain. This solution presents several advantages. First, it enables
trators to decrease the amount of management data processed by each machine. As management do
be further split recursively, this solution scales considerably better than the previous. Second, it is ver
suited to geographically dispersed enterprises. By placing one management server per geographical l
the administrator saves a lot of bandwidth on WAN links, hence a lot of money. Also, for security reaso
might simply be impossible for an agent to send data directly to a management server over a WAN lin
firewall protecting the management-server site might demand that this data be streamlined via a
management server. Third, delegation by domain is a straightforward way to implement distributed h
chical management (see our architectural decision in Section 6.1.4.4).

Fig. 16. Distribution: management server viewed as a distributed system
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In the case illustrated by Fig. 18, we have one top-level manager, two management domains, and two m
managers. To keep this figure readable, we depicted only two agents, one in each management domain
would have many more in real life. A top-level manager looks very much like a management server
manager-agent scenario studied in the previous sections. But a mid-level manager is somewhat more c
as depicted by Fig. 17, because it glues together a management server (in charge of the agents loca
management domain) and an agent (which sends the data subscribed to by the top-level manager, a
notifications).

Fig. 18 shows that the event subsystem of a mid-level manager glues together the event subsystem of
and the event subsystem of a management server. Similarly, the pushed-data subsystem of a mid-level
aggregates the pushed-data subsystem of an agent and that of a management server. Within a m
manager, some glue components allow the data received by the management server to be processed,
results of this processing to be sent to the top-level manager. Inversely, other glue components allow hig
policies received from the top-level manager to be translated by a mid-level manager into low-level ne
and systems configuration data for the agents. The specification of these glue components is outside th
of our Ph.D. work. It is complex and requires a well thought-out model to link policy-based managemen
NSM in both directions.

As we mentioned earlier, the organizational and communication models are identical between a to
manager and a mid-level manager, between two layers of mid-level managers, or between a mid-level m
and an agent.

Fig. 17. Distributed hierarchical management: mid-level manager = management server + agent + 
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Fig. 18. Distributed hierarchical management: delegation by domain
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Distributed hierarchical management: delegation by domain and by macrotask

The third scenario is a compound version of the previous two, whereby we integrate delegation by doma
delegation by macrotask. This scenario can be broken down into three variants.

In the first variant, we have strict delegation by domain and partial delegation by macrotask. For
management domain, the different subsystems depicted in Fig. 18 actually run on several machines (p
one machine per subsystem). A typical case when this might be useful is when offline processing i
resource demanding over extended periods of time. As an administrator, you are interested in automa
generation of usage-statistics reports or per-department network-usage bills; but you do not want to slow
significantly the machine where the event correlator is running if offline processing is demanding in ter
CPU, memory, disk, and network bandwidth resources. By running the offline-processing subsystem
machine and the event subsystem on another, we temporarily (or permanently) solve this problem,
postpone (or avoid) the split of a management domain and the installation of a new manager, which save
and money.

The second variant is the dual form of the previous: we have partial delegation by domain and strict dele
by macrotask. Within a management domain, all subsystems run on different machines. But some sub
are delegated (e.g., the pushed-data subsystem) while others are not. In other words, only some man
tasks are delegated by domain. For instance, billing can be entirely managed by the top-level manager
directly accesses the data repositories of all the mid-level managers. Another example is event corr
distributed event correlation is complex to model and understand; to avoid it, it might be interesting to
filter events at each mid-level manager, and to correlate events at the top-level manager.

In the third variant, we have partial delegation by domain and partial delegation by macrotask. This is
complex to do and more complex to debug than the previous variants. But it may be useful in par
situations, e.g. to cope with constraints imposed by legacy management applications. Although allo
WIMA, this variant is not expected to be used in many cases.

We will come back to distribution in Chapter 8, when we explain how the use of XML can nicely unify
simplify the communication between managers.

6.3.6 Migration path: four-tier architecture

An important deployment issue is to define how to deal with legacy systems, namely SNMP agents
agents are not deployed yet). How can we manage an agent that does not embed an HTTP server, or
support the components described in Fig. 15 (push scheduler, data formatter, and data dispatcher)? In
we adopted a very simple solution inspired by the way SNMP agents were gradually deployed in the
1990s: we add a management gateway between the management server and the agent. In other word
from a three-tier architecture to a four-tier architecture (see Fig. 19). The management gateway suppo
push and pull. On the left side, it allows the management server to subscribe to management data, and i
regular data and notifications to the management server as if it were a full-blown WIMA agent. On the
side, it acts as a standard SNMP manager and polls the SNMP agent.

Fig. 19. Migration path: four-tier architecture
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This simple migration scheme allows the agent vendor to integrate the management gateway inside th
at any point in time (as we saw with SNMP in the early 1990s): the migration is then completed.

Note that having a single management gateway for several agents is feasible, but not very practical. W
to run multiple schedulers in parallel on the same machine, which is prone to interferences betwe
different emulated agents. But it is feasible and allowed by WIMA.

After having presented in detail the push model that underlies regular management and notification deli
WIMA, let us now turn to the pull model.

6.4 Ad Hoc Management: The Pull Model

In this section, we present the details of WIMA-pull, our pull-based architecture used forad hocmanagement.
To begin with, we describe manager-agent interactions in two steps. In Section 6.4.1, we describe the
case when we have no firewall and can access the agent directly from the management station (t
architecture); in Section 6.4.2, we explain how to deal with a firewall (three-tier architecture). The
Section 6.4.3, we describe manager-manager interactions and show how to distribute management. Fi
Section 6.4.4, we present a migration path to deal with legacy systems.

6.4.1 Two-tier architecture (no firewall)

Fig. 20. Pull model:ad hoc management without firewall
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Ad hocmanagement is typically used in interactive mode for troubleshooting or short-term monitoring
Section 2.1.11). The management data retrieved from the agent is not stored or correlated on the mana
it is immediately displayed (e.g., graphically as a time series, or textually as a text field) and discarde1. In
WIMA, ad hocmanagement relies on the pull model for the reasons exposed in Section 6.1.4.3. Befo
detail our general-purpose architecture that allows for firewalls between the agent and the management
let us first study the simpler case when we have no firewall. Our three-tier architecture then becomes a t
architecture.

The direct interactions between the management station and the agent are depicted in Fig. 20. Similarl
publication and subscription phases in the case of push, the starting point in the case of pull is the netwo
GUI, a signed Java applet stored on the management server (see Appendix B). From this GUI, we retri
agent’s management home page at<http://agent.domain:280/mgmt/> (see Section 6.3.3.2). From
this home page, the administrator selects the URL of the embedded management GUI he/she is inter
(one agent may publish several embedded management GUIs on its home page). The management GU
is coded as a Java applet, is then loaded into the administrator’s Web browser. Via an SNMP MIB brow
some kind of graphical tool, the administrator selects the SNMP MIB variables, CIM objects, etc. that h
is interested in receiving. It is possible to tell the applet to retrieve the same entity every N seconds, and t
the retrieval at any time. The details of the communication protocol will be described in Chapter 7.

When a MIB variable is requested by the applet, the request is made to the HTTP server run by the age
HTTP server then launches a CLHS that acts as a management gateway between HTTP and the
management-data repositories supported by the agent. In Fig. 20, we represented an HTTP
management gateway accessing SNMP MIBs and an HTTP-CIM management gateway accessin
schemata, but these examples are not limiting. Depending on the degree of optimization of the code run
agent, the HTTP-SNMP management gateway can either directly access the in-memory data structure
SNMP MIB (e.g., via shared memory) or do an explicit SNMPget . The same is true with other information
models. This offers a useful migration path to network equipment vendors.

Note that the agent need not necessarily embed all the management GUIs that may be used by the admi
It is also possible to retrieve a generic management GUI applet from the management server (this mu
signed applet, for the security reasons given in Appendix B in the case of the network-map GUI). U
embedded management GUIs, which are specific to a given agent, generic management GUIs are sh
many agents, possibly all of them. The main problem with generic management GUIs lies in the details
communication protocol. In Chapter 7, we will propose conventions to exchange data between a mana
GUI (be it embedded or generic) and an agent. But the very nature of an embedded management GU
that its vendor could adopt a proprietary communication protocol instead of ours to request an SNMP
variable, CIM object, etc. since the vendor codes both the embedded management appletand the components
that underlie the management gateways running on the agent. If this is the case, the HTTP requests s
generic management GUI following our recommendations in Chapter 7 might not be understood b
proprietary management gateways embedded in the agent. There is a trade-off to be made: either the a
the capacity to embed all the necessary management GUIs, in which case the vendor might be incline
a proprietary communication protocol, or the agent is very resource constrained and the vendor would
implement management gateways that support an open communication protocol.

Now that we have described a simple two-tier pull-based architecture that is only possible when we h
firewall between the agent and the management server, and is therefore not recommended in WIMA
present our complete, general-purpose, three-tier architecture that deals with (but does not require) fi
for ad hoc management.

1. An entire time series may be saved in the general-purpose data repository, as a snapshot. Still, the main purpose oad hoc
management data is not to be stored and analyzed afterward, but rather to be analyzed immediately by a human.
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6.4.2 Three-tier architecture (firewall)

As we explained in Section 6.2.2 (three-tier architecture) and Section 6.2.4 (firewalls), the management
should always access the agent via the management server. One of the reasons is that it facilitates acce
and authentication. In Fig. 21, we added a third tier between the management station and the age
management server. This new tier is basically proxying all requests back and forth between the mana
station and the agent (e.g., forad hocmonitoring), or between the management station and the data server
to save a time series for an SNMP MIB variable). This operation is performed by a component called thesecure
relay. Upon start-up, this secure relay retrieves the access-control lists and policies from the general-p
data repository (usually, this sensitive data is not stored in the same database as the rest of the man
data) and caches them locally. Once an administrator or operator has identified and authen
himself/herself through a mechanism orthogonal to WIMA, this secure relay controls the access for that
on the agent and decides whether access to the agent should be granted to that person or to one o
requests. The access-control granularity, and more generally the security policy, is not specified by WI
can be done on a per-agent basis, per-MIB basis, per-managed-object basis, etc.

Note that the component that implements this secure relay can be sub-divided into several compone
one of them can translate the communication protocol understood by the management gateways runnin
agent into another protocol. This is particularly useful in the case of generic management gateways (
problem exposed in the previous section). We will come back to this in Chapter 8, when we address th
of translating between two information models.

Fig. 21. Pull model:ad hoc management with firewall
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6.4.3 Distribution

Distribution of management is generally useful when management is automated. It allows for the reduc
the number of events processed per management server, and generally speaking, mainly addresses s
issues.Ad hoc management is always interactive, so it generally does not have to be distributed.

There is a noticeable exception to this: geographically dispersed enterprises protected by firewalls. For s
reasons, the firewall of the headquarters (or the firewall of a subsidiary) might require that all the data c
in from a remote site (respectively coming out of this site) be streamlined via a single machine. In this ca
administrator located at the headquarters can temporarily monitor the error rate of a remote router
subsidiary by going from his/her management station to the agent through the top-level manager (locate
headquarters) and a mid-level manager (located at the branch). Both of these managers can perfor
identification, authentication, and access control. In this case, even meread hoc management requires a
full-blown distributed solution. In the case of pull, as in the case of push, we use distributed hierar
management in WIMA for the reasons exposed in Section 6.1.4.4.

6.4.4 Migration path

The migration path is trivial in the case of pull: the embedded HTTP server, the embeddedmanagement
gatewaycomponents, and the embedded management GUIs described in Section 6.4.1 are initially exter
to a machine that acts as a standard SNMP manager toward the agent. Then, all of these entities
integrated, agent by agent, as vendors add support for them. As in the case of push, we then gradually
a four-tier architecture to a three-tier architecture (see Fig. 19), agent by agent, as the migration progr

Note that in the case of pull, a single external management gateway can be used for several agents. We
same thing in the early days of SNMP deployment, when management gateways supported SNMP on o
and proprietary management architecture and protocol on the other side. This is simple to do with
because a single agent can support several MIBs, so one management gateway can support all the MI
the agents. Similarly, in WIMA, one agent can manage multiple virtual management-data repositories (
MIBs, CIM schemata, etc.), so it is fairly simple to group them logically and to make them all accessible
a single external management gateway.

6.5 Summary

In this chapter, we have presented one of the core contributions of this Ph.D. thesis: WIMA, our Web-
Integrated Management Architecture. First, we described our main architectural decisions. We explaine
we focused on the definition of new organizational and communication models; we justified our choice
define yet another information model; we highlighted the advantages of dissociating the communicatio
information models; and we proved that the push model is more appropriate than the pull model to tr
regular management data. Second, we detailed our main design decisions. We advocated the use
technologies, a three-tier architecture, and components; we took firewalls into account from the
beginning; we made the data repository independent of the management platform, and we made it
transfer management data in bulk; finally, we took several decisions that facilitate deployment, and exp
how to deal with legacy systems. Third, we presented in detail our push model for regular manageme
notification delivery, and delineated event handling. Fourth, we described our pull model forad hoc
management. In both cases (push and pull), we showed how to distribute management across a hier
managers and proposed a migration path from SNMP- to WIMA-based management.
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Chapter 7

A NEW COMMUNICATION MODEL: WIMA-CM

In Chapter 6, we gave a broad view of how management data should be exchanged between a manage
agent, or between two managers, using Web and push technologies. But what technology do the agen
manager use to communicate? What protocol do they use to exchange management data? How should
be formatted, represented, and encoded? What constraints must be satisfied when we have a firewall
the manager and the agent? In this chapter, we answer all these questions and define a new commu
model called WIMA-CM (Web-based Integrated Management Architecture - Communication Model).
model consists of two parts. The communication model for push-based regular management is
WIMA-CM-push; its pull-based counterpart forad hocmanagement is calledWIMA-CM-pull. Most of our
work went into defining WIMA-CM-push, which is one of the main contributions of our thesis.

This chapter is organized as follows. In Section 7.1, we express in simple terms the two communi
problems implicit in Chapter 6. In Section 7.2, we describe our main design decisions to solve these pro
In Section 7.3, we highlight the drawbacks of using the sockets API as the manager-agent communicatio
In Sections 7.4, we justify our choice for HTTP-based communication and describe WIMA-CM-pus
Section 7.5, we analyze the important issues of timeouts and reconnections. In Section 7.6, we
WIMA-CM-pull. Finally, we summarize this chapter in Section 7.7.

7.1 Two Communication Problems

In Chapter 6, we described a push-based management architecture for transfering regular management
notifications (see Fig. 14 and Fig. 15), and a pull-based management architecture for transferingad hoc
management data (see Fig. 21). In this section, we extract two simple communication problems from
three complex figures: one for push, one for pull. The goal here is to identify the two ends of the communi
pipe between the manager and the agent. These two simple models will be used throughout this chapte
we describe the exact nature of the communication pipe and how to format the management data tran
across it.
121
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7.1.1 Simplified terminology

To make figures easier to read and explanations less verbose in this chapter, themanagement serverwill be
called themanagerand themanaged entitywill be referred to as theagent. This is the case of terminology
abuse mentioned in Section 2.1.4, whereby we confuse the management application with the machin
Moreover, each time we refer to manager-agent communication in a centralized scenario, we also im
refer to manager-manager communication in the context of distributed hierarchical management. In
words, whenever we use the wordagent, we could also refer to another manager, one level down the hie
chical tree. The reason for this is that we use exactly the same communication model for manager-ag
manager-manager communication. We will come back to distributed hierarchical management in more
in Chapter 8.

7.1.2 Communication problem for pushed data

For the push model, whether we deal with monitoring, data collection, or notification delivery, we ha
dispatcher on the agent and a collector on the manager, as depicted in Fig. 22. The dispatcher c
pushed-data dispatcher, a notification dispatcher, or a combination of the two. Similarly, the collector c
a pushed-data collector, a notification collector, or both. As far as the communication between the mana
the agent is concerned, Fig. 14 and Fig. 15 can therefore be abstracted into a single communication p
shown in Fig. 22.

The dispatcher and the collector can be implemented as CLHSs (CGI scripts, CGI binaries, Java servle
invoked via HTTP servers, or standalone programs (Java applications, C++ binaries, C binaries, etc.). T
not even have to be implemented with the same technology. In fact, the exact nature of the two ends
communication path is transparent to the communication model itself.

7.1.3 Communication problem for pulled data

Fig. 22. Communication problem for pushed data

Fig. 23. Communication problem for pulled data
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For the pull model, we used HTTP to communicate between the manager and the agent in Fig. 21, but w
have used a domain-specific transfer protocol over TCP or UDP as well. As a result, the HTTP-SNMP ga
depicted in Fig. 21 is replaced in Fig. 23 with a more generic management gateway, which may be inte
external to the agent. As in the previous case, the management gateway and the secure relay
implemented as any kind of CLHS or standalone program. And once again, the technology used at the tw
of the communication path is transparent to the communication model itself.

7.2 Main Design Decisions

In this section, we present the main design decisions behind our new communication model: (i) the disso
of the communication and information models; (ii) the use of a reliable transport protocol; (iii) the us
persistent TCP connections; (iv) the creation of the connections by the manager; and (v) the reversed cl
server roles. When applicable, we point out the main differences between WIMA-CM and the communi
model of the SNMP management architecture.

7.2.1 Dissociation of the communication and information models

As we saw in Section 6.1.3, one of our main architectural decisions was to dissociate complete
information and communication models in WIMA. The main characteristic of WIMA-CM, and in our view
main strength, is that it does not require or rely on the use of any specific information model (SNMP M
CIM schemata, etc.). Instead, each bundle of management data is self-describing. The technology
propose to use to implement this dissociation is MIME (Multipurpose Internet Mail Extensions). We
describe it in detail in Section 7.4.3, once we have justified a number of other design decisions.

7.2.2 Reliable transport protocol: TCP

In Section 2.4.1.8, we explained the problems induced by SNMP’s use of an unreliable transport protoc
simplest solution to these problems is to go from UDP to TCP to transport management data. This s
presents many advantages. First, it significantly reduces management-data losses. Urgent notifications
an agent are no longer lost for silly reasons such as buffer overflows in IP routers. We still have no gua
of delivery, but at least the TCP part of the kernel tries hard (for 9 minutes in Berkeley-derived kernels) to
the data across. Second, it relieves the management application from managing all the timers and per
all the retries currently necessary to recover from network losses in the case of SNMP polling. Third, it re
network latency. Fourth, it dramatically improves interoperability. Fifth, it makes it easier to go ac
firewalls. The first three advantages were already covered in Chapter 2; let us now expand on the oth

7.2.2.1 Interoperability

Application-level acknowledgments (ACKs) are satisfactory in the case of SNMP polling because the
implicit and remain internal to the manager. If the agent does not answer to an SNMPget , the manager issues
the sameget again once a timer has expired. If the agent answers, it implicitly tells the manager that
received its request, so the manager gets an implicit ACK from the agent.

The situation is very different in the case of push. The transfers of regular data are triggered by the age
time, not by the manager. If we use UDP to transport regular data, we need to define an e
application-level ACKs policy for the manager to acknowledge receipt of the data. This requires that all a
and managers worldwide agree on the same ACKs policy and implement it in an interoperable way. Ho
we make Cisco, Nortel Networks, Microsoft, etc. agree whether ACKs could be piggy-backed or not, wh
management data could be ACK’ed in bulk (i.e., with a single message) or not, whether the format of an
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could possibly or should necessarily include a Microsoft-specific OLE (Object Linking and Embedd
reference, etc.1? How can an ACKs policy be independent of the information model in an interoperable w
By using TCP instead of UDP, we free ourselves from defining such a scheme and we no longer h
convince all vendors to adopt the same ACKs policy. This in itself is a good reason to prefer TCP over
for push technologies.

7.2.2.2 Firewalls

Firewalls are easier to set up for TCP-based applications than for UDP-based applications [54, 55]. W
TCP client communicates with a TCP server, it is easy to learn who created the connection and who in
a request; with TCP, it is difficult for an external machine to deceive an internal machine by sending a
response to a nonexistent request2. With UDP, the opposite is true: it is comparatively more difficult to lea
who initiated a communication, but it is simplistic to send a response without having received a reques
The reason for this is that TCP is stateful whereas UDP is not. With TCP-based applications, TCP se
numbers allow a firewall to easily match requests/responses coming from an external untrusted machi
the corresponding responses/requests issued by the trusted internal machine. Even better, by b
incoming TCP segments with the SYN3 bit set and the ACK bit clear, we prevent external machines fro
creating TCP connections to internal machines (we will come back to this in Section 7.2.4). Conversely
UDP, we have no SYN bit and no sequence numbers. For security, UDP-based applications require sm
expensiveapplication-level gateways(also calledUDP relays) to provide for this functionality; such gateway
render the two-way communication stateful and make sure that an external machine does not break the
data flow of a UDP-based application.

So, TCP proves superior to UDP in two respects. First, TCP-based application-level gateways are e
program than their UDP-based counterparts, because of the availability of sequence numbers in the tr
protocol. Second, TCP-based applications can rely on simplepacket-filtering gatewaysinstead of full-blown
application-level gateways, whereas UDP-based applications cannot; for UDP, application-level gatew
mandatory because packet-filtering gateways are too risky and renown for being inadequate—the
problem is the impossibility to prevent external machines from sending bogus responses [55]. This s
argument is one of the main reasons why we selected TCP: packet-filtering gateways are considera
expensive and less difficult to configure than application-level gateways. They can be integrated in IP ro
for instance. Although they are less secure (it is easy to make mistakes when defining the access-con
of a packet-filtering gateway [55]), many enterprises are happy to use them. For SMEs, this is a very imp
argument. By selecting TCP, we do not require application-level gateways in our WIMA architecture whe
we go across a firewall: enterprises have the choice between inexpensive packet-filtering gatewa
expensive application-level gateways. This is a significant improvement over SNMP-based managem

Another argument in favor of using TCP across a firewall is to use HTTP at the application level. The r
is that most firewalls worldwide are already configured to let HTTP traffic go through, because of the
The external Web server of the enterprise is usually not (and should not be, for security reasons s
denial-of-service attacks) the same machine as the manager depicted in Fig. 27. But because chance
the firewall is already set up to let HTTP traffic go through in both directions, the update of the configur
file of the firewall is trivial: one only has to copy the configuration of the Web server and change the IP ad
of the machine allowed to go across the firewall. In many companies, especially SMEs, this does not r
paying an (expensive) external consultant. We received very good feedback from the industry about th

1. Note that SNMP-based management avoids this problem by not acknowledging notifications, which leads to some problem
saw in Chapter 2.

2. It is not impossible, though: TCP sequence-number attacks make it possible to “steal” existing TCP connections. But they
possible with poorly configured firewalls and with old TCP implementations that generate easy-to-predict sequence numbe

3. SYN stands for SYNchronize. The SYN bit is one of the CODE BITS in the TCP header. It is characteristic of the first segme
three-way handshake when a TCP connection is established.
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7.2.2.3 Lightweight transport protocol

TCP is not an ideal transport protocol, though. It certainly relieves the application from performing ret
missions, but it also brings in a host of well-known problems [73]:

• TCP automatically comes with flow control, which may not be necessary. Flow control increases ne
overhead by dynamically adjusting the window size.

• TCP’s slow-start mechanism is inefficient over fast network links, especially for LANs operatin
100 Mbit/s and above.

• TCP can be slow to recover from failures, particularly in case of heavy losses.
• TCP’s urgent mode is messy and “leads to much confusion” [211, pp. 292–296]. Apart from that,
offers no way to differentiate between high- and low-priority segments within a single connection.

• TCP makes it impossible to time out a segment without timing out the entire connection.

If other lightweight, reliable transport protocols were widely available, they could be viable alternatives to
in NSM. Actually, this is not specific to NSM. A BOF (Birds Of a Feather) session chaired by Bradner
Paxson at the 43rd IETF Meeting [73] showed that many people working in different areas would be inte
in an intermediary transport protocol halfway between UDP and TCP. This topic was also discussed wit
IRTF Network Management Research Group, when we investigated whether administrators should be
the choice to transport SNMP over UDP, TCP [184], etc. The situation matured in the course of 1999, a
IETF Signaling Transport Working Group recently proposed the Stream Control Transmission Pro
(SCTP) [213]. Initially devised as a means to transport telephone signaling (e.g., Q.931 or SS7—Sig
System No. 7—) across IP networks, SCTP grew into a general-purpose transport protocol. After a long
of Internet-Drafts, SCTP should soon be submitted to the Internet Engineering Steering Group (IES
approval as a standards-track RFC. Whether SCTP will be accepted by the IESG and later by the
remains to be seen.

There are two well-known problems with defining new transport protocols. First, different applications
different requirements and want to change different things in TCP; this makes it difficult to find a conse
within the IETF around a single proposal. But most people agree that the market will be very reluctant to
several new transport protocols and will demand a single proposal. Hence, we face a deadlock. Secon
are so many TCP/IP stacks already deployed today that it would take many years and would cost a for
upgrade all of them to support the newly specified transport protocol. But nobody wants to use a new tra
protocol that is not widely deployed, so we have a chicken-and-egg situation! One example is partic
symptomatic: even the designers of RTP (Real-time Transport Protocol) decided to layer it on top of ex
transport protocols, although everyone agreed that a new transport protocol was needed for delivering re
data.

If we remain pragmatic, we must therefore acknowledge that today, and in the foreseeable future, we h
choice between only two transport protocols: UDP and TCP. We explained why UDP is inadequate, so w
no other reasonable option than to adopt TCP.

7.2.3 Persistent TCP connections

Once we have selected TCP as the transport protocol, the next natural step is to use persistent TCP con
to exchange management data between the manager and the agents. The reasons are twofo
manager-agent associations are more or less permanent, or at least very long-lived: a given agent is m
by a given manager for extended periods of time. Second, persistency avoids the overhead of repeatedl
up and tearing down TCP connections [200]; this problem is well-known and is the major reason
HTTP/1.1 is now gradually superseding HTTP/1.0. So, why do we not already use persistent TCP conn
in SNMP-based management today?
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7.2.3.1 The Myth of the Collapsing Manager

There is a well-established myth in the SNMP community that persistent TCP connections betwe
manager and the agents are not an option because of the memory overhead incurred by the manager
number of agents grows large. After theMyth of the Collapsing Backboneand theMyth of the Dumb Agent,
both destroyed by Wellens and Auerbach in 1996 [242], another SNMP myth is about to collapse: theMyth of
the Collapsing Manager, or “Why persistent TCP connections are evil for transfering management data”

As a rule of thumb in production environments, it is often considered than one single manager shou
directly manage more than a few hundred not-too-busy agents. Beyond 200–300 agents, we begin
well-known problems:

• The LAN segment to which the manager is connected becomes saturated (bottleneck effect).
• A single point of failure for so many machines and network devices becomes unreasonably risky.
manager dies, too many agents are left on their own.

• The CPU and memory footprints of the management application become too large on the manage
the event correlator cannot cope with the flow of incoming events, the pushed-data interpreter cann
with the number of rules to execute per push cycle, etc.

If the agents are particularly busy (e.g., if they often push data to the manager or if they often report prob
the administrator usually partitions the management domain and installs a new manager in the newly
domain. In such a setting, the maximum number of agents per manager falls well below the range given
e.g., down to 50 (see Chapter 8 for distribution aspects).

We claim that the memory overhead of several hundred persistent TCP connections is perfectly accep
a modern management station. The reason why theMyth of the Collapsing Managerwas born is that
management stations had little memory when SNMPv1 was devised, typically 8–16 Mbytes. Manag
stations were typically workstations in those days, now they are PCs. Today, a basic desktop has 128
of memory, and management stations typically have 512 Mbytes (sometimes more to manage large net
This is more than enough to cope with hundreds of persistent TCP connections.

The Web gives us a solid argument to substantiate our claim. If we consider the constraints routinely sa
by the Web servers of famous corporate organizations, it becomes obvious that our solution put
reasonable requirements on managers. For instance, Kegel [119] reports that some sites routinely co
thousands of concurrent HTTP or File Transfer Protocol (FTP) connections to a single host (not to a cl
which is more demanding than our management scenario by an order of magnitude. Both Kegel a
linux-kernel mailing list [129] mention work under way to support more than 10,000 concurrent T
connections, which makes our requirements comparatively minute (lower by two orders of magnitude)

Beyond these mere comparisons, can we put real figures on the memory overhead caused by hun
persistent TCP connections on the manager?

7.2.3.2 Assessing the memory overhead of persistent TCP connections is hard

Assessing the memory space required per open socket is a difficult task. First, it depends on the optio
were selected when the kernel was built. In Linux, for instance, some C data-structure definitions c
optional fields declared between “#ifdef ” and “#endif ” block separators (e.g., the support for multipro
cessor machines is optional). So, depending on the installation preferences specified by the administra
memory overhead caused by the creation of a socket may vary. Second, it depends on kernel caches
allocation scheme for new cache entries is operating-system specific. Third, the allocation of som
structures depends on the network topology because the manager caches the IP and Medium Access
(MAC) addresses of itsneighbors(see Fig. 24). By definition, a neighbor is adjacent to the manager; i
reached in one hop by a packet going from the manager to the agent (destination host). For instance,router1
is the manager’s neighbor foragent1 in Fig. 24. Upon the creation of a socket, some data structures
allocated on a per-neighbor basis, others on a per-destination-host basis, yet others on a per-sock
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Clearly, the number of neighbors depends on the network topology, which is site specific and can
modeleda priori. Consequently, the memory footprint of the data structures allocated per neighbor can
calculated theoretically: we can only compute an upper bound for it.

Assessing the memory overhead of hundreds of active, concurrent TCP connections is even more d
because of the sheer number of agents and the dependency on the network topology. First, experimen
ruled out, because it is not feasible to gather hundreds of PCs in a test network, to use them to send rea
a manager, and to perform actual measurements on the manager. (We do not have hundreds of m
available for testing in our laboratory.) Second, it is not clear that results obtained from simulations w
reflect the reality, as we will now explain.

7.2.3.3 Simulations: what about side-effects?

We just mentioned that data structures can be allocated per socket, per destination host, or per neighb
result, the manager’s memory overhead cannot be evaluated by simply creating hundreds of conn
between two machines, one being the manager and the other simulating all the agents: we really
simulate hundreds ofdifferent agents. To do so, we have two options.

In the first scenario, we preserve real manager-agent communication over a real network. For instance,
simulate 100 agents on a single PC, run different copies of the simulator on several PCs sitting behind d
neighbors, and have these PCs communicate with the manager over an Ethernet segment. On each PC
either impersonate 100 machines from a single kernel (e.g., by using virtual interfaces) or try to ru
different kernels in user mode (quite a challenge buta priori not impossible).

In the second scenario, instead of having real communications over the network, we can instead have
machine simulate all the agents, the manager, and all intermediate network equipment, intercon
according to a certain network topology. We can then simulate 401 kernels running in user mode as s
processes, separate threads, or a single process. Inter-machine communication is then replaced res
with interprocess, interthread, or intraprocess communication. We also have to simulate by progra
buffering and queuing mechanisms normally implemented by the kernels, as well as the network interfac
the network links.

Fig. 24. Memory overhead of a socket: neighbors vs. destination hosts
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The problem with these scenarios is that they are exposed to side-effects which are difficult to assess
first scenario, would the simulator be able to deliver data via its single network interface in the same wa
real-life agents would? No, because outgoing TCP segments supposedly generated by different m
would be queued in a single queue, outgoing IP packets supposedly coming from different machines w
queued in a single queue, data-link frames supposedly leaving through different network interfaces on d
machines would be queued in a single outgoing queue and delivered to the network through a single n
interface, etc. How far apart would simulation-based results be from real-life measurements? What wo
the effects of this serialization? We do not believe that it is possible to know in advance.A priori, they could
be close or remote as well.

In the second scenario, the connections created within a single machine (AF_LOCAL or AF_UNIX s
family) are different in nature and memory overhead from those created over a network (AF_INET s
family). Some network simulators, e.g.ns-2 [228], do not even use sockets at all. So the measurements f
simulations would necessarily be different from those measured in a real network. By which factor?
again, it is very hard to tell. What about the side-effects of memory management? As we will see in th
section, this is already difficult to assess on a single machine running a single kernel; assessing it on a m
running 401 kernels in user mode seemed to be a daunting task to the author. For instance, if the kern
out of memory, allocations fail; but if user space runs out of memory, pages are swapped. Another so
side-effects is when the real kernel (the one running in kernel mode) runs out of free pages or buffers:
simulated machines are affected, not just one. What impact does this have on the simulation results?

In short, if we had developed a simulator, we would not be able to justify why our results have some cred
As a result, we opted instead for a theoretical study of memory overhead.

7.2.3.4 Theoretical study:modus operandi

Having ruled out experimentation and simulation, the only solution left to assess the memory overh
hundreds of persistent TCP connections on the manager side is to perform a theoretical analysis. To do1

studied the kernel code (written in C) of Linux 2.3.99-pre62, the latest release of Linux at the time of writing
In order to compute this memory overhead, we added up:

• the memory allocated per socket;
• an upper bound for the memory allocated per neighbor;
• an upper bound for the memory allocated per TCP receive buffer; and
• a bit of extra memory as a rule of thumb to account for memory-management overhead.

Note that to assess the overall memory footprint, we should also account for application-level receive b
(that is, the management-application variables where we store incoming data on the manager side). B
buffers are needed anyway, regardless of the transport protocol and the persistency of the connection
we try to assess here is the extra memory overhead induced by the creation of hundreds of persiste
connections, not the overall memory footprint of the manager (which also runs the event correlator, th
interpreter, etc.). Thus, we will ignore the application-level receive buffers in our calculations.

We decided to study not one but two cases. In Section 7.2.3.5, we investigate the worst-case scenario
gives us an absolute upper bound for the memory footprint on the manager, whatever the network to
encountered, whatever the setup of the agents by the administrator. In Section 7.2.3.6, we present
realistic scenario that takes into account some common-sense remarks. This allows us to compute
realistic upper bound of the memory overhead.

In both cases, we assume that we have a maximum of 400 agents managed by a single manager, w
connections per agent: one for pushed data and one for notifications (we will justify these two connect
Section 7.4.2.2). This yields a total of 800 connections for the manager. The default number of file desc

1. The author thanks Werner Almesberger for his precious help in quantifying the memory footprint of TCP connections in Lin
2. Linux 2.3.99-preXX are prereleases of Linux 2.4, expected to come out in the fall of 2000.
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is large enough (4096 or 8192, depending on the options specified when the kernel was built, and dyna
settable via/proc/sys/fs/file-max ), so we need not increase it on the manager.

7.2.3.5 Worst-case scenario

The footprint of the C data structures that are allocated whenever a socket is created is the followin
Table 3):

848 + 404 + 96 = 1348 bytes

With 400 agents and two connections per agent, this yields a total of:

1348 x 400 x 2 = 1078400 bytes (data structures allocated on a per-socket basis)

The footprint of the C data structures that are allocated per destination host (i.e., whenever a conne
created to a new agent) is 100 bytes (see Table 4). We have two sockets but only onestruct dst_entry
per agent. With 400 agents, this yields a total of:

100 x 400 = 40000 bytes (data structures allocated on a per-destination-host basis)

The footprint of the C data structures that are allocated per neighbor (i.e., whenever a connection is
through a new neighbor) is the following (see Table 5):

112 + 44 = 156 bytes

We already mentioned that the number of neighbors is site specific and cannot therefore be known in ad
Typically, it is very low (between 1 and 3) compared with the number of destination hosts (10s or 100s).
worst-case scenario, we have one neighbor per destination host (agent). So, let us multiply the m
footprint of the C data structures by the maximum number of agents (400). This yields a total of:

156 x 400 = 62400 bytes (data structures allocated on a per-neighbor basis)

The total so far is thus:

1078400 + 40000 + 62400 = 1180800 bytes (total except TCP receive buffers)

C data structures in Linux 2.3.99-pre6 bytes

struct sock 848

struct inode 404

struct file 96

Table 3. Memory overhead per socket

C data structures in Linux 2.3.99-pre6 bytes

struct dst_entry 100

Table 4. Memory overhead per destination host

C data structures in Linux 2.3.99-pre6 bytes

struct neighbour 112

struct hh_cache 44

Table 5. Memory overhead per neighbor
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Let us now quantify the memory footprint of the buffers dynamically allocated by the kernel (see Table 6
have one TCP receive buffer per connection. A TCP receive buffer is a virtual container of metadata a
data. In practice, it is a byte counter. The metadata consists in a doubly linked list of socket b
(struct sk_buff ) and a four-byte counter appended at the end of each data block (real data). A refe
to this counter is stored in(struct sk_buff *)->end . The real data and the counter form a data bloc
A reference to the real data is stored in(struct sk_buff *)->data .

We have one socket buffer and one data block allocated per incoming packet (layer 3). The applicatio
data is chunked into a series of data blocks. An IP packet sent by the agent may result in more than one
buffer allocated by the manager, because the IP routers between the agent and the manager may frag
IP packets sent by the agent. If MTU discovery is enabled, it allows the agent to set the TCP’s Max
Segment Size (MSS) for that connection so as to avoid fragmentation. In this case, the number of IP p
sent by the agent is equal to the number of IP packets received by the manager. We need more than on
buffer per connection on the manager if:

• the application cannot keep up with the amount of incoming data (CPU-bound);
• IP packets are delivered out of order; or
• IP packets sent by the agent have been fragmented.

Each socket buffer (metadata) has a memory footprint of 164 bytes with typical settings for building L
2.3.99-pre6. In the worst case scenario, the memory footprint of a data block is equal to the maximum
MSS plus four bytes for the counter. The maximum valid MTU has a value of 65535 [148], which yie
maximum MSS of:

65535 - 40 = 65495 bytes

The maximum memory footprint of a data block is therefore:

65495 + 4 = 65499 bytes

On the manager, the actual size of a TCP receive buffer ((struct sock *)->rcvbuf ) is set to
sysctl_rmem_default by default (innet/core/sock.c ). The default value of the latter is set to
SK_RMEM_MAXin net/core/sock.c . The constantSK_RMEM_MAXis equal to 65535 (defined in
include/linux/skbuff.h ). Both the maximum and default sizes of a TCP receive buffer can be def
dynamically (that is, without rebooting the machine) by updating the following kernel pseudo-files:

/proc/sys/net/core/rmem_max
/proc/sys/net/core/rmem_default

The dynamically specified values ofrmem_max andrmem_default  cannot exceedSK_RMEM_MAX.

Both rmem_maxandrmem_default apply to all processes running on the machine. But the size of a T
receive buffer can also be specified by the application on a per-connection basis, by setting the socke
SO_RCVBUF(e.g., when the manager creates the persistent TCP connection). The buffer size specifie
SO_RCVBUF cannot exceedSK_RMEM_MAX.

In the worst-case scenario, let us assume that the agents are pushing so much data so quickly that the
all the TCP receive buffers on the manager side. Although this worst case is not realistic, it gives us an

C data structures in Linux 2.3.99-pre6 bytes

(struct sock *)->rcvbuf max: 65535

struct sk_buff 164

(struct sk_buff *)->truesize MTU + 4

Table 6. Memory overhead of TCP receive buffers
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bound for the memory footprint on the manager. The receive window advertised by the manager ensu
the agent will not overflow the manager’s TCP receive buffer. According to Stevens [212, pp. 191–192
value used to be 4096 bytes in Berkeley-derived kernels, but is now typically somewhere between 81
61440 bytes. This guarantees that the TCP receive buffer will not go beyond 65535 bytes for real da
metadata. Innet/core/sock.c:sock_rmalloc , we see that Linux is even more flexible. The doub
linked list can grow as long as the aggregated size of the metadata and real data does not exceed the m
allowed (65535 bytes). One last allocation can exceed this value, but all further requests for new alloc
are refused until some data is read in by the application. If Ni is the number of bytes of real data received in th
segment that fills up the i-th TCP receive buffer, the maximum memory footprint for the i-th TCP rec
buffer is therefore:

(65535 - Ni) + 164 + Ni = 65699 bytes (independent of Ni)

The total number of TCP receive buffers needed at one time on the manager depends on the number o
pushing data at exactly the same time. This is site specific and varies over the time, so it cannot be a
precisely. Let us be really pessimistic and assume thatall agents are pushing data at the same time1. With 400
agents and one pushed-data connection per agent, this yields:

65699 x 400 = 26279600 bytes (TCP receive buffers for pushed data)

Notifications are short and fit into one TCP segment. They are seldom sent by agents. In a pessimistic sc
let us assume thatall agents use 1500 bytes per notification (Ethernet MTU) and have one socket b
allocated on the manager side per notification connection. This yields:

(164 + 1500 + 4) x 400 = 667200 bytes (TCP receive buffers for notifications)

The total for TCP buffers is therefore:

26279600 + 667200 = 26946800 bytes (TCP receive buffers)

This yields a total memory overhead of:

1180800 + 26946800 = 28127600 bytes (total without memory-management overhead)

Finally, we need to account for Memory-Management Overhead (MMO). For instance, the amount of m
actually allocated innet/core/skbuff.c is rounded up to the closest higher multiple of 16 bytes. T
worst case is encountered with the allocation ofslabs(the memory-allocation units used for most dynam
memory allocations in Linux): whenever we callkmalloc , the amount of memory actually reserved by th
kernel is rounded up to the closest higher power of two. So, if we allocate 300 bytes, 512 bytes are a
reserved. In the worst-case scenario, all dynamic memory allocations are of the form 2N + 1 bytes, where N is
an integer, and result in actual reservations of 2N+1 bytes of memory. The worst MMO is therefore:

2N+1 - (2N + 1)
------------------

2N

This value tends asymptotically toward 100% when N grows. An upper bound for the MMO is therefore 1
This yields a total memory overhead of:

28127600 x 2 = 56255200 bytes < 57 Mbytes

In conclusion, the total amount of memory used by all the persistent TCP connections between the m
and the agents is always less than 57 Mbytes. Compared with the 512 Mbytes we expect the manager

1. If this were the case in reality, it would probably mean that the administrator poorly configured the agents. It is simple for the m
to ask different agents to push regular data at slightly different times, either by explicitly requesting different absolute times
making sure that the agents use a different epoch t0 to compute relative times. Agents may unpredictably change the time when

push data if their internal clock drifts, but the synchronization that we recommend in Section 10.4 makes sure that clocks do
excessively, which prevents accidental resynchronization of all push times.
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this memory footprint is perfectly acceptable (11%). Even with only 256 Mbytes of memory, the man
would still cope with 400 persistent connections.

7.2.3.6 Realistic upper bound

In the previous section, we made several crude hypotheses that unduly increased the footprint of TCP
buffers, and consequently vastly exaggerated the memory requirements on the manager. Let us try to
more realistic upper bound of the manager’s memory overhead by taking into account a few common
and practical remarks.

First, it is totally unrealistic to assume that the agents will fill upall of the manager’s TCP receive buffers. I
practice, a manager can be temporarily unable to cope with the amount of incoming data (that is
CPU-bound rather than I/O-bound). During a short period of time, some TCP receive buffers can inde
up, but only a fraction of them. If we choose a high upper bound, we can assume that up to 10% of the
can fill up the manager’s TCP receive buffers. Note that a manager should not remain CPU-boun
extended periods of time, say five or ten minutes in a row. If it does, it has a problem. Either its CPU
powerful enough, in which case a CPU upgrade is needed, or its management domain is too large, in
case the domain should be split into two subdomains, with one manager per subdomain. There are
though, where none of these cures is possible—e.g., in case of budget restrictions. In this case, the admi
can prevent TCP receive buffers from clogging up the manager’s memory by forcing its kernel to redu
receive window of all the TCP persistent connections (SO_RCVBUFgeneric socket option). By doing so, we
reduce the amount of data that the agents can push per connection, and we force the agents to buffe
their TCP send buffers. The persistent connections are then said to bereceive-window-limited[189].

Regarding the remaining 90% of agents, let us assume that the network is recent enough to support pa
discovery [148] so as to avoid fragmentation (that is, IP routers support thedo not fragmentbit in the FLAGS
field of the IP header), and that the receive window is small enough that we do not need many socket
to reorder the IP packets. In that case, we can suppose that the remaining 90% of agents require on a
maximum of three socket buffers per pushed-data connection at the manager (the value of three com
Stevens [212, p. 192]), with an MTU equal on average to 1500 bytes (Ethernet MTU).

A second reason to reduce the memory requirements put on the manager is that notifications are rare e
the IP world. As a result, we should never receive non-stop streams of notifications from all agents at th
time, even in case of serious network conditions. We can therefore reasonably assume that only 1%
agents have delivered notifications that could not be processed immediately. Notifications are short by
and require only one socket buffer and one data block at the manager.

Third, based on typical LAN configurations, we might be tempted to assume that the number of neig
rarely exceeds three, because a LAN segment is rarely interconnected by more than three IP routers. B
an intelligent hub, all the machines directly attached to the hub (respectively all the hosts belonging to th
virtual LAN) are (or appear to be) accessed in one hop. So, if the manager and the agents under its con
all connected to an intelligent hub (respectively belong to the same virtual LAN), all the agents will be
destination hosts and neighbors as far as the manager is concerned. The same thing is true if we rep
intelligent hub with switching equipment. In view of the generalized use of intelligent hubs in modern LA
and in view of the current move toward switching equipment, let us assume that all destination hosts a
neighbors—that is, we have 400 neighbors (worst case).

Finally, the MMO was grossly overestimated in the previous section. If we consider the C data stru
involved, we see thatstruct sock requires 1024 bytes instead of 848, which yields an MMO of 21%, n
100%. Similarly,struct file has an MMO of 33%,struct inode has an MMO of 27%, etc. All of
these values are significantly lower than the MMO of 100% that we considered in the previous sectio
looking at the different MMOs, we see that we can very safely assume that the MMO is 40%, as this va
still overestimated.
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Under these new hypotheses, the overall memory footprint of the persistent TCP connections become

1348 x 400 x 2 = 1078400 bytes (data structures allocated on a per-socket basis)
100 x 400 = 40000 bytes (data structures allocated on a per-destination-host basis)
156 x 400= 62400 bytes (data structures allocated on a per-neighbor basis)
(65699 x 400 x 10%) + ((164+1500+4)x 3 x 400 x 90%) = 4429400 bytes (TCP buffers for pushed da
(164 + 1500 + 4) x 400 x 1% = 6672 bytes (TCP buffers for notifications)
1078400 + 40000 + 62400 + 4429400 + 6672 = 5616872 bytes (total without memory-mgmt over
5616872 x 1.4 = 7863621 bytes < 8 Mbytes (total)

In conclusion, by making more realistic hypotheses, we have proved that in the worst case, we need le
8 Mbytes of memory to cope with 400 agents. Compared with the 512 Mbytes we expect the manager t
in order to process the rules for so many agents, the amount of memory used up by all the persiste
connections between the manager and the agents is negligible (less than 2%). Even 128 Mbytes of m
would be sufficient. The management application itself, and most notably the rules used by the event co
and pushed-data interpreter in large networks, require considerably more memory and render the i
persistent TCP connections a nonissue in NSM. Hundreds of persistent TCP connections cause no sig
scalability issue for modern managers. Another SNMP myth is dead.

7.2.4 Firewalls: persistent connections must be created by the manager

There is a principle of robustness in Internet security that says that TCP connections should prefera
created from a trusted host to an untrusted host, rather than the other way round [55, p. 56]. In our conte
means that the persistent TCP connections should be created by the manager (always trusted), not by
(possibly remote and therefore untrusted). By abiding to this rule, we protect ourselves against a num
well-known attacks.

The simplest example of such attacks isintrusion[54, p. 7]. If we allow certain external machines to conne
via TCP to a reduced set of internal machines, e.g., with filtering rules on the access routers, the odds
an attacker will find a hole in the filters and will manage to connect to an internal machine which wa
properly protected against intrusions. One of the worst kinds of intrusion istelnet , which gives the attacker
full access to a machine. There are ways to prevent such attacks, and most organizations are reason
against intrusions. But the only way to be completely immune to this type of attack is to prevent ex
machines (e.g., agents) from connecting to internal machines (e.g., managers).

Another example of attack ismasquerade, also known asaddress spoofingor IP spoofing. It is easy for an
attacker to change its IP address to impersonate a remote agent and send management data on its be
answers sent by the manager (e.g., the TCP ACKs) may not reach the attacker’s machine, especial
attacker operates in blind mode1, but this does not prevent an attack from being conducted. For instance
attacker can send bogus information to the manager, make it believe that the impersonated agent is
encing problems, and entice a 24x7 operator to take drastic actions to try and recover from the bogus pro
thereby really breaking the network. By snowball effect, if many agents are impersonated and many a
are taken by the operators, the entire network of a large corporate organization or a large Internet S
Provider (ISP) can be brought to its knees. Panicking operators can take all sorts of decisions leading to
of disasters—a human aspect often exploited bysocial-engineering attacks.

A third example is a class of attacks known asDenial-of-Service (DoS) attacks. First, an attacker typically
probes all the TCP ports of the manager by trying to access all ports successively (there are ways to h
kind of probing from simplistic pattern-matching firewalls). The purpose here is to learn what ports are a
Then, he/she connects to some or all active ports and swamps the manager with requests or data com

1. That is, the attacker does not control any WAN router along the path from the manager to the agent, he cannot eavesdrop tra
this path, and he has no control over the agent. He can only keep the agent mute, e.g., by bombarding it with ICMP packets to
it from communicating with its WAN access router [55, p. 166].
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many different machines (or even from a single machine if he/she is able to tamper with the IP addr
outgoing packets). This is known asflooding[54, p. 8]. This can easily make the manager grind to a ha
thereby preventing 24x7 operators from doing their job and exposing the network to potentially se
problems. Instead of swamping the manager, the attacker can alternatively perform an attack knownTCP
SYN flooding. By creating 10,000s of so-calledhalf-open connections(a TCP connection torn down by its
source immediately after the SYN packet of the three-way handshake is sent), the attacker can preven
from connecting to the manager by using up all available resources on the manager. Most TCP server
sending keepalives (SO_KEEPALIVEsocket option) after two hours to clean up idle connections; so
manager may remain inactive for two hours after such an attack, a situation which may have a sign
impact on a production environment. In case the TCP server is not configured to send keepalives
sometimes the case with old software), the manager remains inactive until it is rebooted!

By forcing the connection to be created by the manager, we do not prevent attacks altogether, but we
harder for an attacker to succeed, especially if he operates in blind mode. By not being able to actively
new connections to the target of his attack, an attacker is forced to steal existing TCP connections. Th
known ways of doing this (e.g.sequence numberattacks allow for stealing existing TCP connections in blin
mode [55, p. 24]), but they are much more sophisticated than the attacks we just described and requir
smarter attackers.

Note that creating TCP persistent connections from the manager does not buy us total security. Some
are still possible, e.g.,sequence-numberattacks, replay, some DoS attacks, and attacks that require the atta
to read the packets sent by the manager to the agent. In environments that must be protected agai
attacks, it is mandatory to use stronger security measures, e.g., Secure Sockets Layer (SSL [205]), IP
(IPSec [209]) or data-link encryption [197]. The latter is the most expensive but can, under ce
conditions [197], provide a very high level of security. But many sites do not want or cannot afford mili
or bank-grade security, and are very happy with the sole protection offered by filtering gateways—whi
typically set up to prevent the creation of TCP connections from the outside. Consequently, we need n
do not) mandate strong security in our management architecture and communication model.

7.2.5 Reversed client and server roles

We just saw that, for security reasons, the persistent TCP connection must be initiated by the manager
the agent. Hence, when we go from the pull model that underlies SNMP-based management to the pus
that we advocated in Chapter 6, the client and server roles are swapped. The transfer of managemen
now initiated by the agent, instead of the manager; but the client side of the persistent connection (tha
creator of the connection) remains on the manager, and the server side on the agent. Compared to t
mapping between the manager-agent paradigm and the client-server architecture, the client and the se
on the wrong sides! Somehow, we want the server to initiate the communication, whereas the commun
must be initiated by the client in a client-server architecture (see Fig. 25).

Fig. 25. Reversed client and server roles

serverclient security

Manager Agent

clientserver management data flow
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To address this issue, we have four ways of communicating between the manager and the agent, tha
APIs for writing the management application: the sockets API, HTTP, Java RMI, and CORBA [202]
explained in Section 4.4 why Java RMI and CORBA are inadequate in the IP world (see
my-middleware-is-better-than-yourssyndrome). So we have the choice between using HTTP as a high-l
API, or plain sockets as a low-level API. The two solutions are not very different, because both solution
a TCP connection for the communication pipe. But a few important discrepancies justify our preferen
HTTP. We study sockets in Section 7.3 and HTTP in the remainder of the chapter.

7.3 The Sockets API as a Manager-Agent Communication API

Sockets are bidirectional. When a TCP connection is created, the TCP client contacts the TCP server,
in the client-server architecture. Once the connection is established, the client can send data to the se
the server can also independently send data to the client via the same TCP connection. This property
useful in our management scenario because it solves our problem of server-initiated communication. F
manager creates a socket for each agent—that is, it creates virtual pipes to all the agents in its mana
domain. Later, the agents use these pipes to send management data across (regular data or notificati

To ensure that the TCP connection remains persistent, the collector must not set a receive timeout on th
when it creates it (SO_RCVTIMEO). If the underlying TCP connection is dropped for whatever reason (e
due to a network outage while the agent was pushing data), it is the responsibility of the manager to rec
to the agent.

This solution offers a major advantage: simplicity. Socket programming is very easy in C, C++, Java, et
it also presents serious drawbacks. The main problem is the necessity to define a new, domain-specific
protocolà la SNMP. HTTP, built on top of TCP, is today’sde factostandard in transfer protocols. Why shoul
we use a domain-specific protocol rather than this standard protocol? The second problem is deploym
we saw in Section 5.4, vendors now routinely embed HTTP servers in their network equipment, exc
bottom-of-the-range equipment, and a large proportion of the deployed devices and systems already s
HTTP. As a result, management solutions based on HTTP can be easily deployed and adopted by the
Conversely, deploying a new domain-specific transfer protocol built on top of the sockets API would
years, supposing that vendors all agree to adopt the same protocol. The third problem is related to fir
We face a potential problem if we need to go across a firewall between the manager and the agen
firewalls let only a few TCP ports go through [54]. So by default, firewalls will generally filter out the T
connections that we intend to use between the manager and external agents. Thus, in order for this so
work, all firewall systems must be modified. This may not be a problem for large organizations, becaus
generally have in-house expertise to set up UDP relays or update TCP filtering rules, or they can
consultants to do the job. But it is often a problem for SMEs, who generally lack such expertise, and for
expensive external consultants are only a last resort option. As we said in Section 7.2.2.2, this concer
theoretical and was confirmed to us by people from the industry. The fourth problem is security. If we u
sockets API, we must usead hocsolutions to secure the persistent TCP connection. Whereas by ado
HTTP, we automatically get several security mechanisms, e.g., HTTP authentication [80] and SSL

Fig. 26. The sockets API as a manager-agent communication API
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Although these mechanisms do not offer strong security, they are better than the simplistic community
offered by SNMPv1 and SNMPv2c, and often meet the needs of customers who cannot afford exp
technologies such as data-link encryption.

For these four reasons, we prefer to base manager-agent communication (as well as manager-m
communication in a distributed scenario) on HTTP rather than on the plain sockets API with a propr
transfer protocol and proprietary security mechanisms. But we stress that both solutions work.

7.4 HTTP-Based Communication for Pushed Data: WIMA-CM-push

HTTP does not exhibit the property of bidirectionality that we exploited previously. HTTP connection
oriented: it is not possible to create a persistent connection in one direction, from the client to the serv
later send data in the opposite direction. All HTTP methods rely on a strict request-response protocol;
HTTP server to send a response to an HTTP client, it must have received a request from this client befo
It cannot send unsolicited messages.

In this respect, SNMP and HTTP behave differently. SNMP follows a generalized client-server para
whereby the response from the server can be either explicit (pull model of theget , set , and inform
operations) or implicit (push model of thesnmpv2-trap operation). HTTP, conversely, follows a stric
client-server paradigm for all of its methods (get , post , head , etc.). With HTTP, the response from th
server cannot be implicit. As a result, the implementation of push technologies with HTTP is not natural
can we solve this problem?

7.4.1 MIME multipart

The first step toward a solution is to rephrase the problem as follows: How can we have an HTTP serve
an infinitely large number of replies to a single request from an HTTP client? The second step is to ma
agent send one infinite reply instead of an infinite number of finite replies. More specifically, we mak
client send a single HTTPget  request to the following well-known URL:

<http://agent.domain:280/mgmt/connect/all_data >

whereall_data can be any kind of CLHS. In return, the server sends an endless reply which em
separators in the payload of the HTTP message (see Fig. 28). To achieve this, Netscape proposed to
multipart type of MIME [81, 153] in a different context (to update an applet GUI in a Web browser).
propose to use the same idea in NSM. At each push cycle, we send one MIME part including the desc
and value of all the MIB variables sent by the push scheduler. Once all the management data has been
we send a MIME boundary; this metadata meansend of push cycle. As to notifications, they are sent asynchro
nously, one at a time, through the same connection. In this case, the MIME boundary is interpreted as m
meaningend of notification.

Fig. 27. Distribution via HTTP with a firewall
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HTTP/1.0 and HTTP/1.1 are not fully MIME-compliant protocols [74, Section 19.4.1]. But the use of
MIME multipart type is valid in both HTTP/1.0 [21, Section 3.6.2] and HTTP/1.1 [74, Section 3.7.2]
we have no problem here.

Note that we do not mandate the use of persistent HTTP/1.1 connections. WIMA-CM-push works with
HTTP/1.0 and HTTP/1.1. We did not want to rely on HTTP/1.1’s persistence because the embedded
servers that we find in network equipment today are often trimmed down versions of free HTTP/1.0 se
with a low footprint and a well-proven record in terms of robustness.

Our solution presents two advantages. First, it is simple to implement. We will come back to this in Chapt
when we describe our prototype. Second, it makes it easy to go across firewalls, as we saw in Section
It is also exposed to two problems. One is the possibility to have an urgent notification significantly de
by a large transfer of management data; this is addressed in Section 7.4.2, and leads us to slightly cha
scheme. Another is the necessity for the manager to (i) detect when a connection is torn down and (ii) rec
to the agent automatically; several solutions are described and discussed in Section 7.5.

7.4.2 Some notifications are more equal than others

In a LAN, we do not want to experience large transmission delays for urgent notifications. For instance,
upper bound for push cycles (i.e., the maximum amount of management data pushed by an agent in
cycle) is 50 Mbytes. This is transferred in less than 5 seconds over a 100 Mbit/s Ethernet segment, sup
that we have a large memory on the manager and a fast disk on the data repository. But we can experie
delays if we go across a WAN link. For instance, 1 Mbyte of management data takes 3 minutes to be tran
over a 56 kbit/s connection.

In most environments, urgent notifications should be processed within a few seconds, so the situation
fine with most LANs but not acceptable with most WANs. The situation becomes worse in environments
urgent notifications ought to be processed within less than a second, typically when we have stron
requirements (e.g., network equipment sustaining IP telephony); in such cases, we have problems ev
LANs. In other words, as our communication model should cope with all sorts of environments, we canno
for an entire push cycle to complete before we send an urgent notification.

We have two solutions to this problem. Either we interrupt the push cycle and send the notific
immediately, via the same TCP connection, or we transmit the notification in parallel, via another
connection.

7.4.2.1 One TCP connection per agent: temporary interruption of the push cycle

The first solution assumes that we have only one persistent TCP connection per agent. In this case, w
interrupt the push cycle, send the urgent notification, and either resume the push cycle (send the rema
the management data) or restart it (send all data again). We will face all sorts of problems if we ado
solution.

First, how does the manager know that the push cycle has not cleanly completed but was aborted abru
we do not have a separate control connection, we must embed a specialinterruption stringin the payload of
the HTTP message, e.g., the string “<INTERRUPTED!!!> ”, and make sure that this string never appears

Fig. 28. TCP payload of the infinite HTTP response

notification MIME boundary ...MIME part header

HTTP header MIME message header MIME part header gzip ’ed data MIME boundary
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the original data. This can be achieved by (i) using some kind of domain-specific escape sequence, or (i
HTTP/1.1 chunked encoding, sending the interruption string as one chunk, and making sure that regular
do not consist solely of the interruption string. The former is not elegant in terms of design. The latter re
HTTP/1.1, which is incompatible with our desire to support both HTTP/1.0 and HTTP/1.1. In theory
alternative to the interruption string is TCP’s urgent mode, typically used to send the interrupt key in atelnet
session. But Stevens recommends against using it because of the poor interoperability among d
implementations [211, pp. 292–296], so we rule it out. In short, none of these solutions is really satisfa

Second, should the manager process on-the-fly the management data that it reads in, until a MIME bo
or the interruption string is encountered? Or should it buffer all incoming data until a MIME boundary is
in, and discard it without any processing if the interruption string is parsed? Clearly, parsing a
management data and buffering it before giving it to the pushed-data interpreter does not scale, so this
should be avoided. Alternatively, we can buffer the events sent by the pushed-data interpreter to the
correlator. Once a MIME boundary is parsed, all buffered events are delivered to the event correlator
interruption string is encountered instead, the event buffer is emptied. The problem is that this scenario r
one event buffer per agent at the pushed-data interpreter, which does not scale. In short, buffer-based s
are not adequate: the manager must process the data as it comes in.

Third, if the push cycle is interrupted to leave way to an urgent notification, the push cycle can eith
resumed or restarted all over again. If we send the same data again with the same timestamp as be
manager reads in the same data twice, up to the character where the previous interruption occurr
manager therefore believes that the agent is bogus and sending the same data twice: it drops the conn
the agent and notifies the administrator that there is a problem with that agent (via the event correlator
event handler). To allow the agent to resume the transfer, i.e., not to transfer again the data already rece
the manager, we need application-level ACKs of management data. The problem with this approach is
induces a very significant network overhead, which is precisely what we are trying to avoid (and one
reasons why we decided to depart from the SNMP protocol in the first place).

In summary, none of these solutions is appropriate in the general case. Interrupting a push cycle to lea
for an urgent notification is not adequate.

7.4.2.2 Two TCP connections per agent

The second solution is to transmit the notification in a separate TCP connection. This allows us to disti
between high- and low-priority traffic (see Fig. 29). For each agent, one connection is dedicated to the d
of urgent notifications, and another is used to transfer the rest of the management data (i.e., regular d
nonurgent notifications). The manager connects to the agent by requesting the following URLs:

<http://agent.domain:280/mgmt/connect/high_priority >

<http://agent.domain:280/mgmt/connect/low_priority >

wherehigh_priority and low_priority can be any kind of CLHS. On both sides, the priority-bas
multiplexing between sockets can rely on multithreading or priority-tagged message queues.

Fig. 29. Two connections per agent
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Note that when we refer tourgentnotifications, we do not have hard real-time constraints in mind, beca
they would require real-time operating systems on all the agents and the manager—which we usually
have. The goal here is simply to avoid having to queue an urgent notification while Mbytes of nonu
regular data are pushed by the agent. But it is no problem at all if a 64-kbyte TCP segment (the maxim
a single low-prioritywrite ) is entirely pushed by the agent via the low-priority connection before
priority-based multiplexing system switches to the high-prioritywrite . Similarly, a low-priority notification
can be entirely pushed via the low-priority connection before an urgent notification is pushed vi
high-priority connection. The same is true for the manager, with low-priorityread ’s and high-priority
read ’s.

7.4.2.3 Generalization to multiple TCP connections per agent

In environments with complex QoS constraints, it may be necessary to distinguish more than two lev
priority1. For instance, in RFC 1470, there are four predefined levels of priority (calledlevels of severity):
CRITICAL, ERROR, WARNING, and INFO. It would be a waste of resources to create one persistent
connection per priority level per agent. And in case the number of priority levels is not known in advan
would not even be possible.

In such cases, we recommend to have one persistent control connection, one persistent connection fo
management data, and transient connections for notifications of different priority levels:

<http://agent.domain:280/mgmt/connect/control >

<http://agent.domain:280/mgmt/connect/regular >

<http://agent.domain:280/mgmt/connect/transient?priority=string >

Once again,control , regular , andtransient can be any kind of CLHS. The control connection allow
the agent to request new connections from the manager (connections on demand). When the control connection
is created, and each time the manager creates a new transient connection to the agent, the manager se
HTTP get request to the agent via the control connection, issues a blockingread on the corresponding
socket, and waits for a response from the agent; upon receipt of a response, the manager creates a new

Fig. 30. Multiple connections per agent

1. The author thanks Thimios Panagos for suggesting this.
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connection with the priority level specified by the agent, issues a new HTTPGETrequest, and enters the sam
loop. Per-socket timers on the manager make sure that idle transient connections are timed out after
e.g., 10 seconds, by using theSO_RCVTIMEOgeneric socket option. The full specification of the HTT
requests and responses is beyond the scope of this dissertation.

How does a manager find out whether an agent supports two or several levels of priority? The simplest s
for the manager is to request the two types of URLs, and depending on the errors that it gets from the a
opt for one solution or the other. Obviously, if an agent supports both schemes, the manager should se
most fine-grained scheme, that is, allow for multiple levels of priority.

7.4.3 Specifying the information model in the MIME header

Now that we have chosen to use MIME to separate different push cycles or different notifications, let us s
how we make management data self describing (see Section 7.2.1).

For describing the management data transferred in MIME parts, we use thecontent typeof each MIME part.
This description must include two things: the information model (SNMPv1, SNMPv2c, SNMPv3, CIM, O
etc.) and the encoding1 (XML, string, BER, PER, serialized Java object, binary format, etc.). We have th
levels of granularity for specifying the MIME type: the information model, the specification, and the map
The mapping is a set of rules for encoding a given information model.

Let us begin with examples of MIME types defined with an information-model granularity. If we assume
we encode management data in XML, we can define many MIME types for different information models

• SNMPv1-to-XML
• SNMPv2c-to-XML
• SNMPv3-to-XML
• CIM2.2-to-XML
• CIM2.3-to-XML
• OSI-to-XML

The problem with this approach is that it is too coarse grained. For instance, a certain SNMP protocol
specified in several RFCs, with slight modifications due to the normal life cycle for an RFC to beco
standard at the IETF. SNMPv3 has already been through three releases: RFCs 2261, 2271, and 2571.
cause conformance and interoperability problems. A manager might claim to support a given inform
model, but slight differences between different versions of the specification could cause misundersta
between agents and managers (see what happened with SNMPv2 in the mid-1990s). Thus, the exact v
the information model must appear in the MIME type. The same rationale is true for the encoding, alth
encodings normally change very little over time. We therefore need to go down to the specification vers
both the information model and the encoding. In case the information model is SNMPv3 and the enco
BER, we have three possible MIME types to date:

• RFC2261-to-BER
• RFC2271-to-BER
• RFC2571-to-BER

Unfortunately, MIME types are still ambiguous with this level of granularity. For given specifications of
information model and the encoding, we might have different versions of the mapping. For example, the D
released several versions of the CIM-to-XML mapping (orxmlCIM for short [67]); some even bear the sam
name but contain slight variations (e.g., xmlCIM 2.0 went through three releases in June 2, 1999, July 6
and July 20, 1999). The resulting ambiguity can lead to interoperability problems when an agent and a m
implement two different releases of the mapping. To avoid any compliance problem between two e

1. Also calledrepresentation.
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claiming to support the same information model and the same encoding, we need to specify the m
version as well, as shown in the following examples:

• CIM2.2-to-XML-v1.0
• CIM2.2-to-XML-v1.1

At this stage, we have a very accurate way of specifying the information model, the encoding, and the m
used by the agent. The problem is now the combinatory explosion of MIME types that must be create
registered with the Internet Assigned Numbers Authority (IANA [103]), each time a new version o
information model, an encoding, or a mapping is released. The poor scalability of this scheme makes
impractical.

In order to reduce the number of MIME types required and the number of interactions with the IANA
propose to define a single new MIME type (application/mgmt ) and two MIME parameters,mapping
andversion , as shown in the following examples:

Content-Type="application/mgmt"; mapping="CIM2.2-to-XML"; version="1.0"
Content-Type="application/mgmt"; mapping="RFC2571-to-BER"; version="2"
Content-Type="application/mgmt"; mapping="CIM2.3-to-string"; version="3.0beta1"

This is the format that we mandate in WIMA-CM-push. We now have only one MIME type registered with
IANA. As far as the IANA is concerned, the names of the parameters are fixed, and their values are fre
strings. New valid values for the parameters can be defined over time, on anad hocbasis, without contacting
the IANA. Tomorrow, a new information model could appear, say XXX, which could be suppo
immediately with the following MIME-type parameters:

Content-Type="application/mgmt"; mapping="XXX-to-XML"; version="1.0beta1"

If we use the augmented Backus-Naur Form (BNF) defined in HTTP/1.1 [74, Section 2.1], the content ty
be formally defined as shown in Fig. 31.

7.4.4 Optional compression of management data

Unlike SNMP, MIME supports a powerful feature: it distinguishes betweencontent typeandcontent transfer
encoding. This allows for transparent compression of data in transit. Compression is optional in the ca
MIME: some parts may be compressed, while others are not. This feature is useful in our NSM scenario
respects.

First, agents that can compress data dynamically should preferably compress it so as to save n
bandwidth, especially when regular management data is transferred in large bulks. But WIMA-CM-push
not mandate that all agents support compression. A direct consequence of this is that the manager sh
necessarily expect MIME parts to be compressed. Within the same management domain, some age
support compression and others may not.

Fig. 31. Formal definition of the content type

ContentType = “Content-Type=” NewMimeType Se p “ ” Mapping Se p “ ” Version
NewMimeType = <“> “application/mgmt” <”>
Sep = “;”
Mapping = “mapping=” <“> InformationModel “-to-” Encoding <”>
InformationModel = (*ALPHA Release)
Encoding = (*ALPHA Release)
Version = “version=” <“> Release <”>
Release = *(DIGIT | ALPHA | “.”)



142 Chapter 7

ons are
ible, or
ssed
d data

manager
,
se
IANA

f the
n for
TTP
ding

ld in
es in

gent.

ut what
ol their
d at the
Second, an agent may decide to compress some MIME parts but not all of them. For instance, notificati
inherently short; most of the time, they should not be compressed because the gain would be neglig
could even be negative (e.g.,gzip makes very small files bigger because it adds a header to the compre
data). Another example would be agents that compress data when their CPU load is low, but sen
uncompressed when faced with a transient burst of activity.

Because of the expected heterogeneity of the agents, even within a single management domain, the
should be able to process MIME parts that are compressed with different compression schemes (e.g.gzip ,
bzip2 , compress , or zip ), just like mailers do today. In other words, WIMA-CM-push does not impo
any specific compression scheme. Typically, most if not all of the compression schemes listed by the
should be supported.

As we mentioned already, HTTP/1.0 and HTTP/1.1 are not fully MIME-compliant [74, p. 167], in spite o
repeated requests by the author to the IETF HTTP Working Group, in 1995, when the specificatio
HTTP/1.0 was written. As a result, there is no Content-Transfer-Encoding in HTTP. Fortunately, two H
header fields offer similar functionality: Content-Encoding and Transfer-Encoding. A Transfer-Enco
applies to an entire HTTP message, whereas a Content-Encoding applies to a single MIME part (body partin
HTTP parlance). Clearly, we are interested in specifying the Content-Encoding header fie
WIMA-CM-push. The valid values for the Content-Encoding (that is, the valid compression-scheme nam
our case) are those allowed by the IANA [74, p. 23].

7.4.5 Example of HTTP and MIME-part headers

In Fig. 32, we give an example of HTTP and MIME-part headers for the infinite response sent by the a

7.4.6 Simplifications in case we do not have a firewall

So far, we assumed that we could have one or several firewall(s) between the manager and the agent. B
happens if we know for sure that we have none? This case is of particular interest to ISPs, who contr
entire network and usually do not need to access equipment via a firewall because their NOC is locate

Fig. 32. Push: HTTP and MIME-part headers of the agent’s reply

HTTP/1.1 200 OK
Date: Wed, 10 May 2000 02:42:57 GMT
Server: Apache/1.2.4
Last-Modified: Thu, 23 Mar 2000 08:58:33 GMT
Mime-Version: 1.0
Content-Type: multipart/mixed;boundary=”RandomBoundaryString”

This is a multipart MIME message.

--RandomBoundaryString
Content-Type="application/mgmt"; mapping="CIM2.2-to-XML"; version="1.0"
Content-Encoding: gzip

Data for Part1

--RandomBoundaryString
Content-Type: "application/mgmt"; mapping="SNMPv2-Trap-to-BER"; version="2"

Data for Part2

--RandomBoundaryString--
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heart of their network. Let us first study what can be simplified in WIMA-CM-push under this new assump
and then see if we can integrate the firewall and nonfirewall cases into a single communication model

If we do not go across a firewall, we need no longer create the persistent HTTP connection from the ma
Instead, we can create it from the agent. This allows us to re-establish a normal client-server commun
and to put the HTTP client on the agent and the HTTP server on the manager. This new scenario is dep
Fig. 33.

This solution presents several advantages. First, it does not rely on nonintuitive designs that stre
client-server architecture to its limits: the client is on the agent side and the server on the manager side. S
the agent can reconnect immediately in case the persistent connection is broken: it does not have to rel
manager to do that. This improves the robustness by avoiding time windows when the agent wants to se
to the manager but the manager has not yet reconnected to the agent. It also considerably simpli
management of timeouts and reconnections (see Section 7.5), and suppresses the need for the manag
keepalives. Finally, as in the firewall case, we do not need a specific version of HTTP: both HTTP/1.
HTTP/1.1 are appropriate.

The main drawback of this solution is that it breaks the nice unity of our management architecture. Fire
undeniably, bring in new constraints. But the advantage of using a single solution, whether we have a f
or not, is homogeneity. An organization that has no requirement for a firewall today might have a very
reason tomorrow to put a firewall in place, e.g. if it changes its operation. An engineer working
firewall-based organization might be transferred tomorrow to a firewall-free environment. An adminis
coming from a small organization that could not afford a full-blown firewall based on application gatew
could move tomorrow to an organization that can afford to buy a new firewall platform just to benefit from
single new feature. If we use the same management architecture everywhere, things become a lot eas
these people. Of course, we could give the administrator the choice of creating the connections on the m
or agent side. But, by doing so, would we gain more than we would lose?

7.5 Timeouts and Reconnections

The issue of connection timeouts and reconnections is particularly important for two reasons. First, bec
the reversed client and server roles (see Section 7.2.5), we must be careful that the manager detects a
with the persistent TCP connection and reconnects to the agent in a timely manner. Otherwise, there
time windows when the agent cannot send management data to the manager due to the absence of a p
connection. This can cause robustness problems in the case of notifications, or buffering problems on th
in the case of large push cycles. Second, the robustness of operating systems and Web-based applicati
partly on the automatic cleanup of broken TCP connections. If we do not clean up old broken connectio
might clog up certain resources on the manager and prevent new persistent connections from being c

Persistent TCP connections can be timed out either by the operating system (transport layer) or th
application (application layer). How do the timers in charge of this cleanup work? Are they compatible
our use of persistent TCP connections in WIMA-CM-push? What are the best strategies with resp
timeouts and reconnections? In Section 7.5.1, we investigate the timeouts performed by the agen

Fig. 33. Distribution via HTTP without firewall
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manager’s operating systems. In Section 7.5.2, we study the timeouts by the application, again on bo
of the communication pipe.

7.5.1 Timeouts by the operating systems

By default, idle TCP connections are not timed out by operating systems. This feature of TCP, often sur
at first, has some advantages (e.g., the network is not overloaded by heartbeat or polling overhea
disadvantages (e.g., machines are exposed to DoS attacks such asTCP SYN flooding). By default, an operating
system only cleans up a connection when it reboots or when an outgoing data transfer fails—typically i
of network outage, when one end sends data and the other end is unreachable. A direct consequence
that the sending end can time out a TCP connection but, by default, the receiving end does not.

In WIMA-CM-push, the management data always flows from the agent to the manager. The sending
always the agent, and the receiving end is always the manager. So, by default, the agent can tim
connection but the manager cannot. This poses a problem, as it is much easier to control the behavio
entity (the manager) than 10s or 100s of entities (the agents). In this section, we will see different w
altering this default behavior of TCP.

An operating system can support two types of timeouts. Some apply to all the sockets managed
operating system (per-kernel granularity), others to a single socket (per-socket granularity). Let us stud
two types successively for the agent’s and manager’s operating systems (four cases in total).

7.5.1.1 Timeouts by the agent’s operating system: per-kernel granularity

By default, the agent’s operating system times out a persistent TCP connection by limiting the max
number of retransmissions performed automatically by the TCP layer. The timer in charge of this is call
Agent’s TCP Retransmission Timer (A-TRT) in WIMA-CM-push. This timer goes off after a certain time:
Agent’s TCP Retransmission TimeOut (A-TRTO). A-TRTO can be expressed in seconds (it then
continuous values on the time axis) or as a maximum number of retries (it then takes discrete values on t
axis). Let us assume that it is expressed in seconds.

In our management scenario, if the agent’s operating system sends data across a persistent TCP conne
its TCP layer does not receive an ACK from the manager within a certain time (A-TRTO), then the ag
operating system drops the connection.

The behavior of A-TRT and the value of A-TRTO depend on the operating system. According to St
[211, p. 299], A-TRTO is hard-coded in the kernel of most Unix systems and cannot be modifie
Berkeley-derived implementations, for instance in 4.4BSD (Berkeley Software Distribution), it is equ
about nine minutes [211, p. 299]. This timeout value is the result of an exponential backoff with an uppe
of 64 seconds, which leads to the following series of backoff times between the 13 successive retransm

A-TRTOdef = ~1.51 + 3 + 6 + 12 + 24 + 48 + 64 + 64 + 64 + 64 + 64 + 64 + 64 seconds
=~ 542.5 seconds
=~ 9 minutes 2.5 seconds

The behavior of A-TRT is different in Linux 2.3.99-pre6. First, its backoff time does not have an upper
of 64 seconds, but 120 seconds (the functionnet/ipv4/tcp_timer.c:tcp_retransmit_timer
usesTCP_RTO_MAXwhich is defined ininclude/net/tcp.h ). Second, the maximum number of retran
missions can be modified dynamically on a system-wide basis with the kernel pseudo
/proc/sys/net/ipv4/tcp_retries1 and/proc/sys/net/ipv4/tcp_retries2 . Third, the
successive backoff times are not statically computed as in 4.4BSD; instead, they are computed dynami
a function of the Retransmission TimeOut (RTO), which itself is dynamically estimated with Karn’s

1. The first retransmission occurs afterabout 1.5 seconds, as explained by Stevens [211, pp. 236 and 299].
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Jacobson’s algorithms [31]. As a result, on Linux systems, A-TRTO can be larger or smaller than nine m
With the default values oftcp_retries1 andtcp_retries2 , it can be anywhere between 13 minute
and 38 minutes, depending on the estimated RTO (seeinclude/net/tcp.h ).

For the sake of simplicity, let us assume that A-TRTO is equal to nine minutes. This value is very reaso
in our management scenario, and it does not cause any problems in most environments. Let us also ass
the manager is not down for extended periods of time (that is, for more than A-TRTO seconds). The a
operating system will time out the persistent TCP connection to the manager if, and only if, we experie
prolonged network outage (longer than A-TRTO) when the agent tries to push data. For instance, a n
link might be broken, or an IP router along the path might be down. In this case, after nine minute
connection is closed by the agent but the manager does not know about it; we have ahalf-open connection
clogging up the manager’s memory. Worse, the agent knows that there is a problem, but cannot repa
security reasons (as explained in Section 7.2.4); the manager could repair it, but it does not know that
a problem. We have a deadlock! To break it, we must find a way for the manager to detect that the
connection was broken, so as to reconnect to the agent and restore the persistent communicatio
(Remember that this persistent connection is relied upon by the agent when it sends management da
manager.)

7.5.1.2 Timeouts by the manager’s operating system: per-kernel granularity

TCP offers a simple way of making the receiving end detect that a connection was broken by the sendin
keepalive probes, or keepalivesfor short. Although not turned on by default, this feature is widely suppor
by current TCP/IP stacks. In this section, we study keepalives managed with a kernel-based granulari

Keepalive probes: default settings

For the manager’s operating system to become aware that the connection has been closed by the a
simplest is to sendkeepalives probes[211, pp. 331–337], a form of out-of-band data handled by the kernel
transparent to the application using the connection. To do so in our management scenario, the ma
collector must set theSO_KEEPALIVEgeneric socket option whenever it creates a persistent TCP conne
to an agent [212, p. 185]. This socket option has been around for many years and is widely supported.
manager, all the sockets that have this option set behave in the same manner. For kernels inclu
Berkeley-derived implementation of TCP (that is, most kernels available to date), this behavior is cont
by the following algorithm:

• As soon as the manager stops receiving data from the agent, it restarts its M-TKT (Manager’s
Keepalive Timer).

• If a TCP connection remains idle for two hours, M-TKT goes off and the manager’s kernel begins se
keepalive probes to the agent.

• As soon as the agent receives a keepalive probe, it must send an ACK to the manager.
• The manager’s kernel waits 75 seconds between sending two consecutive keepalive probes.
• If the manager receives anything from the agent (ACK, data, etc.), it stops sending keepalive prob
restarts M-TKT.

• After nine successive keepalive probes are unsuccessfully sent by the manager to the agent, the co
is closed by the manager.

If the network outage ends while the manager is still sending keepalive probes to the agent, but after th
has dropped the connection, the manager receives a reset (RST) from the agent. As a result, it dr
persistent TCP connection and reconnects to the agent. The chances for this reconnection to succeed
as the manager has just received some out-of-band data from the agent.

If the manager has not received any answer from the agent at the end of the keepalive-based probing,
the existing persistent TCP connection and attempts to create a new one to the agent. This time, the ch
success are slimmer, as the network outage could still be ongoing, or the agent might still be down.
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The advantage of using keepalives is that it allows the manager to clean up sockets for broken conn
especially in case an agent reboots. This prevents broken connections from clogging up the manager’s
until the machine is rebooted. A minor disadvantage is that it requires to exchange a bit of extra out-o
data between the manager and the agent, which slightly increases the network overhead; apa
bandwidth-starved WAN links, we can live with it happily in view of the offered functionality. A seco
drawback is that all sockets are treated alike; we will solve this problem in Section 7.5.1.4. A third issue
the manager takes a very long time to reconnect to the agent (e.g., after the agent accidentally reboot
Manager’s TCP Keepalive TimeOut (M-TKTO) is equal to:

M-TKTOdef = 7200 + (9 x 75) = 7875 seconds = 2 hours 11 minutes 15 seconds

In other words, in case of prolonged network outage, it takes the manager more than two hours to disco
the persistent TCP connection was broken by the agent:

M-TKTOdef - A-TRTOdef = 7875 - ~542.5 =~ 7332.5 seconds =~ 2 hours 2 minutes 12.5 sec

Somehow, this seems grossly inefficient! In most production networks, a management downtime of ov
hours for all the agents in a given management domain is simply not acceptable.

Most modern operating systems solve or alleviate this problem by parameterizing some or all of the
values specified in the previous algorithm. These parameters, which we call thekeepalive-control kernel
variables, allow the administrator to customize the handling of keepalives for all the sockets of the ma
that haveSO_KEEPALIVEset. In Linux 2.3.99-pre6, these values are not only parameterized, they can
be updated dynamically (without rebooting the machine) via three kernel pseudo-files:

• /proc/sys/net/ipv4/tcp_keepalive_time controls the idle time after which the kerne
begins sending keepalive probes.

• /proc/sys/net/ipv4/tcp_keepalive_intvl controls the time elapsed between tw
successive keepalive probes.

• /proc/sys/net/ipv4/tcp_keepalive_probes controls the number of keepalive probes th
are sent before the kernel gives up and declares the other end unreachable.

The default values of these three keepalive-control kernel variables appear in Table 8. This applies to
In perhaps the most famous textbook to date on the internals of TCP [249], Wright and Stevens descr
source code of another famous operating system, 4.4BSD-Lite, where the kernel variables have differen
and slightly different semantics and default values. As this is confusing (and confused the author for
time!), the mapping between the two operating systems is given in Table 7:

The main difference in the semantics is that in Linux, we count the first keepalive probe
tcp_keepalive_probes , whereas we do not in 4.4BSD-Lite’sTCPTV_KEEPCNT(equal to the ratio
tcp_maxidle /tcp_keepintvl ). The default value of Linux’stcp_keepalive_probes is 9, while
in 4.4BSD, tcp_maxidle is equal to 10 minutes,tcp_keepintvl is equal to 75 seconds, and
TCPTV_KEEPCNTis equal to 8 [249, pp. 822–831]). Note that Stevens erred in [211, p. 332]: in 4.4BS
maximum of 9 probes (not 10 as stated) is sent, as explained by Wright and Stevens [249, pp. 830–83
25.17 and 25.18].

Linux 2.3.99-pre6 4.4BSD-Lite

tcp_keepalive_time tcp_keepidle

tcp_keepalive_intvl tcp_keepintvl

tcp_keepalive_probes (tcp_maxidle /tcp_keepintvl ) + 1

Table 7. Mapping between Linux and 4.4BSD keepalive-control kernel variables
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In a companion book, Stevens also lists the keepalive-control kernel variables in Solaris, AIX, BSD/38
[211, Appendix E]. They all follow 4.4BSD’s naming convention, but some of these operating systems
allow one or two of these variables to be set. In our management scenario, the administrator should th
be careful to select a modern operating system for the manager, in order to have good control over kee

Keepalive probes: recommended settings

Now that we know how to modify these keepalive-control kernel variables, what values should we give
in NSM? How fast do we want to start sending keepalive probes? Should M-TKTO be larger or smalle
A-TRTO? The answers to these questions depend on the reactivity that the administrator expects fr
manager, and this reactivity is highly site specific. If we assume that all agents take about nine minutes
out a connection in case of network outage, we recommend that the keepalive-control kernel variab
assigned the values listed in Table 8. They yield the following M-TKTO:

M-TKTOrec = 540 + (6 x 10) = 600 seconds = 10 minutes

As we can see, M-TKTOrec is much more reasonable than M-TKTOdef in NSM. With our recommended
settings, the manager can detect reasonably quickly that an agent has closed its side of the conne
timeout of 10 minutes also corresponds to one of the typical polling periods1 for a LAN in standard
SNMP-based management, and a typical push period in Web-based management. Obviously, it make
to have an M-TKTO close to the push period. Moreover, by not being too close to nine minutes (that
selecting 600 seconds instead of 541), we allow (i) for the clocks of the manager and the agent to slight
apart, and (ii) for some kernel latency at the manager and the agent (e.g., in case several signals are
We also account for the imprecision in the value of A-TRTOdef (see footnote 1 p. 144).

An M-TKTO of 10 minutes might not be appropriate for all sites, though. For instance, it can be set to a
larger value (e.g., the default two hours) in a small LAN if reactivity is not of paramount importance an
simply want to clean up the manager’s memory from time to time. By making M-TKTO bigger, we reduc
network overhead caused by out-of-band data.

M-TKTO can also be set to less than A-TRTO, say one minute. At first glance, such a setting might
bizarre: we deliberately choose to send keepalive probes when the TCP connection is healthy, t
increasing the network overhead. But there are cases where this behavior is desirable2. For instance, it allows
the manager to detect a network fault before the agent; and the role of a manager is precisely to detec
It also enables the manager to detect the crash of critical agents in a timely manner; this might be very im
in some environments. For example, if we want a critically important agent to send the manager a he
every 30 seconds, M-TKTO should preferably be set to 35 seconds rather than 10 minutes. Becaus
increased network overhead caused by reducing M-TKTO forall agents, there is a trade-off to be foun
between how quickly we want to detect that an important agent is down, and how much network overhe
are willing to pay for it.

Linux 2.3.99-pre6 kernel variable default value recommended
value in NSM

tcp_keepalive_time 7200 seconds 540 seconds

tcp_keepalive_intvl 75 seconds 10 seconds

tcp_keepalive_probes 9 6

Table 8. Per-kernel TCP keepalives: default and recommended values

1. The typical periods are 5, 10, and 15 minutes.
2. It may also cause problems. What happens if a manager reconnects to an agent before this agent has dropped the previous c

We need a mechanism on the agent to drop the old connection and make the management application switch to the new co
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Per-kernel timeouts: problems with heterogeneous agents

Per-kernel keepalives, and more generally per-kernel timeouts, work fine as long as we have
homogeneous set of agents in a management domain. If all the agents have almost the same A-TRTO,
for the manager to have the same M-TKTO for all its sockets. But the situation is very different when we
heterogeneous agents. Heterogeneous systems and devices have heterogeneous operating syste
possibly different kernel settings. A-TRTO may thus vary from agent to agent—e.g., we already showe
it can vary between Linux and 4.4BSD machines. As equipment vendors do not want to incur the risk
piece of equipment stops working because an administrator mistakenly set some kernel variables to
values, it is generally not possible for administrators to configure A-TRTO in COTS agents. In practic
must live with the fact that different agents have different A-TRTOs, and the best we can do is to tr
address this heterogeneity problem on the manager side.

What value should we then assign to M-TKTO if most agents in a management domain have an A-TR
about nine minutes, but a couple of agents have an A-TRTO hard-coded to one hour? What happens
agents do not support keepalives and therefore appear to be dead to the manager? How should we d
agents that can unpredictably “freeze” their management layer over extended periods of time becaus
tasks have a higher priority1?

If we favor network overhead over robustness, M-TKTO ought to be equal to the largest A-TRTO of a
agents in the manager’s management domain. A major problem with this approach is that m
top-of-the-range IP routers might be unmanageable for two hours just because one old bottom-of-the
device has an A-TRTO of two hours—this is simply not an option.

If we favor robustness over network overhead, M-TKTO should be equal to the smallest A-TRTO of a
agents in the manager’s management domain. By doing so, we guarantee that problems with the mos
machines are detected as soon as possible. A major problem with this approach is that the manage
reconnecting to agents whose kernel does not support keepalives, or does not answer to keepalives
periods of time, thinking that these agents have just rebooted. These spurious reconnections g
unnecessary network traffic, increase unnecessarily the CPU overhead of the manager and the agents i
and cause many time windows during which the agents are not manageable, although in good health. A
problem is that if one agent has a really small A-TRTO, M-TKTO would also be unreasonably small, w
would unduly increase the network overhead.

In short, choosing a system-wide, per-kernel keepalive policy to decide when a manager should recon
an agent is not easy in a heterogeneous environment. There is a trade-off to be found between robust
network overhead, and the best value for M-TKTO is site specific. If we have a large distribution of A-T
values across a population of widely heterogeneous agents, there is simply no satisfactory M-TKTO.

Fortunately, all of these problems can be alleviated by controlling the manager’s timeouts on a per-sock
rather than on a per-kernel basis. Per-socket timeouts give us the granularity required in heterog
environments, hence in most real-life networks. Let us first study the agent side in Section 7.5.1.3, th
manager side in Section 7.5.1.4.

7.5.1.3 Timeouts by the agent’s operating system: per-socket granularity

On the agent side, we have two means of overriding the per-kernel A-TRTO on a per-socket basis: th
timer and the retransmission timer. Both of these timers are managed by the kernel (kernel timers), b
timeout value can be altered by the application.

1. Several years ago, the author experienced such a problem with FDDI concentrators, whose management application was a
very low priority by the vendor in order to maximize real-data throughput. Their SNMP agents could remain silent to the man
requests during several minutes in a row, up to half an hour in case of very large data transfers. This made the manager was
CPU cycles performing retries, and sometimes even convinced operators that a concentrator was down and should be reb
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Thesend timeris controlled by theSO_SNDTIMEOgeneric socket option (send timeout) [212, pp. 193–19
It allows the agent’s dispatcher to set a per-socket inactivity timer1 to detect a network outage or a crash of th
manager. WithSO_SNDTIMEO, the send timeout can be different for different sockets on the same mac
(unlike what we saw in Section 7.5.1.1). One advantage of this solution is that it allows the administra
override A-TRTO when this per-kernel timeout value is not configurable. One problem with this soluti
that Posix.1g does not mandate the support forSO_SNDTIMEO, although this socket option appeared wit
4.3BSD Reno in 1990 [212, pp. 20,194]. As a result, some operating-systems vendors might not be incl
support it. Linux added support for it very recently:SO_SNDTIMEOwas not supported in Linux 2.3.28
released in November 1999, but it is supported in Linux 2.3.99-pre3, released in March 2000
net/core/sock.c:sock_setsockopt ). To the best of our knowledge, it is not supported b
commercial Linux vendors at the time we write these lines (May 2000). Therefore, COTS agents are lik
not support it (yet). We cannot rely on this solution in WIMA-CM-push.

The retransmission timeris controlled by theTCP_MAXRTTCP socket option (retransmission timeou
[212, p. 202]. It allows the administrator to override A-TRTO on a per-socket basis.TCP_MAXRTallows the
agent’s dispatcher to set a limit on the number of retransmissions performed by the agent’s kernel if no
is received from the manager.TCP_MAXRTis specified in seconds by the application, but it can be rounded
by the kernel to the closest highest value accepted by the kernel [212, p. 202] (see the discrete value
backoff times in Section 7.5.1.1). This rounding up is the main difference betweenTCP_MAXRTand
SO_SNDTIMEO; apart from that, the end result is fairly similar. The main problem withTCP_MAXRTis that
it is recent (it appeared with Posix.1g) and still rarely supported [212, p. 202]. It is symptomatic that the
version of Linux, Linux 2.3.99-pre6 (released in April 2000), still does not support it (
net/ipv4/tcp.c:tcp_setsockopt ), despite the well-known swiftness of the Linux community t
implement new features. We therefore do not believe thatTCP_MAXRTis a good candidate on the agent sid

The problem of course is whether equipment vendors will give administrators control over the emb
dispatcher. Unless the code of the dispatcher is downloaded into the agent dynamically or the dispa
written by a third-party vendor, the chances are slim. Although this solution works (e.g.,SO_SNDTIMEOwith
Linux 2.99-pre6), we recommend working at the manager level instead.

7.5.1.4 Timeouts by the manager’s operating system: per-socket granularity

On the manager side, we have two means of controlling connection timeouts on a per-socket basis: the
timer and the keepalive timer. Both of these timers are managed by the kernel (kernel timers), but their t
value can be altered by the application.

Thereceive timeris controlled by theSO_RCVTIMEOgeneric socket option (receive timeout) [212, pp. 193
194]. It allows the manager’s collector to set a per-socket inactivity timer1 to detect a network outage or a cras
of the agent. WithSO_RCVTIMEO, the receive timeout can be different for different sockets on the sa
machine (unlike what we saw in Section 7.5.1.2). One advantage of this solution is that the collector ha
the SO_RCVTIMEOoption only once in the lifetime of the connection (we will see other solutions
Section 7.5.2 where this is not the case). Similar to what we said forSO_SNDTIMEOin the previous section,
one problem withSO_RCVTIMEOis that Posix.1g does not mandate its support. But the main difference
the previous case is that we are now on the manager side, so the administrator can choose what o
system to run on this machine (this is not the case with most COTS agents, which generally come w
opaque operating system). Thereceive timer solution is therefore acceptable in WIMA-CM-push.

1. In Berkeley-derived implementations of TCP, the send timer is an inactivity timer, not an absolute send timer [212, p. 194].
not go off if awrite takes longer thanSO_SNDTIMEOseconds: it goes off if one TCP segment sent during awrite operation is
not ACK’ed by the agent withinSO_SNDTIMEO seconds.
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The keepalive timeris controlled by theTCP_KEEPALIVETCP socket option [212, p. 201]. It allows the
administrator to override M-TKTO on a per-socket basis.TCP_KEEPALIVEallows the manager’s collector
to set a limit on the time it takes the manager to time out a connection that does not answer to keepalive
In practice, this single TCP socket option is often replaced with three:TCP_KEEPIDLE, TCP_KEEPINTVL,
and TCP_KEEPCNT, which correspond to the three keepalive-control kernel variables describe
Section 7.5.1.2. This is the case in Linux 2.3.99-pre6 (seenet/ipv4/tcp.c ) and, according to the input we
received on the USENET newsgroupcomp.protocols.tcp-ip , also in 4.4BSD. In Linux, the mapping
between these three TCP socket options and the keepalive-control kernel variables is straightforw
depicted in Table 9. The four TCP socket options are linked by the following equation:

TCP_KEEPALIVE = TCP_KEEPIDLE + (TCP_KEEPINTVL x TCP_KEEPCNT)

In 4.4BSD and BSD derivatives, they are linked by the following equation:

TCP_KEEPALIVE = TCP_KEEPIDLE + (TCP_KEEPINTVL x (TCP_KEEPCNT + 1))

One problem withTCP_KEEPALIVE is that it is recent (it appeared with Posix.1g) and still rare
supported [212, p. 185]. However,TCP_KEEPIDLE, TCP_KEEPINTVL, andTCP_KEEPCNTwere already
supported in Linux 2.3.28.

The main advantage of the two solutions presented in this section is that they allow the administra
modulate the reactivity of the manager depending on how critical a piece of equipment is to the robustn
the network. In Table 8, we already proposed some reasonable values in NSM forTCP_KEEPIDLE,
TCP_KEEPINTVL, andTCP_KEEPCNT. But we saw in Section 7.5.1.2 that there are cases where we w
like the timeout value on the manager side to be less than the timeout value on the agent side, and oth
were we would like it to be greater. For example, if we want a critically important agent to send the ma
a heartbeat every 30 seconds, we can set the timer for that socket to go off after 35 seconds, not 10 m
Per-socket timeouts on the manager side give us the granularity necessary to manage heterogeneous

A second important advantage of using per-socket timeouts on the manager side is that we can directly
receive timeout and the keepalive timeout values with the push period for each agent. This solution
suitable in the NSM context. During the subscription phase, the manager must then register the smalle
period specified for a given agent, and later set the keepalive or receive timeout value for that socket
above this smallest push period. This behavior is especially recommended for critically important manag
data, e.g. heartbeats.

The advantage ofSO_RCVTIMEOover {TCP_KEEPIDLE, TCP_KEEPINTVL, andTCP_KEEPCNT} is that
it does not cause extra network overhead. It does not require out-of-band data to be exchanged o
network. The disadvantage is that the possibility to manage per-socket keepalives is more widely availab
the possibility to manage per-socket receive timers. But unlike what we saw with agents earlier, the ad
trator can choose what machine to use for the manager, so this last point is not really an issue. In con
the best solution in our view is to select a manager whose operating system supportsSO_RCVTIMEO, or
otherwise to use {TCP_KEEPIDLE, TCP_KEEPINTVL, andTCP_KEEPCNT}.

To conclude Section 7.5.1, per-kernel timeouts work fine but do not offer us the granularity necessary in
real-life environments, whereas per-socket timeouts are easier to control on the manager side than on t
side. So we should preferably use per-socket timeouts on the manager side. We have two o

TCP socket option Linux 2.3.99-pre6 kernel variable

TCP_KEEPIDLE tcp_keepalive_time

TCP_KEEPINTVL tcp_keepalive_intvl

TCP_KEEPCNT tcp_keepalive_probes

Table 9. Keepalive control: mapping between TCP socket options and kernel variables
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SO_RCVTIMEOand the trio {TCP_KEEPIDLE, TCP_KEEPINTVL, and TCP_KEEPCNT}. The former
causes less network overhead, but the latter is more widely available. Both are appropriate in WIMA-CM

7.5.2 Timeouts by the applications

In Section 7.5.1, we studied in detail what happens when the persistent TCP connection between the m
and the agent is dropped by the operating system at one of the two ends. Let us now investigate what h
when this connection is torn down at the application level. We distinguish four cases (see Fig. 27, p. 13
the manager side, the connection can be broken by the HTTP client or the collector; on the agent side
HTTP server or the dispatcher.

7.5.2.1 Timeouts by the application on the manager side

Application-level keepalives are ruled out by the design decision made in Section 7.4.1. We send a singl
from the manager and an infinite reply from the agent, so there is no possibility for the manager to reg
send application-level keepalives via the same connection. The only thing the manager can do is to r
timer each time it receives data from the agent, and drop the connection and reconnect immediately wh
timer goes off. We have three techniques to achieve this:SIGALRM, select  andpoll .

SIGALRM

The first technique relies on theSIGALRMsignal. It can be broken down into three steps. First, the collec
calls alarm and passes the timeout value as argument. This makes the kernel start thealarm-clock timer.
Second, the collector issues a blockingread . Third, aSIGALRMsignal is generated by the kernel when th
timer goes off. As a result, theread system call is interrupted and the signal handler forSIGALRMis called
instead. The problem with this solution is well known1: signals are not appropriate to handle traffic comin
concurrently from many sources. First, we can have only one signal handler forSIGALRMper process or per
thread. As the manager must communicate with many agents, we are forced to run many collectors (pot
up to several hundred) on the manager side, one per thread. Second, signal handling varies from ma
machine when Posix signals are not used, which makes the coding very difficult and error prone (Posix
are not yet supported by all operating systems). Third, and worst, standard signals such asSIGALRMare not
queued by the kernel and can be lost if several signals are generated in burst. This last problem rend
technique inadequate in our context.

select

The second technique is epitomized by theselect system call in the C library, although it is not languag
specific. The collector issues a blockingselect instead of a blockingread . With select , we can tell the
kernel that we are interested in reading from several sockets, and how long we are prepared to wait. The
value is passed as argument toselect ; it controls theselect timer. Theselect system call returns either
when some traffic is coming from a socket or when the select timer goes off. We have two options: w
either run a singleselect and a single collector for all the sockets, or oneselect and one collector per
socket (each collector then runs in a separate thread). With the first option, a single collector is conne
all the agents. This is very bad, because we then have a single timeout value for all the sockets (see the p
mentioned in Section 7.5.1.2). With the second option, we have one select timer per connection (hen
agent). Ifselect returns due to a timeout, we drop the connection and immediately attempt to reconn
the agent; otherwise, we read incoming data on the socket and re-enter theselect loop. The advantage of
select is that it is widely available. UnlikeSO_RCVTIMEOand the keepalive-control socket options, whic
require recent operating systems, a timeout policy based onselect can be implemented with virtually all

1. Stevens mentions this solution only in case we read from a single socket [212, pp. 349–352]. Kegel does not even mention
he reviews I/O strategies for reading from many sockets [119].
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operating systems. The main problem withselect is that it is limited to FD_SETSIZE sockets; this limit is
hard-coded in the kernel. FD_SETSIZE is often equal to 1024 [212, p. 152], but it can have a different
With a maximum of 400 agents and two sockets per agent, we need 800 sockets on the manager, whic
below the maximum of 1024. This solution is therefore fine for WIMA-CM-push, but may cause problem
the future if, for some reason, we want to manage more than 400 agents per management domain. Othe
technical problems withselect  are described by Bangaet al.[17].

poll

The third technique usespoll , a variant ofselect . The internals ofpoll are different from those of
select , but these two system calls offer similar functionality to the application programmer. They both
a timeout value as argument, they both return a readable socket or an error in case of timeout, etc. Th
difference between these two system calls is thatpoll has no hard-coded equivalent to FD_SETSIZE. Bas
on this difference, some kernel experts claim thatpoll is superior toselect for dealing with a large number
of sockets [119, 212, p. 171]). Other kernel experts argue with this statement and claim that the impleme
of poll is often inefficient, e.g. in Linux (see thelinux-kernel mailing-list archive [129]); Bangaet al.
claim thatpoll is less efficient thanselect when the proportion of interesting file descriptors exceeds 3/
becauseselect only copies 3 bits per file descriptor whilepoll copies 64 [17]. When experts disagree,
usually means that there is no clear-cut winner. Another difference is thatpoll is less widely available than
select [212, p. 172]. Note that a small variant ofpoll is to work directly with/dev/poll [119], which
is faster thanpoll when the number of sockets is very large. As far as WIMA-CM-push is concern
select , poll , and/dev/poll are all fairly similar. They all work fine in our context as long as we ha
only one connection per thread.

Signal-driven I/O and real-time signals

For the sake of completeness, we should also mention two other techniques: signal-driven I/O (Input/O
and real-time signals. In case of signal-driven I/O, we tell the kernel to send aSIGIO signal to the application
when something happens on a socket. Unfortunately, this technique is useless in the case of TCP so
described in detail by Stevens [212, pp. 590–591]. In short, the problem is thatSIGIO is generated too often
by the kernel, and we do not precisely know what happened when its signal handler is called.

As for real-time signals, the problem is that they are rarely supported by current operating systems
Unlike standard signals such asSIGALRMandSIGIO , real-time signals are queued and priority-based. A
result, we should never lose real-time signals unless the manager crashes (we can loseSIGALRMsignals).
Moreover, some sockets (hence some agents) can be assigned a higher priority than others, so manage
coming from critical backbone routers can have precedence over data coming from mere hosts. The
properties are very useful in our management scenario. Unfortunately, real-time signals are still too
supported to be considered in WIMA-CM-push. Note that this may change in the future.

Collector vs. HTTP client

Now that we have investigated the different possibilities to time out the persistent TCP connection, let
how to use them at the application level. On the manager, the TCP connection can be timed out either
collector or the HTTP client. Presumably, the components used to implement the management applica
the manager let the collector create the persistent TCP connection, and the HTTP client is just a libra
offers a high-level API to perform an HTTPget , post , etc. If this is the case, all the system calls and sign
studied previously apply to the collector. If, on the other hand, the HTTP client provides the collector w
opaque interface to the network and transparently handles all the reconnections and timeouts, then
system calls and signals studied before apply to the HTTP client. The important point here is tha
transparent to WIMA-CM-push whether timeouts and reconnections are implemented by the collector
HTTP client.
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7.5.2.2 Timeouts by the application on the agent

On the agent side, there are two possible strategies to manage timeouts at the application level. One
this in the configuration file of the HTTP server; another is to configure the dispatcher. Both methods c
used concurrently, although only one is necessary.

Timeouts by the agent’s HTTP server

For several years, developers of standard HTTP servers such as Apache [10] have protected their s
against memory exhaustion caused by half-open connections. This problem, which used to plague bus
servers on the Web, is often due to the impatience of users when heavy network congestion occurs. It c
be due to attacks, e.g. TCP SYN flooding, as mentioned in Section 7.2.4. Some users find it hard to wa
than a few seconds to download a Web page, and often reload the same page several times before it ev
gets completely transferred. By doing so, they create half-open connections on the machine hosting the
server if the HTTP client does not cleanly close the TCP connection, or if theclose does not reach the HTTP
server due to heavy network congestion. For busy HTTP servers, half-open connections can very quic
up all the memory available on the machine, thereby preventing the HTTP server from accepting
connections.

Two strategies have been typically used in the past to free the memory resources clogged up
connections. One is to assign a maximum lifetime to all HTTP/TCP connections and to time them out sy
atically after a certain time, regardless of whether they are idle or active. The other strategy is to as
maximum period of inactivity to all HTTP/TCP connections, and to restart the inactivity timer of a conne
each time some traffic goes across this connection.

In the days of HTTP/1.0, timeout values were often hard-coded in the HTTP server. With the adve
persistent connections in HTTP/1.1, the management of timeout values was refined. Most HTTP/1.1 s
today allow administrators to configure these timeout values from their configuration file. Some allow th
assign a maximum lifetime to all connections, others a maximum period of inactivity to all connections

Note that there is a noticeable difference in scale between the Web and WIMA when it comes to timin
persistent TCP connections. On the Web, busy HTTP servers handle hundreds of thousands or mil
requests per day (e.g, for the Olympic Games [89]); in burst periods, this corresponds to tens or hund
requests per second. In NSM, supposing that the network is very unstable and that the manage
reconnecting to a critically important agent every minute (worst-case scenario), we still have only on
connection per minute. Moreover, persistent connections are short-lived on the Web; they are typically c
up after a maximum of 30 seconds, according to Gettys [102]. Conversely, in WIMA-CM-push, pers
connections are very long lived for regular management: we want the TCP connection between the m
and the agent to persist as long as both ends are up and running, hopefully for days or weeks. We want t
connections only in the case ofad hocmanagement (see WIMA-CM-pull in Section 7.6). So we do not wa
to set a maximum lifetime on incoming connections: the longer a persistent connection lasts, the bett
therefore recommend to clean up the agent’s memory every two hours, that is, to assign a maximum in
period of 7200 seconds. Strictly speaking, we could optimize this value by making the inactivity timeout
slightly greater than the smallest period of all the push cycles registered with the agent, and upda
whenever the manager changes its subscription. But in practice, the extra functionality does not justify th
code that must be embedded in the agent to achieve this.

One may argue that cleaning up the agent’s memory so rarely makes it vulnerable to DoS attacks ba
half-open connections. But the best way to shield an agent from DoS attacks is clearly not to ask it to tim
idle HTTP connections very often. It is the task of a firewall to protect internal machines from exte
attackers; agents have other tasks to do. Without firewalls, DoS attacks can fill up the memory of all c
agents in a matter of seconds. This is independent of WIMA, and even independent of Web-based mana
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Timeouts by the agent’s dispatcher

If we have little or no control over the configuration of the agent’s HTTP server (e.g., if we use an HTTP s
with a minimum footprint such as Hong’s Embedded Web Server [115]), an alternative is to control the tim
in the dispatcher. But we already mentioned that access to the internals of COTS agents is very unli
practice. Unless the dispatcher is downloaded by the administrator into the agent (mobile code), it is pre
to control timeouts in the HTTP server’s configuration file.

7.5.3 Synthesis

To conclude with timeouts and reconnections, let us summarize our recommendations and explain wh
when a manager fails to reconnect to an agent. We will also address a special case that we purposefully
thus far to simplify the organization of this long section.

Recommended solutions

Per-kernel timeouts are easier to set up than per-socket timeouts, but they do not offer the granularity
seek (in real-life networks, some agents are more critical than others), and they are inappropriate in the
heterogeneous environments. So we recommend to use per-socket timeouts.

On the agent side, we should rely on the default settings of the kernel and application because mos
agents do not let the administrator control their internals (retransmission timer, send timer, etc.). The c
of timeouts and reconnections should therefore be achieved by the manager. In most environments (es
those with no hard real-time constraints), we do not need to control timeouts on both sides of the com
cation pipe simultaneously.

On the manager side, timeouts can be managed at the kernel or application level. Four solutions are app
in our context:SO_RCVTIMEO, the trio {TCP_KEEPIDLE, TCP_KEEPINTVL, and TCP_KEEPCNT},
select , andpoll (with its variant/dev/poll ). The first two are slightly better because they need to
installed only once (select andpoll need to be restarted each time we have processed an incomingread ).
One issue is that three out of the four solutions require a modern operating system on the manager. I
environments, this is not a problem because the administrator can control what machine to use for the m
in this case, we recommend usingSO_RCVTIMEOor /dev/poll . In other environments, this may caus
some problems; we then recommend usingselect as long as the expected number of agents within a sin
management domain does not exceed 400.

Note that different solutions can be combined. For instance, if we do not have a multithreaded operating
on the manager, we can useSO_RCVTIMEOto specify per-socket timeouts, and we can block in read on
sockets simultaneously withselect , poll , or /dev/poll .

Note that there is no need to impose a specific way of timing out idle connections in WIMA-CM-push. Th
specific to a given manager and independent of the agents. Within a hierarchy of managers, some m
may use one scheme while others use another. Our recommendations here are destined for devel
component-based management applications. The main goal of this section was to prove the feasibility
solution (our design decisions do not lead to a dead end), identify the issues, and assess the trade-of

Informing operators

Regardless of the technique actually used by the manager to reconnect to the agent, it is important to n
machines (agents) sometimes remain down for long periods of time in real-life environments, possibly s
days. It would therefore be very inefficient for the manager to retry indefinitely to reconnect to an agen
this agent eventually comes back to life. A better scenario is to make the collector send an informative
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to the event correlator as soon as a persistent TCP connection is timed out, then to retry to reconne
(which yields a total of three attempts1), and in case of failure, to give up and send a critical alarm to the ev
correlator. The corresponding event handlers could make the corresponding icon on the network-map G
yellow and red, respectively, for instance. It should be possible for operators to resume the manageme
agent from the network-map GUI, e.g., through a context-sensitive pop-up menu. Resuming the mana
of this agent would involve creating a new persistent TCP connection from the manager to the agent,
would trigger the push scheduler on the agent side.

Note that the collector should also inform the pushed-data interpreter that the agent is considered
permanently down and is therefore no longer managed. By doing so, the collector informs the pushe
collector that rules related to that agent should not be executed until further notice.

Write timeouts by the manager

There is one rare case that we did not investigate thus far: write timeouts by the manager (we only studie
timeouts by the agent). The only time the HTTP client can time out a connection while performing awrite
is immediately after the creation of the TCP connection, when the HTTP client sends its single HTTPget
request. If the agent crashes or the network breaks down precisely then, between the creation of t
connection and the acknowledgment of the HTTPget request, thewrite system call issued by the HTTP
client times out when the manager’s retransmission timer goes off (we already investigated how this
works in Section 7.5.1.1 and Section 7.5.1.3). The TCP connection is then automatically broken by the
In this case, the HTTP client does nothing else than report a failure to the collector. The reconnection s
that we recommend to follow is the same as that recommended when an already established TCP con
is timed out by the manager: three retries and two types of alarm.

7.6 HTTP-Based Communication for Pulled Data: WIMA-CM-pull

Now that we have covered in length the complex case of push-based regular management, let us pre
much simpler case of pull-basedad hoc management.

In the case of pull, the manager creates a new TCP connection and issues one HTTPget per retrieved
management data (e.g., per SNMP MIB variable or per CIM object). Once the data is retrieved, the
connection is torn down by the manager. Everything is initiated from the manager side (creation
connection and client-server request), so we have no problems with firewalls (no reversed client and
roles). The connection is not persistent, so we need not perform timeouts and reconnections. If a trans
fails, no retry is performed automatically. We let the interactive user (administrator or operator) decide w
a new attempt should be made.

Several data retrieved in a row require the creation of several connections. In the case of SNMP, we
retrieve a varbind list (vector of MIB variables) with a single HTTPget , but only one MIB variable. The
priority here is to keep the communication model simple, not to make it efficient, because by definitionad hoc
management occurs rarely (it is typically used for troubleshooting). This design is similar to the way the
operates today with HTTP/1.0 servers.

The MIME headers that we use in WIMA-CM-pull are the same as those defined in WIMA-CM-push
depicted in Fig. 34. We use the same content typeapplication/mgmt , with the same parameters:mapping
andversion. As a result, WIMA-CM-pull is also independent of the information model: we can transfer SN
data, CIM data, etc.

1. This value is indicative. The components making up the management application should allow the number of retries to be co
by the administrator.
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The syntax of the URLs accessed by the manager follows a very simple rule. On the agent, we have a p
calledget ; it can be implemented as any kind of CLHS. This program takes a single argument in inpu
identifier of the data that we want to retrieve. In the case of SNMP, this identifier is calledoid and corresponds
to the OID of the MIB variable. For instance, if the manager wants to retrieve an SNMP MIB variable
MIB-II, it issues an HTTPget  request for a URL structured as follows:

<http://agent.domain:280/mgmt/subscribe/snmpv1/mib-2/get?oid=A.B.C.D >

where agent.domain is the fully qualified domain name of the agent (as defined in Chapter 6),
A.B.C.D is the OID of the SNMP MIB variable that the manager wants to retrieve. The header of the ag
reply looks like this:

The sole difference with WIMA-CM-push is that we do not use MIME multipart to structure the agent’s r
in WIMA-CM-pull.

7.7 Summary

In this chapter, we have presented the second core contribution of this Ph.D. work: the communication
of our Web-based integrated management architecture, WIMA-CM. To begin with, we detailed our
design decisions for push-based regular management: the dissociation between the information and co
cation models, which allows us to transfer SNMP, CIM, or other management data; the use of persiste
connections between the manager and all the agents in its management domain; and the implication
possible presence of a firewall (reversed client and server roles, and creation of the connections
manager). Then, we explained why we use HTTP to communicate between the manager and the agent,
we structure the infinite reply of the agent with MIME multipart. We addressed the issue of urgent notifica
and detailed the headers of the different MIME parts. We concluded the push-part of WIMA-CM by stud
the tricky and multifaceted problem of timeouts and reconnections, and by making several recommend
Finally, we presented a much simpler communication model for pull-basedad hocmanagement, where the
priority was simplicity rather than efficiency.

Fig. 34. Pull: HTTP header of the agent’s reply

HTTP/1.1 200 OK
Date: Wed, 10 May 2000 02:42:57 GMT
Server: Apache/1.2.4
Last-Modified: Thu, 23 Mar 2000 08:58:33 GMT
Mime-Version: 1.0
Content-Type: "application/mgmt"; mapping="SNMPv2-Trap-to-BER"; version="2"

Data
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Chapter 8

XML IN INTEGRATED MANAGEMENT

In the previous chapter, we did not require that the communication model rely on a specific schem
representing management data. All schemes are allowed in WIMA-CM, including BER, strings, serialize
objects, HTML, and XML. In this chapter, we explain why one scheme in particular, XML, is better suited
the others for managing IP networks and systems and, more generally, for supporting distributed inte
management at large—that is, the integration of distributed network, systems, application, service, and
management. The main advantages of using XML to represent management data in persistent HTT
connections lie in its flexibility, its simplicity, and its property of being a standard, ubiquitous technolog
are HTTP and MIME). We show that XML is especially convenient for distributing management, for de
with multiple information models, and for supporting high-level semantics.

This chapter is organized as follows. In Section 8.1, we analyze why XML is useful in NSM. In Section
we explain how to use XML for representing management data. In Section 8.3, we describe how to de
multiple information models with XML. In Section 8.4, we give examples of the higher-level seman
allowed by XML in agent-to-manager and manager-to-manager communication. In Section 8.5, we de
how XML unifies management-data transfers for all integrated management areas. Finally, we summar
chapter in Section 8.6.

8.1 Why Use XML in NSM?

The eXtensible Markup Language (XML) has been all over the press since late 1998. Beyond the hype
is so special about it? And more specifically, what advantages does it bring to NSM?

8.1.1 Overview of XML

XML has been, and is still, developed under the supervision of the W3C. Its building blocks are current
XML 1.0 specification [230], issued in February 1998, and the Namespaces specification [231], issu
January 1999. XML was initially devised as a document-interchange format for Web publishing. It prim
corrected several flaws in HTML [87, pp. 14–17] and was meant to gradually replace HTML on the Web
developers of Web browsers have proved to be slow to add support for XML, and the replacement of H
157
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is not expected to happen before long. In Web publishing, XML complements HTML more than it replac
e.g. to represent complex biomolecules or mathematical equations (see CML and MathML in Section

The real success of XML was not encountered in Web publishing, though. It soon turned out that XML
also good for structuring and unambiguously identifying complex data structures that may never be vie
printed, but simply exchanged between applications running on distant machines [32]. This explains why
is successful in software engineering at large, and not simply in the niche market of Web publishing. X
fast becoming thelingua francabetween distant applications that do not speak the same language, that a
developed by the same vendor, and that do not necessarily run on top of the same middleware, or th
virtual machine, or the same operating system. More and more, the HTTP/XML combination is becomi
standard way to implement a three-tier architecture in the software industry.

Strictly speaking, XML is a metalanguage, that is, a language that describes other languages. By extens
call XML documentany document expressed in a markup language defined in XML. XML documents ha
logical structure (elements) and a physical structure (entities) [87, 32]. Entities can be named,
separately, and reused to form elements. A Document Type Definition (DTD) is one way of specifyin
elements allowed in a particular type of document. XML documents are normally transferred via H
Information held in XML format is self-describing and allows different viewers to render it differently
sound, graphics, text, etc.), or different users to customize its rendering by the same viewer. For
information on XML, the reader is referred to Goldfarb and Prescod [87] for introductory material
Megginson [144] for advanced material.

8.1.2 Who uses XML?

Although XML is a fairly recent technology, it is already used in (or pervades) many areas. For instanc
major relational databases already support (or have announced the support for) an XML API. There a
regularly reports in the press that the Electronic Data Interchange (EDI) industry is gradually being take
by XML, which allows for dramatic cost cuts.

Many XML-based markup languages have already been proposed in many sectors of the industry [24
including the following:

• MathML (Mathematical Markup Language), one of the first markup languages written in XML, alre
supported by most mathematical software tools

• SMIL (Synchronized Multimedia Integration Language)
• SyncML for data synchronization in mobile communications
• XML-QL (XML Query Language), an SQL-like query language for accessing relational databases
• XML/EDI (XML for Electronic Data Interchange)
• DrawML, VML (Vector Markup Language), SVG (Scalable Vector Graphics), and PGML (Precis
Graphics Markup Language) for 2D graphics

• HGML (HyperGraphics Markup Language) for wireless access to graphical data on the Web
• SDML (Signed Document Markup Language)
• DSML (Directory Services Markup Language)
• cXML (commerce XML) for business-to-business electronic commerce
• CML (Chemical Markup Language) and BIOML (Biopolymer Markup Language) in the chem
industry

• VoxML (Voice Markup Language) for voice applications
• MusicML (Music Markup Language), a set of labels for notes, beats, and rests that allows compos
to be stored as text but displayed as sheet music by Web browsers

• AML (Astronomical Markup Language) and AIML (Astronomical Instrument Markup Language)
astronomy

• OFX (Open Financial Exchange) and tpaML (Trading Partner Agreement Markup Language) i
finance industry



XML in Integrated Management 159

main
irst,

ires
ML is
Second,

[233].
A and
try for
where,
roject
Fourth,
nts, for
, and

rly
prietary
sonable

fore
nical
erous
XML

nted
rase in
w
rs a

and
g

emantic
f the
f
red to

bution,
XML
8.1.3 Advantages of using XML in general

How could XML become so pervasive in so many different areas and in such a short time? The
advantages of using it in the software industry at large (that is, not specifically in NSM) are fivefold. F
XML is easy to learn. Familiarity with CORBA, J2EE, or DCOM platforms and technologies typically requ
half a year of training and practice, whereas XML requires a few weeks. The reason for this is that X
considerably less elaborate and sophisticated, hence easier to understand and become familiar with.
XML is very inexpensive because many XML parsers and editors are already available for free
Middleware platforms, conversely, are generally fairly expensive, especially those supporting CORB
J2EE. The few existing CORBA platforms that are both feature rich and free are seldom used in indus
maintenance reasons. Third, XML allows software developers to use the same technology every
whatever the application domain. This results in significant cost savings for software-development p
managers. In this respect, XML is as successful as HTTP, Web browsers, and Java applets before it.
XML documents are human readable, and not simply machine readable (unlike BER-encoded docume
instance). This simplifies debugging significantly. Fifth, because it is so easy to learn, simple to use
inexpensive, the industry has adopted it astheway to interface with legacy systems. This feature is particula
useful when two companies A and B merge: there has to be an old application somewhere (e.g., a pro
database) in company A that cannot be ported to a modern system at a reasonable cost, or within a rea
time, but still has to communicate with its counterpart in company B. XML is well suited for that.

8.1.4 Advantages of using XML in NSM

As XML is becoming ubiquitous, the number of people who are familiar with it is growing fast. It there
makes sense to capitalize on this know-how in NSM as well. But beyond this sole reusability of tech
expertise, and beyond the general-purpose advantages of XML listed above, XML also exhibits num
advantages in the specific case of NSM. We identified five major advantages that could soon make
become thelingua franca in NSM.

A truce in the middleware war

The first and foremost strength of XML in NSM is that it brings a truce to the middleware war. Object-orie
DPEs such as CORBA, Java, or DCOM cause a number of problems that we summarized in a catchph
Section 4.4: themy-middleware-is-better-than-yourssyndrome. Compared to these DPEs, XML keeps a lo
profile. It does not offer a full-blown object-oriented DPE. Instead, when combined with HTTP, it offe
lightweight, inexpensive way of exchanging structured data between distant applications. Both XML
HTTP/1.0 are lightweight, ubiquitous, and inexpensive1, and combining the two offers a very appealin
solution to transfer management data in the IP world.

In short, the HTTP/XML combination is an efficient cure against themy-middleware-is-better-than-yours
syndrome.

Right kind of semantics for NSM

Before the days of Web-based management, NSM was struggling between two extremes: the poor s
richness of SNMP MIBs, which is partly due to the poor expressiveness of SMI, and the throes o
my-middleware-is-better-than-yourssyndrome. HTTP/XML-based distribution allows for the right kind o
semantics in NSM: low enough compared to full-blown, object-oriented DPEs, and high enough compa
mere strings or BER.

When the edges (agent and manager) are object oriented, HTTP/XML, viewed as a middleware for distri
is more general-purpose than Java, CORBA, or DCOM. In particular, we will see in Section 8.4.4 that

1. HTTP/1.1 is also ubiquitous and inexpensive, but it does not qualify for “lightweight”.
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makes it possible to mimic object-oriented distribution by transferring state as XML data and by allowin
manager to invoke methods on remote objects running on the agent, provided that the manager kno
object naming scheme used by the agent.

Low footprint on agents

The third advantage of using XML in NSM is that it has a reasonably low footprint on agents. This
paramount importance in the IP world, as we saw in Section 4.4. CORBA has a large footprint, so has D
which makes them inadequate for managing IP networks and systems. As for Java, J2ME (Java 2
Edition) has a small footprint, J2SE (Java 2 Standard Edition) has a medium footprint, and J2EE (
Enterprise Edition) has a large footprint on agents. This advantage in NSM is a direct conseque
HTTP/XML being a low-profile middleware.

Mobile code

Fourth, XML supports simple forms of mobile code such as remote evaluation and code on demand (d
in Section 3.1.6.1). For instance, a script can be transferred from a manager to an agent (or from a to
manager to a mid-level manager in distributed hierarchical management) between<script> and
</script> tags, and attributes can convey metadata such as the name and version of the scripting lan
This enables administrators to smoothly integrate weakly and strongly distributed hierarchical manag
paradigms over time, as agents get smarter and can bear an increasing proportion o
management-application processing. This advantage is very important for the next management cycle: i
a door open for the future, once the security issues inherent to mobile code are better understood and ad
The XML support for simple forms of mobile code is also part of the “right kind of semantics” mentio
earlier.

Dealing with the heterogeneity of information models

Fifth, XML copes with the heterogeneity of the information models: SNMP, CIM, OSI, etc. We explained
in Chapter 7, and will devote Section 8.3 entirely to this issue.

8.1.5 Advantages of using XML in integrated management

XML has not only the potential to become thelingua francain NSM, but also in integrated management
large. XML can be used for everything, not only network and systems management, but also applic
service, and policy management. The HTTP/XML combination is a true enabler of the so-called “g
enterprise management” vision that marketing people have been trumpeting for years. XML is not a rep
tation scheme dedicated to a specific management function: it is a general-purpose means of repre
self-describing data. In the IP world, we have never been so close to integrating management in the p
will come back to this in Section 8.5.

Note that WIMA is not the sole management architecture leveraging HTTP/XML: so does WBEM, sinc
proprietary HMMP protocol initially envisioned was dropped in favor of the standard HTTP and X
technologies.
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8.2 XML for Representing Management Data: Model- and
Metamodel-Level Mappings

Once an NSM information modeler has decided to use XML to represent management data, the ve
problem he/she is faced with is the way SNMP MIB variables, CIM objects, etc. should be mapped to
There are basically two ways of representing management data in XML: at the model and metamodel
In DMTF parlance, these are respectively called the schema and metaschema mappings. So far, this im
issue has been only briefly touched upon by the DMTF in a slightly cryptic style [67 p. 6, 64 pp. 9–10
has been eluded by the IETF. In this section, we strive to clarify the strengths and weaknesses of the
different approaches, which are both allowed in WIMA and present different advantages.

8.2.1 Model-level mapping

A model-level mapping is one in which the DTD is specific to a particular SNMP MIB (set of MIB variabl
CIM schema (set of CIM classes), or what we generically call a virtual management-data repository. The
elements and attributes in the DTD bear the same names as the SNMP MIB variables, CIM class
properties, etc. A simple example of model-level mapping is the following:

<interface>
<bandwidth type=”string”>100 Mbit/s</bandwidth>
</interface>

8.2.1.1 Strengths and weaknesses of model-level mapping

The main advantage of a model-level mapping is that the DTDs and the XML documents that comply
these DTDs are easy for a human to read. They resemble the examples typically found in beginner’s gu
XML, with a nice and intuitive containment hierarchy. They are also simple to parse and render graph
(e.g., with a Web browser). Another advantage is what the DMTF calls thevalidation power: validating XML
parsers can perform in-depth checks (e.g., type checking) on XML documents.

The main disadvantage of a model-level mapping is that we need many DTDs, one per SNMP MIB o
schema. This can be a problem for agents that are resource constrained but support many SNMP MIB
schemata, etc. This is less of a problem on the manager side, as we can easily increase the amount of
if need be. Another weakness is that the translation from SMI definitions for an SNMP MIB—or Man
Object Format (MOF) definitions for CIM schemata—to XML is not easy to automate, because the log
hierarchical containment of XML elements does not always directly map onto the logics of containme
SMI, MOF, etc. A third problem, specific to CIM (which is object-oriented), is the possible explosion of
namespace on the agent side if we define too many classes. Dealing with a large namespace on the
side is less of a problem, as stated before.

8.2.1.2 Example: SNMP-MIB-to-XML mapping

Let us illustrate the concept of model-level mapping by considering a simple example in the SNMP real
mapping of MIB-II to XML. MIB-II is thestandard SNMP MIB, and is supported by almost all SNMP-awa
network devices and systems. For the sake of conciseness, let us consider only the Interfaces Group in
(given in Appendix C). Fig. 35a shows a DTD for this Interfaces Group1. Fig. 35b gives an example of XML
document that complies with this DTD. To keep these figures reasonably small, we did not represent m
related to access control, description, etc.

1. We do not claim that this DTD is the best for this example. As usual with XML, there is often a thin line between an element
attribute, so several DTDs would make sense for the MIB-II Interfaces Group.
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The definition of the MIB-II Interfaces Group is written in SMIv1 and available in Appendix C. If we trans
these SMI definitions into XML, several transformations are natural because we do not want XML docu
to be tweaked by SMI idiosyncrasies, such as the impossibility of having nested tables. For instance, fo
variables are identical for inbound and outbound octets: the number of unicast packets, the num
non-unicast packets, the number of discards, and the number of errors. Rather than duplicating the

Fig. 35. Model-level XML mapping of the Interfaces Group in SNMP MIB-II

<!-- Parameter entities -->
<!ENTITY % statusValues “(up | down | testing)”>
<!ENTITY % octetsTable “(unicastPackets?, nonUnicastPackets?, discards?, errors?)”>
<!-- We only consider the Interfaces Group here -->
<!ELEMENT mib-2 (interfacesGroup?)>
<!ELEMENT interfacesGroup (numberOfInterfaces?, interfacesTable?>
<!ELEMENT numberOfInterfaces (#PCDATA)>
<!ELEMENT interfacesTable (interface+)>
<!ELEMENT interface (description?, type?, mtu?, speed?, physicalAddress, status?, lastChange?, inOctets?,
outOctets?, specific?)>
<!ATTLIST interface index (#PCDATA) #REQUIRED>
<!ELEMENT description (#PCDATA)>
<!-- Valid types are specified by RFC1213. To keep this example simple, accept any string of characters-->
<!ELEMENT type (#PCDATA)>
<!ELEMENT mtu (#PCDATA)>
<!ELEMENT speed (#PCDATA)>
<!ELEMENT physicalAddress (#PCDATA)>
<!ELEMENT status EMPTY>
<!ATTLIST status administrative %statusValues; operational %statusValues;>
<!ELEMENT lastChange (#PCDATA)>
<!-- Use a parameter entity for inOctets and outOctets -->
<!ELEMENT - - inOctets (%octetsTable;?, unknownProtocols?)>
<!ELEMENT unicastPackets (#PCDATA)>
<!ELEMENT nonUnicastPackets (#PCDATA)>
<!ELEMENT discards (#PCDATA)>
<!ELEMENT errors (#PCDATA)>
<!ELEMENT unknownProtocols (#PCDATA)>
<!ELEMENT - - outOctets (%octetsTable;?, queueLength?)>
<!ELEMENT queueLength (#PCDATA)>
<!ELEMENT specific (#PCDATA)>

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE SNMP-MIB-II-INTERFACES-GROUP SYSTEM “snmp-rfc1213-excerpt.dtd”>
<push cycle=”4567” localTime=”Fri, 7 Jul 2000 10:55:05 +0200” frequency=”600”>
<mib-2 oid="1.3.6.1.2.1">
<interfacesGroup>
<interfacesTable>
<interface index=”1”>
<status administrative=”up” operational=”up”/>
<inOctets>
<unicastPackets>
80000
</unicastPackets>
<errors>
12
</errors>
</inOctets>
</interface>
</interfacesTable>
</interfacesGroup>
</mib-2>
</push>

(a) DTD

(b) Example of XML document
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MIB-II, it makes sense to group them in the DTD into a single parameter entity (octetsTable ). Another
example is the similarity between theadministrative statusand theoperational status. These two MIB
variables are closely related, have identical semantics, and can take only three valid values. It therefore
sense to create a single element (status ) with two optional attributes (administrative and
operational ) and a single set of attributes stored in a parameter entity (statusValues ). By making such
transformations, we get a DTD that is easy to read for a human (see Fig. 35a), and XML documents com
with this DTD are also easy to read (see Fig. 35b).

Note that all the XML elements in Fig. 35a are optional (this is epitomized by the question marks in the D
exceptinterface and index , which are obviously mandatory. This allows a manager or an agen
transfer any number of MIB variables in a single XML document.

In Fig. 35b, we consider the example of data pushed by an agent. This XML document complies with the
specified in Fig. 35a. In this example, the administrator subscribed the manager for the administrativ
operational statuses of the agent’s interface #1, as well as the number of inbound unicast packets
number of inbound errors (for more details about the semantics, see Appendix C).

8.2.1.3 Example: CIM-schema-to-XML mapping

In the WBEM/CIM realm, let us consider a simple schema consisting of a single CIM class. This cla
defined in Appendix D and comes from a DMTF white paper [64]. We will use the same clas
Section 8.2.2.3 when we consider metamodel-level mappings. An example of model-level mapping
CIM class is given in Fig. 36:

We see that the class name and property names explicitly appear in the DTD and XML document. W
notice that the XML document is fairly concise and its structure is very simple to understand.

Fig. 36. Model-level XML mapping of a simple CIM class

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE SIMPLE-CIM-CLASS SYSTEM “simple-cim-class.dtd”>
<cimclass classname=”CIM_ManagedSystemElement” status=”OK”>
<caption maxlen=”64”>
This is my caption
</caption>
<description>
This is my description
</description>
<installDate>
”Fri, 7 Jul 2000 10:55:05 +0200”
</installDate>
<name>
This is my name
</name>
</cimclass>

<!ELEMENT class (caption, description, installDate, name)>
<!ATTLIST class className (#PCDATA) #REQUIRED status (OK | Error | Degraded | Unknown)>
<!ELEMENT caption (#PCDATA)>
<!ATTLIST caption type=”string” #FIXED maxlen=”64” #FIXED>
<!ELEMENT description (#PCDATA)>
<!ATTLIST description type=”string” #FIXED>
<!ELEMENT installDate (#PCDATA)>
<!ATTLIST installDate type=”datetime” #FIXED>
<!ELEMENT name (#PCDATA)>
<!ATTLIST name type=”string” #FIXED>

(a) DTD

(b) Example of XML document



164 Chapter 8

IM
amodel.
XML

sented

NMP
es it
during
ased
for all

rticular,
number

ersome.
: with

evel of
nts. This
ness of
-level
twork
alling

was
ists

hors,
sed

er and
MIng
The

193]
weig,
The
pping.
rative
8.2.2 Metamodel-level mapping

A metamodel-level mapping is one in which the DTD is generic and identical for all SNMP MIBs, all C
schemata, or more generically all the virtual management-data repositories specified with the same met
In other words, there is only one DTD per metamodel (SMIv1, SMIv2, CIM metaschema, etc.). The
elements and attributes in the DTD bear generic names such asclass, property, operation, and more generally
all the keywords defined by the metamodel. With a metamodel-level mapping, the simple example pre
at the beginning of Section 8.2.1 becomes:

<class name=”interface”>
<property name=”bandwidth” type=”string”>
<value>100 Mbit/s</value>
</property>
</class>

8.2.2.1 Strengths and weaknesses of a metamodel-level mapping

The main advantage of a metamodel-level mapping is that the translation from SMI definitions (for an S
MIB), MOF definitions (for CIM schemata), and so on to XML is straightforward to automate. This mak
easy to write external or internal management gateways for legacy systems. This is an important factor
the migration phase from SNMP-based to CIM-based management (or from SNMP- to WIMA-b
management, see Section 6.3.6 and Section 6.4.4). Another strength is that by having a single DTD
SNMP MIBs, CIM schemata, etc., we reduce the overhead for the agent as well as the manager. In pa
for CIM, the memory footprint of the namespace is guaranteed to remain reasonably small because the
of metamodels supported by an agent is always limited.

The main disadvantage of a metamodel-level mapping is that the DTDs are difficult (sometimesverydifficult)
for humans to read and can only reasonably be interpreted by machines. This makes debugging cumb
Graphical rendering is also more complex and less user-friendly. Another important problem is validation
metamodel-level mappings, XML parsers can do very basic validation because they operate at a l
abstraction where they see classes, properties, method names, and all sorts of very generic eleme
makes it easy for a manager or an agent to send a valid but nonsensical XML document. Another weak
metamodel-level mapping is that XML documents are significantly more verbose than with a model
mapping; we will illustrate this in the next two examples. A metamodel-level mapping increases ne
overhead (XML documents are significantly longer) and slightly increases latency (parsing time, marsh
time, unmarshalling time).

8.2.2.2 Example: SMI-to-XML mapping

In the case of SNMP, two examples of SMI-to-XML mappings can be found in the literature. The first
published by Johnet al.in October 1999 [114]. The DTD that they propose for SMIv2 is very basic and cons
only of ELEMENTdefinitions (no entities, no attributes, not even for constant strings). To be fair to the aut
this DTD was not the central part of their work, which focused on the specification of XNAMI, an XML-ba
management architecture that supports dynamically modifiable MIBs.

The second example is a comprehensive SMI-to-XML mapping issued in June 2000 by Schönwäld
Strauss [186]. In their Internet-Draft, they propose a way to use XML to exchange SMIv1, SMIv2, and S
module definitions (that is, descriptions of SNMP MIB variables) between XML-enabled applications.
DTD specified in their Internet-Draft has been integrated into the SimpleWeb IETF MIB converter [
maintained by the University of Twente, The Netherlands and the Technical University of Braunsch
Germany. The resulting representation of the MIB-II Interfaces Group in XML is available in Appendix D.
Interfaces Group alone takes 10 pages, which gives a clear indication of the verbosity of this type of ma
We can also see that a lot of information is duplicated, just as in MIB-II, e.g. the values that the administ
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and operational statuses can take, or the managed objects that are similar for inbound and outbound traf
XML document was generated automatically and almost instantaneously by the SimpleWeb converter,
demonstrates how easy it is for a machine to translate SMI into XML.

8.2.2.3 Example: CIM-metaschema-to-XML mapping

In the case of CIM, many examples of metaschema mappings are available from the DMTF. In Appen
we reproduce an example of CIM-to-XML mapping done at the metamodel level. This example comes f
DMTF white paper. We notice immediately that the readability of this XML document is very poor fo
human. It takes quite some time to get accustomed to the extra level of indirection caused b
metamodel-level mapping, which makes debugging rather difficult. We also see how limited validation is
this type of mapping. Finally, it is obvious that this XML document can be generated automatically
CIM-aware agent.

8.2.3 Comparison between model- and metamodel-level mappings

If we compare Appendix D with Fig. 35 (MIB-II Interfaces Group) and Appendix D with Fig. 36 (simple C
class), we see immediately that XML documents complying with a metamodel-level mapping are less re
and more verbose than XML documents complying with a model-level mapping. This is not simply due
fact that the two mappings in appendix are more detailed and comprehensive, but rather to the very na
these two types of mapping.

If we analyze Schönwälder and Strauss’s DTD [186] and compare it with our partial DTD listed in Fig.
we also clearly see that the former is hampered by SMI idiosyncrasies; e.g., columnar objects are ma
column XML elements. Although this makes automated translation very easy, it significantly hampers h
understanding and generates a nonintuitive containment hierarchy of XML elements. Our pro
containment hierarchy in Fig. 35 is much more natural and easy to understand.

In short, the model- and metamodel-level mappings both have their advantages and disadvantages. W
say that one is always superior to the other, so both are allowed in WIMA. The choice between these tw
of mappings is necessarily a trade-off, and depends on the criteria that are of most importance
management-application designer. These criteria are often site specific. In this section, we identified s

• readability of the XML document for a human (vs. a machine)
• verbosity vs. conciseness of the XML document
• automated translation to XML by a management gateway
• validation power
• one DTD vs. numerous DTDs
• memory footprint of the namespace (CIM).

8.3 XML for Dealing with Multiple Information Models

In Section 7.4.3, we explained that management data in transfer (that is, when it is not stored as in-m
data structures by the agent or the manager) can be represented in many ways in WIMA: not only XM
also HTML, plain strings, BER, serialized Java objects, etc. Because management data encoded i
documents is self-describing, XML is particularly well suited to cope with multiple information models.

In the example depicted in Fig. 37, we have two management domains. In the left domain, the mid
manager #1 and all the agents support the SNMP information model; in the right domain, the mid
manager #2 and all the agents support the CIM information model. (Note that the agents are not repres
Fig. 37.) The administrator needs to integrate management data coming from these two domains, e.g.
out the root cause of problems occurring at the boundary of these domains, or to perform global statis
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the collected data). Let us denote XXX the information model that the administrator has decided to ad
integrate management data. By definition, XXX is site specific.

Translator components are in charge of converting specific information models (SNMP and CIM in
example) into XXX. These components might be integrated into the management server of each mi
manager, or might run on a separate machine. The communication between the event translators (resp
the pushed-data translators) and the notification/event filters (respectively, the pushed-data interprete
rely on HTTP/XML, especially if the translators run on a separate machine; they can also use another
efficient interprocess mechanism (e.g., shared memory) for scalability reasons if the components run
same machine. This alternative is depicted by the string “??XML??” on Fig. 37. As for the communication
between the event translators (respectively the pushed-data translators) and the XXX event correlator
tively the XXX data repository), it relies on HTTP/XML.

The issue of translating from one information model to another for the purpose of integration is comple
has been dealt with by other authors, especially Mazumdar [138, 139, 140] and Rivière [174, 175].

The approach we just described is calledgeneric integration. Whatever XXX, whatever the information mode
used within a management domain, we always go via translators for both events and data. The main ad
of this solution is that the support for a new information model simply requires that new translators be w
which is elegant in terms of design. The main problem is that XXX is likely to be one of the information mo
already used by one of the mid-level managers (SNMP or CIM in our example), so we are unnece
inefficient for this information model (going through a level of indirection unnecessarily adds some late

This problem is solved by resorting tospecific integration(see example depicted in Fig. 38). This time, we n
longer have translators on all mid-level managers, nor an external event correlator. Instead, the admin

Fig. 37. Multiple information models: generic integration
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chooses his/her preferred information model (in our example, CIM) and runs translators only on the mid
managers that support another information model (in our example, the SNMP management server). Th
advantage of this solution is that it is globally more efficient than the previous. The chief disadvantage
it is less generic. If the administrator decides to change the preferred information model (e.g., after the
of two companies), specific integration requires significantly more work than generic integration. As us
the software industry, there is a trade-off to be found between modularity and efficiency. As this decis
inherently site specific, one could expect that component-software developers implement both solutio
let the administrator decide whether efficiency should prevail over design modularity, orvice versa.

8.4 XML for High-Level Semantics

In NSM, the level of semantics and the expressiveness of management data are closely related. The
semantics depends on the abstractions modeled in the virtual management-data repository (SNMP MI
schema, etc.). It is a characteristic of the model. Conversely, the level of expressiveness lies in the meta
A highly expressive metamodel gives the information modeler ample latitude to define abstractions th
useful to the administrator. A poorly expressive metamodel would, for instance, only allow for integer
strings, thereby seriously constraining the definition of appropriate abstractions. A high-level semantics
model demands a high expressiveness of the metamodel. Of course, a highly expressive metamodel
necessarily lead to a semantically rich model: this depends on the information modeler’s skills.

By extension, the semantic richness often designates both of these characteristics. To simplify things,
therefore say that high-level semantics allow an information modeler to “think” and manipulate abstracti
a human typically does, whereas low-level semantics force him/her to go down to an abstraction level
more cumbersome to a human: the nuts and bolts of networking and systems, so to say.

Fig. 38. Multiple information models: specific integration
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WIMA/XML supports a much richer semantics than that offered by SNMP and SMI. It renders easy many
that are not so easy in SNMP-based management. We will give three examples in this section: the tra
an entire MIB table in one bulk, the suppression of “holes” in sparse tables, and the transfer of an entir
series in one bulk. Beyond SNMP, WIMA/XML is also well suited to object-oriented agents and manage
our last example, we will describe the remote invocation of a method encapsulated by a remote objec

8.4.1 Transfer of an entire SNMP MIB table

In Section 2.4.1.2 and Section 2.4.1.3, we studied the problems caused by the small maximum size of an
message and the difficulty to transfer MIB tables efficiently via the SNMP protocol (when building a req
message, the manager must guess the size of the agent’s response). In WIMA in general, and in X
particular, we have no limit set on the maximum size of an HTTP message: an XML document can be inf
large. This allows the agent to push an entire MIB table (or even an entire MIB) in one bulk. In Section 8.
we already gave an example of XML document showing how to transfer a part of or the whole of MIB-

8.4.2 Suppression of “holes” in sparse SNMP tables

In Section 2.4.1.3, we also described the problems caused by the possible presence of “holes” in spars
tables. With XML, it is very simple to remove these “holes” altogether, thereby relieving the manage
server from doing the extra computations required to check for the presence of these “holes” and to ge
them. To do so, we propose to use a new attribute (errorCode ) and replace the “hole” with an error code
typically noSuchInstance  in the case of sparse SNMP tables:

<value errorCode=”noSuchInstance”>
</value>

The possible values oferrorCode are specific to a given information model (SNMPv1, v2c, or v3 in th
above example). A validating XML parser can check the value assigned toerrorCode against the
information model specified in the header of the XML document.

8.4.3 Time series of a MIB variable

In SMI, there is no provision for time series. As a result, there is no simple means in SNMP to store and re
an entire time series for a single managed object, such as the inbound error rate of interface #1 sample
10 minutes over a period of 24 hours. This is a problem for offline statistical analysis of SNMP data, w
typically works on time series. Today, offline statistical analysis requires administrators to reconstruc
series from the collected data, e.g. in the form of temporal MIBs [11]. Another problem is that some S
data can be lost, e.g. due to buffer overflows. This leads to “holes” in the reconstructed time series, an
“holes” are sometimes awkward to deal with. For instance, if we build a time series for per-interface inb
traffic, what do linear or quadratic interpolations lead to in the case of bursty traffic? And does it make
to interpolate the missing value of an error rate?

This problem is easy to solve in WIMA: time series can be stored at the agent and transferred in one b
HTTP/XML. Storing time series at the agent is easy because they usually take up little room when sto
in-memory data structures. For instance, a gauge and a timestamp stored as 32-bit integers each req
bytes of memory. Sampled every 10 minutes over a period of 24 hours, such a MIB variable would gen
time series with the following memory footprint on the agent:

(4 + 4) x (60 / 10) x 24 = 1152 bytes

For many agents, such a small overhead is negligible, and dozens (sometimes hundreds) of such tim
can easily be stored locally. The advantage of storing a time series at the agent is that the agent can th
an entire time series once a day, in bulk. This is useful because during this operation, the agent can c
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retransmit data if need be, and can even retry an hour later. This makes data transfers very resilient. A
case when this can be particularly useful is when the agent is disconnected from the manager for ex
periods of time, because it is switched off for several hours in a row (e.g., a desktop PC or a mobile p
because it is in a mountainous area not covered by any antenna (e.g., a mobile phone or a roaming P
Clearly, there is trade-off to be found between keeping time series in volatile memory, where they tak
resources but may be lost in case the agent crashes, and keeping them in persistent storage (e.g.,
where they use up more resources but survive a crash.

When the data is stored at the agent, it can be transferred via XML in a simple way, as depicted in Fig. 3
the sake of readability, we assume here that the first timestamp occurs at the epoch (time zero) and w
represent the first four values and the last; intermediate values are replaced with the string “[...] ”.

Note that the usefulness of time series is not limited to agent-manager interactions. Time series can
beneficial in distributed hierarchical management, when mid-level managers are required to push
statistics to the top-level manager. For instance, the top-level manager might want to be informed b
mid-level manager of the number of serious events handled by its event correlator every 15 minutes,
period of 24 hours. QoS management is another typical example: it is interesting for the top-level mana
get time series of the number of bandwidth reservations that could not be honored by the boundary rou
each management domain.

8.4.4 Distributed object-oriented programming with XML

Outside the SNMP realm, e.g. for CIM, XML elements and entities can be used to implement what we
call the poor man’s object serialization and remote method invocation.

The serialization of objects running at the edges of the persistent HTTP/TCP connection (that is, the a
the manager) must deal with both state and behavior. The serialization of an object state is simple: the s
propertiesin DMTF parlance) is translated into XML elements and entities, as already described. The s
ization of an object behavior (ormethodsin DMTF parlance) can only be achieved in simple cases, e.g. w
the methods are implemented with scripting languages (see the simple support for mobile code desc

Fig. 39. Time series with XML

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE SNMP-MIB-II-INTERFACES-GROUP SYSTEM “snmp-rfc1213-excerpt.dtd”>
<push cycle=”4567” localTime=”Fri, 7 Jul 2000 10:55:05 +0200” frequency=”86400”>
<mib-2 oid="1.3.6.1.2.1">
<interfacesGroup>
<interfacesTable>
<interface index=”1”>
<inOctets>
<unicastPackets>
<value “timestamp”0”>81000</value>
<value “timestamp”600”>65000</value>
<value “timestamp”1200”>73000</value>
<value “timestamp”1800”>70000</value>

[...]

<value “timestamp”85800”>100000</value>
</unicastPackets>
</inOctets>
</interface>
</interfacesTable>
</interfacesGroup>
</mib-2>
</push>
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Section 8.1.4, with the proposed tags<script> and</script> ). XML can also transfer opaque binary
data “as is”, which enables the transfer of serialized Java objects, proprietary C++ objects, etc. Note tha
latter case, the internal structure of the transferred object is completely invisible. This prevents XML p
from validating the data and makes it difficult for a human to read (and debug) the management data in

As for the remote invocation of object methods in XML, an example can be found in the literature: the DM
specification for CIM operations over HTTP [68]. The DMTF’s model is reasonably simple and ca
generalized to almost any object-oriented information model. The CIM DTD [66] defines two elem
<METHODCALL>for invoking a method on a remote object, and<METHODRESPONSE>for receiving the
response of this method call. These two elements are hierarchically contained in an operation elem
simple operation can contain a single method call or response. Two elements are defined by the CIM D
simple operations:<SIMPLEREQ>for the request and<SIMPLERSP>for the response. A multiple operation
on the other hand, allows multiple method invocations to be batched together, thereby reducing the num
messages exchanged between the manager and the agent. In the CIM DTD, the corresponding elem
<MULTIREQ>and <MULTIRSP>. An example of method invocation including a complete request an
complete response is given in Appendix D. The above-mentioned specification also supports some
introspection (viaintrinsic methods) for discovering the subclasses of a CIM class (EnumerateClasses ),
the instances of a CIM class (EnumerateInstances ), the CIM objects that are associated to a specific CI
object (Associators ), etc. Extra metadata is available viaqualifiers.

This example demonstrates that although XML does not directly support remote method invocation in th
CORBA or Java RMI do, it does provide the means of encoding method invocation and parameters,
checking the type of each parameter at invocation time. Thus, with XML, it is possible to cleanly trigg
action on a distant agent or manager: there is no need to resort to SNMP’s ugly programming by side
(see Section 2.4.2.2). XML nicely interfaces with object-oriented information models, which offer high-
semantics to management-applications designers—higher than data-oriented information models
SNMP’s. By using HTTP and XML, we do not incur the problems of object-oriented DPEs, and we ha
simple yet sufficient way of interacting with objects at the edges. In short, we get the best of bot
object-oriented and non-object-oriented worlds.

8.5 XML for Integrated Management: a Unified Communication
Model

Although WIMA allows for many data representation schemes, unifying the communication model aro
single scheme brings several advantages: all management data is in the same format: configuratio
performance statistics, policies, etc.; we no longer have to translate between different representation s
we can directly store XML data in the data server for offline processing or archival; etc. For all these rea
other representation schemes should preferably be reserved for interfacing with legacy systems (e.g., i
a vendor’s life easier to encode SNMP data in BER during the transition phase) or for debugging
clear-text strings), but new WIMA-compliant management servers and agents should preferably suppor
natively1.

In Section 8.1.5, we claimed that we have never been so close to integrating management in the IP wor
that we have the powerful combination of HTTP and XML. Let us illustrate this with an example,
demonstrate the advantages of having a unified communication model for network, systems, appli
service, and policy management.

In the hierarchical tree depicted in Fig. 40, we use the same communication model between all devic
systems: HTTP, MIME multipart, and MIME parts consisting of XML documents. In this example, we h
two management domains—a situation typically encountered by geographically dispersed enterprise

1. Note that WIMA does not make it mandatory to use XML, though.
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management domain is supervised by a mid-level 1 manager. For the management domain on the
mid-level manager is directly in charge of the agents. With agent 1 (e.g., a large file server with mu
interfaces), the mid-level 1 manager performs both network and systems management tasks. With agen
a mere hub), it only performs network management. For the management domain on the right sid
mid-level 1 manager delegates network management to one mid-level 2 manager and systems manag
another mid-level 2 manager. Unlike its counterpart on the left side, the right mid-level 1 manager do
directly interact with the agents in its domain: only the mid-level 2 managers do. For all these interaction
use the same communication model based on HTTP/MIME/XML.

Some agents can be under the supervision of multiple mid-level 2 managers, e.g. agent 4 in the e
depicted in Fig. 40. This sharing of an agent by multiple managers with different roles is classic and r
from what Sloman and Twidle call adomain overlap[196]. Still, whether an agent is supervised by
mid-level 1 manager, a mid-level 2 manager, or multiple managers, the communication model rema
same: HTTP/MIME/XML.

Between all the managers, we have regular exchanges of network and systems management data, all
HTTP/MIME/XML. Parallel to that, managers exchange policies, that is, high-level abstraction
management translated by managers into lower-level abstractions that can directly be sent to and und
by agents. Policy exchanges also rely on HTTP/MIME/XML. On top of this, we could add applica
management and service management: they, too, could be based on the same communication mode

In short, this example shows that the combination of HTTP, MIME, and XML offers us a powerful mea
unifying the communication model for integrated management.

Note that this unification would not be so straightforward if another representation scheme were used.
well suited to SNMP data but very impractical for other information models (see problems describ
Chapter 2). Plain strings are good for debugging but are not suitable for elaborate information models s
CIM; neither is HTML, with its fixed tags. Serialized Java objects are not general-purpose enough; neith
binary CORBA objects, vendor-specific C++ objects, etc. In conclusion, the flexibility, simplicity, and s

Fig. 40. XML: Hierarchically distributed integrated management

Top-level manager

Mid-level 1 manager Mid-level 1 manager

Mid-level 2 manager Mid-level 2 manager

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

policiespolicies

NM + SM NM + SM

NM

NM NM SM SM

policies policies
NM SM

NM + SM
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footprint of XML make it the best suited technology for the integrated management of IP networks
systems.

8.6 Summary

In this chapter, we have shown the advantages of using a communication model based on HTTP/MIME
in WIMA. First, we identified the advantages of using XML in general, in NSM, and in integra
management. Second, we explained how to use XML for representing management data and identi
strengths and weaknesses of model- and metamodel-level mappings. Third, we justified why the fact tha
documents are self-describing makes XML particularly appropriate for dealing with multiple informa
models. Fourth, we illustrated with four examples the high level of semantics offered by XML, which
supports simple forms of distributed object-oriented programming. Fifth, we studied an example demons
how XML unifies distributed and integrated management in NSM and beyond. This concludes the thir
last core contribution of our Ph.D. thesis.
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Chapter 9

A WIMA-B ASED RESEARCH PROTOTYPE: JAMAP 1

In order to validate our new management architecture, we developed in 1998–99 a research prototyp
the JAva MAnagement Platform (JAMAP). The main goals of this endeavor were the following:

• to demonstrate the feasibility and simplicity of our push-based organizational model
• to demonstrate the feasibility and simplicity of our communication model
• to highlight the usefulness of advanced Web technologies in NSM
• to show how to deal with agents supporting native SNMP MIBs
• to prove to network-device and system vendors that the support for WIMA is simple

In this chapter, we show that all of these objectives were met. Note that the goal of developing JAMA
not to offer a full-blown management platform for use in a production environment, nor to carry out in-d
performance evaluation, nor to benchmark JAMAP against other management platforms.

This chapter is organized as follows. In Section 9.1, we describe how JAMAP implements WIMA. In Sec
9.2 through to 9.4, we present the detailed design of the three tiers of our management architectu
management station, the management server, and the agent. In Section 9.5, we show how we made re
a reality in JAMAP. Finally, we summarize this chapter in Section 9.6.

9.1 Overview of JAMAP

JAMAP is an example of WIMA-based management platform. It implements many of the concepts pres
in Chapters 6 and 7. However, it does not support XML because its development predates the work pre
in Chapter 8. The motivation behind the development of this research prototype was to demonstrate firs
the feasibility of WIMA, and second its simplicity.

JAMAP should not be consideredtheway to implement WIMA. To begin with, we made a number of simp
fications for the sole purpose of reducing the development time and having the prototype ready for an in
demonstration in March 1999. Moreover, some hot software-engineering issues (e.g., “What exact
software component?”, or “Is Java appropriate for implementing component software?”) are still very

1. Part of the material presented in this chapter was published in the proceedings of DSOM’99 [135].
173
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open to debate—and outside the scope of this thesis. JAMAP is just one way of implementing the W
management architecture. It does not seek optimality.

Before we begin with the description of JAMAP, we gratefully acknowledge that much of its implement
was performed by Laurent Bovet in the course of his M.S. thesis [30], under the supervision of the auth
case the reader is interested in the internals of JAMAP, the code of release 0.3 is freely available
Web [136] under the GNU General Public Licence [86].

9.1.1 Key design decisions at a glance

The main novelty demonstrated by JAMAP is the push-based transfer of regular management data, fr
agent to the management server, via a persistent HTTP connection structured with MIME multipart. To th
of our knowledge, this constitutes an innovation to manage IP networks and systems.

In order to reduce the development time of JAMAP, we did not implement WIMA in its entirety. JAM
supports:

• Java-based three-tier architecture: management station, management server, and agent
• publish-subscribe pattern
• push-based distribution for regular management and notification delivery
• pull-based distribution forad hoc management
• rule-based event generation for monitoring
• basic rule-based event filtering for event correlation
• basic event handling
• persistent HTTP/TCP connections with MIME multipart
• compression of management data
• automated reconnections
• management data encoded in serialized Java objects or plain-text strings
• SNMP MIBs

JAMAP does not support:

• bulk transfers of management data (multiple MIB variables per MIME part)
• going across a firewall (no secure relay)
• keepalives
• management data encoded in XML
• CIM schemata

9.1.2 More on the design of JAMAP

The core of JAMAP (agent’s push scheduler, persistent HTTP connection, MIME multipart, dynamic
compression, agent’s data dispatcher, and manager’s data collector) was coded in only two weeks. Mo
coding effort afterward went into implementing the management server, especially the rule-based syst
includes a GUI-based rule editor. Overall, the development of JAMAP took a bit more than four man-mo
This demonstrates that vendors could rapidly develop WIMA-compliant agents (IP network devices a
systems). As expected, the development of the management server requires significantly more wor
professional-grade WIMA-compliant managers could be available in about six months, which is reaso

As far as the information model is concerned, JAMAP supports only SNMP MIBs because they are cur
the only virtual management-data repositories widely deployed in IP networks and systems. On the age
we tested MIB-II [143] and the Host Resources MIB [237] on a Linux PC. On the manager side, we te
Linux PC and a Windows PC. Both ran the same code, which proves the portability of Java when deve
refrain from using proprietary extensions. JAMAP does not require that native SNMP MIBs be changed
agents; it interfaces with these MIBs via Java classes written by AdventNet (see Section 9.5).
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The components described in Chapter 6 are implemented as Java classes or servlets on both side
persistent communication pipe (management server and agent). Servlets use HTTP to communicate w
another, be they on the same or different machine(s). Consequently, servlet-to-servlet communication
the management server is based on HTTP. We do not use object-oriented frameworksper sein JAMAP, but
we use JDK 1.1.7, which some people consider a framework.

Access to the data repository is based on NFS, a classic in the Unix world. Java objects are directly st
serialized format, one file per SNMP MIB variable, for convenience. Notifications are not currently arch
in JAMAP.

In order to cut the development time, we opted to encode only one management data per MIME part. A
cycle therefore consists of several MIME parts in JAMAP (in WIMA, an entire push cycle is normally se
a single MIME part). Clearly, this does not demonstrate the power of bulk transfers in WIMA.

For data subscription, we provide the administrator with an SNMP MIB browser. To implement this, we re
the MIB browser and some Java classes that AdventNet makes freely available on the Web (see Sect

MIME parts carrying SNMP notifications are not compressed because the compression ratio would be p
so little data, and the increased latency would not be worth the meager savings in network overhead.

Finally, the servlets running on the management server can be distributed over several physical machin
distribution will be clarified in Section 9.3.

9.1.3 Advanced Java technologies in JAMAP

We use two advanced Java technologies in JAMAP: servlets and serialization. Let us briefly describe 

Java servlets

JAMAP relies heavily on HTTP-based communication between Java applets and servlets. Servlets [5
recently appeared on the Web; they are an improvement over the well-known CGI scripts. Unlike CGI s
which are typically written in a scripting language like Perl [238] or Tcl/Tk [160], servlets are Java cla
loaded in a JVM via an HTTP server. The HTTP server must be configured to use servlets and associate
with each loaded servlet. At start-up time, one servlet object is instantiated for each configured servlet.
a request is performed on a servlet URL, the HTTP server invokes a method of the servlet depending
HTTP method used by the request. All servlets implement one method per HTTP method. For instan
doGet()  method is invoked when an HTTPGET request comes in for the corresponding URL.

Modern operating systems generally support multithreading. As a result, most HTTP servers now s
concurrent accesses. Several HTTP clients may therefore invoke concurrently the same method of th
servlet. This allows the sharing of the same servlet by multiple persistent connections. We used this
extensively in JAMAP when we tested it with several agents. Like any URLs, Java servlets can also le
the general-purpose features of HTTP servers (e.g., access control).

During the development of JAMAP, servlet environments were in constant evolution. During our work
Microsystems’s specification of the servlets changed from version 2.0 to version 2.1, but public-do
implementations remained at 2.0. For JAMAP, we first used the Apache HTTP server version 1.3.4 a
Apache servlet engine Jserv 0.8. But we had problems because Jserv 0.8 did not support concurrent
to servlets and the response stream was buffered (both problems were later corrected in Jserv 1.0
meantime, we switched to another HTTP server, Jigsaw 2.0.1, which offered good support for servlets

Java serialization

Serialization is a feature of Java that allows an arbitrarily complex object to be translated into a byte stre
JAMAP, we used it for ensuring the persistence of the state of an object and for transferring objects o
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network. Objects containing references to other objects are processed recursively until all necessary ob
serialized. The keywordtransient can be added to the declaration of an attribute (e.g., an object refere
to prevent its serialization.

For network transfers, instead of defining a protocol, one can use serializable classes dedicated to co
cation. Such classes offer awriteObject() method on one side, and areadObject() method on the
other. For persistence, serialization proved very useful in JAMAP to store rules and agents configurati

9.1.4 Overview of the communication aspects

Fig. 41 and Fig. 42 are synthetic views of the communication between the different Java applets and s
running on the agent, management server, and management station. Fig. 41 depicts push-based monito
data collection, while notification delivery and event handling are represented on Fig. 42. The thre
architecture described in Section 6.2.2 appears clearly in these two figures.

The push arrow between theSNMP MIB data dispatcherservlet and theSNMP MIB data subscriptionapplet
represents the path followed by MIB data retrieved interactively (in attended mode, data can be either
or pulled). The other push arrows depict regular management transferred in unattended mode. The
arrows represent the applet-to-servlet dialogs that take place at the subscription phase. Note that the sa
mechanism is used everywhere: between the agent and the management server, between the man
server and the management station, between the agent and the management station, or between th
within the management server. Low-level classes also use the same producer-consumer pattern ever

Fig. 41. JAMAP: Communication between Java applets and servlets for
monitoring and data collection

Fig. 42. JAMAP: Communication between Java applets and servlets for
notification delivery and event handling
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9.1.5 Distribution phase for monitoring and data collection

The distribution phase for monitoring and data collection is depicted in Fig. 43. If we compare this figure
the generic one presented in Chapter 6 for WIMA (Fig. 15, p. 110), the main difference is the presence o
servlets in JAMAP. They glue together components that are logically related. As mentioned already, s
communicate via HTTP; so Java objects living in different servlets also communicate via HTTP (e.g
pushed-data interpreter and the event correlator).

Another difference is that we simplified considerably the visualization of events in JAMAP, in order to re
the development time. Instead of writing a full-blown network-map GUI, aware of the network topology
updating dynamically the colors of the icons representing network devices and systems, we s
implemented a log window called theevent log GUIapplet. In this window, we log one entry per incomin
event, line by line. Since we do not use network-map GUIs, we do not have a network-map registry eith
event correlator sends events directly to the log window, which runs permanently in the Web browser
management station. Consequently, JAMAP currently supports only one management station. (Note
would be simple to send the same event to multiple log windows running in different Web browsers.)

Fig. 43. Push model in JAMAP: monitoring and data collection
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The third noticeable difference between Fig. 43 and Fig. 15 is that event handlers can only use email to
the administrator or an operator, and cannot archive events. This was deemed acceptable for a protot

9.1.6 Distribution phase for notification delivery

The distribution phase for notification delivery is depicted in Fig. 44, together with event handling within
management server. If we compare this figure with the generic one presented in Chapter 6 for WIMA (F
p. 108), the main difference is again the presence of Java servlets in JAMAP. We clearly see the sep
between the notification collector servlet, in charge of receiving a specific kind of event coming from a
(notifications), and the event manager servlet, in charge of correlating all types of events (see Section

Another difference between this figure and the generic WIMA figure is the absence of sensors in the ag
Section 9.4.2, we will see that the health monitor implemented in JAMAP is in fact an alarm simulator, w
does not use real data coming from sensors.

Finally, as in the previous section, we also use an event log GUI instead of a network-map GUI, and
handlers must use email for notifying the administrator of a problem.

Fig. 44. Push model in JAMAP: notification delivery and event handling
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This concludes our description of how JAMAP implements WIMA. In the next three sections, we
investigate the detailed design of the different applets and servlets running on the three tiers of our mana
architecture: the management station, the management server, and the agent.

9.2 Management Station

The management station is the desktop of the administrator or operator. It can be any machine (a Linu
Windows PC, a Mac, a Unix workstation, etc.) as long as it runs a Web browser and supports Java. Unl
management server, the management station is not static: the administrator can work on different mac
different times of the day. During the subscription phase, he/she configures the agent via the SNMP MI
subscription applet and the SNMP notification subscription applet. The rules used by the pushed-data c
and the event manager servlets can be modified at any time via the rule edition applet. Events are displ
the event log applet.

9.2.1 SNMP MIB data subscription applet

The SNMP MIB data subscription applet communicates directly with the agent (see Fig. 43). It provide
subscription system for regular management. It is also used to retrieve and view data interactively, eith
(pull based) or over a longer period of time (push based). Its main tasks are the following:

• browse SNMP MIBs graphically
• select SNMP MIB variables or SNMP tables and retrieve their values once (pull model)
• select SNMP MIB variables and monitor them for a while (text fields, time graphs or tables)
• monitor some computed values (e.g. interface utilization)
• subscribe to SNMP MIB variables or SNMP tables and specify a push frequency (per MIB variable

Computed values are typically the results of equations parameterized by multiple SNMP MIB variable
implemented a sort of multiplexer to support them. This kind of simple preprocessing could be delegated
agent in the future (e.g., with mobile code).

9.2.2 SNMP notification subscription applet

Similarly, the SNMP notification subscription applet also communicates directly with the agent (see Fig
It enables the administrator to set up a filter for notifications at the agent level. SNMP notifications that
not been subscribed to by the manager are silently discarded by the agent.

9.2.3 Rule edition applet

The rule edition applet (see Fig. 41 and Fig. 42) controls the behavior of two objects:

• the pushed-data interpreter object, which lives in the pushed-data collector servlet
• the event correlator object, which lives in the event manager servlet

The administrator can write rules in Java via the applet, or can edit them separately and apply them
applet. (Java is used here as a portable scripting language.) For instance, an event can be generate
pushed-data interpreter if the value of an SNMP MIB variable exceeds a given threshold. A typical rule f
event correlator would be that if a system is believed to be down, then all applications running on it shou
be down, so events reporting that NFS is not working or that an RDBMS is not working should be disc

More complex rules can easily be written. For instance, the pushed-data interpreter can check if the a
value of a given SNMP MIB variable increased by 10% or more over the last two hundred push cycles. I
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these rules can be arbitrarily complex, as there is no clear-cut distinction between what is in the realm of
data mining and what should be performed immediately, in pseudo real-time. The trade-off is th
pushed-data interpreter should not be slowed down too much by an excessive amount of rules, othe
might not be able to apply all the relevant rules to incoming data between two consecutive push cycle

9.2.4 Event log applet

The event log applet (see Fig. 43 and Fig. 44) is connected to the management server to receive events
it as a debugger, as we do not manage a production network with our platform. This applet displays a
list of events and manages a blinking light and sound system to grab the operator’s attention in case of in
events. It is intended to remain permanently in a corner of the administrator’s and operator’s desktop s
Eventually, it should be complemented by (or replaced with) the network map GUI applet.

9.3 Management Server

The management server runs three servlets: the pushed-data collector, the notification collector, and th
manager. These servlets are not specific to SNMP, and we can easily support other information models
subtyping. In principle, this management server could easily be distributed over multiple machines if ne
(e.g., for scalability reasons), as the communication between servlets relies on HTTP and the data s
already a separate machine. For instance, we could run the three servlets on three different machines,
mining on a fourth. This simple type of distribution, which preserves a centralized management paradigm
described in Section 6.3.5 (see Fig. 16). But so far, we have only tested JAMAP with a single machine
management server.

9.3.1 Pushed-data collector servlet

The pushed-data collector servlet consists of three core objects (see Fig. 43), plus a number of instrum
objects not represented on that figure. The pushed-data collector object connects to the agent upon star
enters an infinite loop where it listens to the socket for incoming data and passes this data unchange
pushed-data filter object. If the agent gracefully closes the persistent connection, e.g. in case of a clean
the pushed-data collector immediately reconnects to it so as to ensure a persistent connection. Note
advanced keepalive schemes described in Section 7.5 are not yet implemented in JAMAP.

The pushed-data filter object controls the flow of incoming data. If it detects that too much traffic is comi
from a given agent (that is, from a given socket), it tells the pushed-data collector object to close perma
the connection to that agent (that is, the collector should not attempt to reconnect to the agent until the a
trator explicitly tells it to do so). The rationale here is that a misbehaving agent is either misconfigured, b
or under the control of an intruder pursuing a denial of service attack, and that the good health
management system should be protected against this misbehaving agent. When this happens, the adm
is informed via email.

If the pushed-data filter object is happy with the incoming data, it passes it unchanged to the pushe
interpreter object. The latter unmarshalls the data and checks, MIB variable by MIB variable, whether
subscribed to for monitoring, data collection, or both.

In the case of data collection, the SNMP MIB variable is not processed immediately. Instead, it is store
persistent repository (an NFS-mounted file system) via a logger object. We assume that an external
will use it afterward to perform some kind of data mining (e.g., it could look for a trend in the variations o
CPU load of an IP router to be able to anticipate when it should be upgraded).

In the case of monitoring, the SNMP MIB variable is processed immediately. The pushed-data inter
object applies the rules relevant to that agent and that MIB variable. If it notices something important (
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heartbeat is received from an IP router that was considered down), the pushed-data interpreter object g
an urgent event and sends it via HTTP to the event correlator object living in the event manager servl
took special care for the case where the same SNMP MIB variable is used for both monitoring an
collection. The data is then duplicated by the pushed-data interpreter.

A nice feature of our rule system is that rules may be dynamically compiled and loaded in by the se
Dynamic class loading is a feature of the Java language. The core API provides a method to instantiate
from a class by giving its name in the form of a string. The class loader of the JVM searches the class
the file system, and loads it into the JVM’s memory. This enables the servlet to load a class at runtime w
knowing its name in advance. Once a class is loaded, it behaves just as any other class. We are limited
the fact that a class cannot be modified at runtime. This means that if a rule is already registered under a
class name and that rule is modified by the administrator, another class name must be used for that new
of the rule.

To solve this problem, we implemented a simple technique that consists in postfixing the class name
release number and incrementing this release number automatically. As a result, the administrator can
modify, and debug rules dynamically. The drawback is that the memory used by loaded classes (esp
those corresponding to the “old” rules) is freed only when the JVM is restarted. The administrator s
therefore be careful not to fill up the memory in the rule debugging phase. Clearly, this feature should b
with special care on a production system; but it proved to be particularly useful to us for debugging rul

9.3.2 Notification collector servlet

As depicted in Fig. 44, the notification collector servlet consists in principle of two core objects: the n
cation collector and the notification filter. Contrary to pushed data, no interpreter is needed for notifica
because we know already what happened: we do not have to work it out.

The notification collector object works exactly as the pushed-data collector object. The notification filter o
also works as the pushed-data filter object. In fact, in the current version of JAMAP, the notification coll
servlet and the pushed-data collector servlet are one single servlet. This enables us to use a single p
connection between the agent and the manager for transferring SNMP MIB data and notifications. (No
this would not be the case if we were to distribute the servlets over several machines or if we wanted to m
different priority levels for notifications, as described in Section 7.4.2.) Notifications received by
pushed-data interpreter object are currently passed on unchanged to the event correlator object livin
event manager servlet, without any further processing.

9.3.3 Event manager servlet

The event manager servlet connects to one or more pushed-data collector servlets (one in the case de
Fig. 41 and Fig. 42) and waits for incoming events. Events are processed by the event correlator obje
object performs a simple correlation with regard to the network topology, in order to discard masked e
For instance, if a router is down, all machines accessed across it will appear to be down to the push
interpreter. Based on its knowledge of the network topology (which is hardcoded in the current vers
JAMAP), the event correlator is able to keep only those events that cannot be ascribed to the failure o
equipment.

When an event is not discarded by the event correlator object, it is transmitted to the event handler
corresponding to its level of emergency (this emergency level is encapsulated inside the event). Eac
handler is coded to interface with a specific notification system (e.g., an email system, a pager, a telep
siren, etc.). In our prototype, we only implemented an email-based notification system.

In the future, it would be useful to replace our simple event correlator with a full-blown event correlator w
in Java by another research team. This would fit nicely into the “spirit” of component software.
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9.4 Agent

The agent runs two servlets: the SNMP MIB data dispatcher and the SNMP notification dispatcher. B
them are specific to the SNMP information model.

9.4.1 SNMP MIB data dispatcher servlet

The SNMP MIB data dispatcher servlet consists of three core objects (the push scheduler, the MI
formatter, and the SNMP MIB data dispatcher) plus a number of instrumentation objects not represen
Fig. 43. During the subscription phase, the push scheduler object stores locally the subscription sent
SNMP MIB data subscription applet (we call it the agent’s configuration). Later, during the distribution p
the push scheduler object uses this configuration to trigger the push cycles. It tells the SNMP MIB
formatter object what SNMP MIB variables should be sent at a given time step. The SNMP MIB data form
object accesses the in-memory data structures of the SNMP MIBs via some proprietary, tailor
mechanism (currently, AdventNet’s Java classes), formats the SNMP MIB data as a series of {OID, v
pairs, and sends it to the SNMP MIB data dispatcher object. The latter compresses the data withgzip ,
assembles the data in the form of a MIME part, pushes the MIME part through, and sends a MIME sep
afterward to indicate that the push cycle is over. In the current version of JAMAP, we can have onl
{OID, value} pair per MIME part. In the next version, we should allow for several.

In the future, the SNMP MIB data dispatcher servlet should be able to retrieve the agent’s configuration
the data server via the management server. Thus, the agent would not necessarily have to store its confi
in nonvolatile memory—a useful feature for bottom-of-the-range equipment.

9.4.2 SNMP notification dispatcher servlet

The SNMP notification dispatcher servlet consists of two core objects (the SNMP notification generato
the SNMP notification dispatcher) plus a number of instrumentation objects not represented on Fig. 44.
the subscription phase, the SNMP notification generator object stores locally the subscription sent
SNMP notification subscription applet. In other words, it sets up a filter for SNMP notifications coming in f
the health monitor. During the distribution phase, the health monitor checks continuously the health
agent based on input from sensors. When a problem is detected, the health monitor asynchronously
alarm to the SNMP notification generator object in the servlet via some proprietary mechanism. The S
notification generator object checks with the filter if this alarm should be discarded. If it was not subscrib
by the manager, the alarm is silently dropped. If it was, the SNMP notification generator object format
anSNMPv2-trap PDU and sends it to the SNMP notification dispatcher object, which, in turn, wraps
the form of a MIME part, pushes it to the management server via HTTP, and sends a MIME separator aft
to indicate that this is the end of the notification.

As we do not manage a real-life network with JAMAP, the SNMP notifications that are generated by the
monitor are all simulated. Instead of using real sensors, we use a script that fires, from time to time, one
cation taken in a pool of predefined notifications; the selection of this notification is based on a random n
generator. As with the previous servlet, the SNMP notification dispatcher servlet should eventually be a
retrieve the agent’s SNMP notification filter from the data server via the management server.

9.5 Reusability

In order to reduce our development efforts, we reused a number of existing classes in JAMAP. They are
described in this section. This demonstrates, if need be, that reusable component software is not s
vision!
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AdventNet SNMP suite

We used the following classes of the AdventNet SNMP suite [1]:

• theMibTree  class: a Java bean displaying the SNMP MIB tree as a GUI
• theMibNode  class: a node of the SNMP MIB tree
• theSnmpVar class: represents/encodes an SNMP variable
• theSnmpTarget  class: a Java bean abstracting an SNMP device
• theSnmpTable  class: a Java bean representing an SNMP table

HTTPClient

We used theUtil class of the HTTPClient package written by Tschalär [227]. HTTPClient provides m
features than the network classes found in JDK 1.1.7, especially for parsing HTTP headers.

IBM AlphaWorks SMTP

We used theSMTPConnection class [104] in the event mailer consumer (event handler) to send ema
administrators and operators.

JDK’s Java compiler class

We used thesun.tools.javac.Main class of Sun Microsystems’s JDK Java compiler [217]
implement dynamic compilation in the rule system (described in Section 9.2.3). Note that this class
change between successive versions of the JDK, which hampers the portability of the code of our rule

9.6 Summary

The purpose of developing JAMAP, a WIMA-based research prototype, was to demonstrate the feasibil
simplicity of the core contributions of our work, primarily the use of push, persistent HTTP connections
MIME multipart. JAMAP is written entirely in Java. It implements the push model to perform regu
management (permanent monitoring and data collection for offline analysis) and notification delivery, a
push and pull models forad hocmanagement (temporary monitoring and troubleshooting). The comm
cation between agents and managers relies on HTTP transfers between Java applets and servlets over
TCP connections. The SNMP MIB data is encapsulated in serialized Java objects that are transmitted as
parts via HTTP. This data is transparently compressed withgzip , which saves network bandwidth withou
increasing latency too significantly. The manager consists of two parts: the management server, a
machine that runs the servlets, and the management station, which can be any desktop running a Web
The other actors involved in a three-tier, client-server architecture are the agent, which supports native
MIBs, and the data repository, which consists of binary files accessed via NFS by the management se
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HOW DOES OUR SOLUTION COMPARE WITH OTHERS?

In this chapter, we compare our approach with its main contenders to date for the next management cy
highlight the relevance of our architectural and design choices.

This chapter is organized as follows. In Section 10.1, we compare WIMA with the SNMP manage
architecture, whose replacement was an explicit objective of this work, and demonstrate that we succe
solving the problems identified in Chapter 2. In Section 10.2, we compare WIMA to WBEM, identify s
similarities, but also some problems in WBEM. An important result is the complementarity of these
approaches. In Section 10.3, we compare WIMA with JMX. We point out the strengths and weaknes
JMX, and conclude that it can hardly be integrated with WIMA. In Section 10.4, we analyze some kn
weaknesses in WIMA and explain how to avoid or live with them. Finally, we summarize this chapt
Section 10.5.

10.1 Comparison with SNMP-Based Management

In this section, we first prove that almost all the problems identified in SNMP are solved in WIMA. Then
investigate the complementarity between these two management architectures.

10.1.1 Almost all the problems in SNMP have been solved

If we review the characteristics of SNMP described in Section 2.2, and the problems identified in SNMP-
management in Section 2.4, we see that WIMA is a better solution for the next management cycle:

• Agents are no longer considered equal and “dumb”: some agents can execute scripts transferred vi
others can simply push MIB variables.

• Polling is no longer used for retrieving regular management data. This improves scalability, ne
overhead, and latency.

• The data repository is no longer tightly coupled with the management platform. This frees customer
the impediments of peer-to-peer agreements between database and management-platform vend
can use any third-party database with any management platform. In particular, they can reuse for N
database already installed in their intranet.
185
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• In WIMA, the goal shifts from network to integrated management. WIMA facilitates the integratio
different management areas, notably with XML, and does not concentrate solely on the managem
network devices.

• WIMA is scalable. Through distribution across a hierarchy of managers, it can cope with the ever gr
amount of management data to move about and process at the manager(s). It can also transfer som
management workload to the agents.

• WIMA makes bulk transfers of management data much more efficient than in the SNMP realm.
• WIMA is immune to theget-bulk  overshoot effect because it does not useget-bulk .
• WIMA is immune to the problems caused by the maximum size of an SNMP message because it do
use the SNMP communication protocol.

• By transferring tables in XML, WIMA makes it possible for smart agents to suppress the “holes” in sp
tables described in Section 2.4.1.3.

• By allowing the agent to send large amounts of data in one bulk, we significantly improve the consis
of large SNMP tables.

• BER encoding is no longer mandatory, so we are no longer exposed to its weak efficiency and its
on the network overhead.

• Management data can be compressed transparently, which reduces network overhead dramatically
affecting latency too much.

• In WIMA, we use a reliable transport protocol. We do not lose important notifications for silly reas
such as buffer overflows in IP routers.

• In WIMA, we can leverage Web security (SSL, HTTP authentication, etc.) to provide different leve
security. In SNMP, we have either no security (SNMPv1 and v2c) or high security (SNMPv3).

• Firewalls are difficult to cross with SNMP. They were extremely rare when SNMPv1 was devised
SNMP made no special provisions for crossing them easily, not even SNMPv3. In WIMA, we solved
problem by changing the communication model to accommodate firewall constraints.

• In SNMP, we have no high-level semantics, only instrumentation MIBs. By making it possible to w
with other information models, especially CIM, WIMA allows management-application designers to w
with high-level semantics. The flexibility of XML is particularly useful for this. The DMTF is current
working on schemata offering high-level semantics.

• The scarcity of protocol primitives in SNMP is addressed in WIMA by abandoning the SNMP comm
cation protocol, by using HTTP and XML instead, and by allowing for feature-rich information mod
especially CIM that supports an infinitely large number of operations.

• The SNMP information model is not object oriented, whereas object orientation is now ubiquito
software engineering. By allowing for the use of CIM, WIMA gives access to an object-orie
information model.

• SNMP’s distasteful programming by side effect can be avoided in WIMA: with CIM, clean met
invocations are possible.

• In WIMA, component- and object-oriented management platforms are more modular than SNMP-
management platforms, and competition should make them less expensive.

• To vendors, the possibility to have a single device- or vendor-specific management GUI fo
management platforms is an immense source of savings. This should contribute to making the
embedded management software remain low, and therefore decrease the software bill for custom

• The time-to-market of vendor-specific management GUIs is brought down to zero in WIMA, a remar
improvement over SNMP where it typically takes several months, and sometimes infinitely longer.

• Start-ups are on a par with large equipment vendors regarding management: they are no longer le
because of the high entrance cost in the management-platform market.

• MIB versioning is solved in WIMA by embedding the vendor-specific management GUI in the age
• Domain-specific expertise is no longer needed: WIMA relies on standard Web technologies, well k
in software engineering today.

• Finally, we mentioned that SNMP evolves too slowly. By allowing WIMA to cope with any informat
model, we make it possible for new entrants (e.g., the DMTF with CIM) to offer quicker solutions. If
SNMP MIBs are too slow to come, we can use CIM schemata instead.
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Among all the problems identified in Chapter 2, only three of them are not solved in WIMA:

• Because we decided to make it possible to work with legacy SNMP MIBs, the verbosity of the
naming scheme in SNMP is not solved. This is partially addressed by the possibility to com
management data in transit.

• We still need a dedicated machine for the management server.
• The possibility to move the software of the management server from one machine to another
guaranteed by WIMA. It can be achieved, e.g. by coding the components in Java. But there is a tra
to be made between portability and efficiency.

10.1.2 Complementarities between WIMA and SNMP

The complementarity between WIMA and SNMP is primarily guaranteed by the fact that WIMA can cope
any information model, and in particular SNMP MIBs. It is also possible to use BER encoding inside H
messages to interface easily with existing SNMP-based management platforms.

10.2 Comparison with WBEM

In this section, we compare WIMA with WBEM. We first show some similarities in these two approac
Then, we unveil three problems in WBEM. Finally, we investigate the complementarity between thes
management architectures.

10.2.1 Similarities: HTTP and XML

Although they do not share the same communication model, WIMA and WBEM both use HTTP
agent-manager communication, and XML for representing management data inside HTTP messa
WBEM, the use of XML is mandatory; in WIMA, it is simply recommended.

It should be noted that when the author made his design decision to use HTTP and XML in WIMA, sh
after the W3C had released XML, he was not aware that the WBEM Consortium had already aban
HMMP in favor of HTTP and XML. This similarity is thus the result of sheer coincidence, as opposed to c
fertilization.

10.2.2 Problems with WBEM

We identified three problems in WBEM: the lack of an organizational model, the use of HTTP exten
headers, and the possible link with DEN.

10.2.2.1 WBEM lacks an organizational model

There is one deficiency in WBEM: it specifies information and communication models, but it lacks an or
zational model. There is no recommendation as to how managers and agents should interact and s
management-application workload. Issues such as the manager-agent paradigm, mobile code, or the p
pull models have not yet been addressed. As a result, when people eventually build WBEM-based mana
applications, they will probably map what they are familiar with onto WBEM. In the IP world, and espec
in network management, this means that they will build their management application around the pull m
despite all the problems unveiled in this work.

In WIMA, we clearly specify when the push model should be used, and when the pull model is preferr
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10.2.2.2 HTTP extension headers

The reliance of WBEM on HTTP extension headers (see Section 5.5.1) causes three problems: the reli
a controversial extension scheme for HTTP/1.1, the pseudo support for HTTP/1.0, and the comp
deadlock for embedded HTTP servers.

Controversial extension scheme for HTTP/1.1

HTTP/1.0 and HTTP/1.1 both define a large set of HTTP header fields, often calledHTTP headersfor short.
None of them allows for domain-specific HTTP headers. In other words, to claim compliance with HTT
or HTTP/1.1, an application must not define and use its own HTTP headers. Over time, this has cause
dissatisfaction in the HTTP community, because many working groups are currently building architectu
top of HTTP, and many of them want to add domain-specific HTTP headers to the standard HTTP head
solution to this problem was recently proposed in RFC 2774 [155]: HTTP extension headers. This RF
proposed extension to HTTP/1.1. It specifies a set of conventions that allow applications to define a
domain-specific headers with HTTP/1.1.

The problem with this approach is that it has caused a lot of controversy at the W3C and IETF. This is te
by the unusual beginning of RFC 2774:

“IESG Note

This document was originally requested for Proposed Standard status. However, due to mixed
reviews during Last Call and within the HTTP working group, it is being published as an Experi-
mental document. This is not necessarily an indication of technical flaws in the document; rather,
there is a more general concern about whether this document actually represents community
consensus regarding the evolution of HTTP. Additional study and discussion are needed before
this can be determined.” [155, p. 1]

CIM operations over HTTP depend on HTTP extension headers to work (see [68, Sections 3.1, 3.3.4
3.3.6, 3.3.7, and 3.3.8]). In our view, it seems unwise to base an important building block of the W
management architecture on a technology whose future is so uncertain.

HTTP extension headers break HTTP/1.0

RFC 2774 makes it clear that the use of HTTP extension headers demands HTTP/1.1:

“The proposal uses features in HTTP/1.1 but is compatible with HTTP/1.0 applications in such a
way that extended applications can coexist with existing HTTP applications. Applications
implementing this proposal MUST be based on HTTP/1.1 (or later versions of HTTP).“
[155, p. 3]

As a result, CIM operations over HTTP do not work with HTTP/1.0:

• If we abide by the HTTP/1.0 specification, we cannot use domain-specific HTTP headers, so we
define CIM extension headers, thus CIM operations cannot be encapsulated in HTTP.

• If we do use CIM extension headers, we use domain-specific HTTP headers, hence we break HT

This is in contradiction with the claimed support for HTTP/1.0 in the specification for CIM operations
HTTP:

“In recognition of the large installed base of HTTP/1.0 systems, the encapsulation is designed to
support both HTTP/1.0 and HTTP/1.1.” [68, p. 5]

“It is RECOMMENDED that CIM clients and CIM servers support HTTP/1.1. CIM clients and
servers MAY support HTTP/1.0 instead.” [68, p. 44]
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This issue was recently brought before the DMTF WBEM Interoperability Working Group by the author
serious because the vast majority of the embedded HTTP servers deployed to date are based on HTTP
a result, CIM operations over HTTP do not work with most deployed equipment, unless applica
deliberately break the HTTP/1.0 specification...

Compliance deadlock

Another problem is the compliance deadlock. When customers purchase a new piece of equipmen
request for bids can require the support for an embedded HTTP server. Arguably, they can even req
HTTP/1.1 server, although few vendors, according to our sources, give customers the choice b
HTTP/1.0 and HTTP/1.1. But how can they possibly require an HTTP/1.1 server modified with WBE
HTTP extension headers, when HTTP extensions are simply an experimental RFC? This is com
unrealistic. Moreover, if other working groups define other HTTP extension headers for other purposes
for dynamic service provision), who will ensure that all these extensions are not mutually exclusive? An
will equipment vendors keep up with the definition of new extension schemes? As it is currently spec
WBEM’s reliance on HTTP extension headers is a time bomb, in our view.

10.2.2.3 DEN

The third problem that we identified in WBEM is the growing importance given to DEN by the DMTF. D
specifies one way of storing data. Arguably, it might be the best technology to date for storing the manag
data necessary for automated configuration (see Sun Microsystems’ Jini and Microsoft’s Universal Plu
Play). But recent DMTF newsletters lead us to believe that some people at the DMTF contemplate the p
of including DEN in WBEM. In our view, this would be a mistake. WBEM should not attempt to standar
the way management data is stored in data repositories. DEN is simply a means to an end: the end is in
management.

10.2.3 Complementarities between WIMA and WBEM

There is some scope for the integration of WIMA and WBEM. To begin with, WIMA’s organizational mo
could be adopted by WBEM, especially the push model for transferring regular management data. The
MIME multipart and the encapsulation of XML documents in MIME parts could also be adopted by WB
Note that this integration would require the definition of a new scheme for encapsulating CIM operatio
HTTP messages, as the use of HTTP extension headers is incompatible with WIMA. We are currently in
gating ways to replace HTTP extension headers with XML metadata inside the MIME parts. Further stu
the integration of WIMA and WBEM is left for future work.

10.3 Comparison with JMX

In this section, we compare WIMA with JMX and investigate complementarities between these
management architectures.

Similarities: components

The main similarity between WIMA and JMX is the reliance on component software on the manager
Because of their complexity, management servers are very good candidates for component software.
can also be implemented with components, but most of the time, their complexity does not require
efficiency demands the faster execution of C or C++ binaries.
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The my-middleware-is-better-than-yours syndrome: a killer

JMX fundamentally relies on the Java middleware to be supported by all agents and managers worldw
Section 4.4, we explained that this approach is flawed in our view, because it is an instance
my-middleware-is-better-than-yourssyndrome. Because it seems highly unlikely that one middleware w
eventually win the middleware war, we believe that it would be unwise to base the management archi
of the next management cycle on a middleware that may be rejected by the market in a couple of ye
comparison, WIMA is far less risky.

Note that since the split of Java between J2EE (EJBs for managers), J2SE (JavaBeans for to
middle-of-the-range agents), and J2ME (components for consumer electronics and embedded devices)
clear how a single management architecture can live with heterogeneous components. What happ
J2EE-based manager uses Java RMI to manage a J2ME-based agent? What is calledJava RMIin these two
worlds is fairly different. This problem is not yet addressed in JMX, to the best of our knowledge.

JMX and FMA

As we mentioned in Section 5.6, JMX has so far focused on the agent side while FMA concentrated
manager side. JMX uses MBeans. FMA has migrated from domain-specific FederatedBeans to st
JavaBeans and EJBs. Consequently, these two architectures are currently incompatible. We still n
integrated management architecture that will cover both the agent and the manager sides in dist
Java-based management. This, too, is an argument for not selecting JMX for the next management cy

Complementarities between WIMA and JMX

The main complementarity that we see between WIMA and JMX is the component-oriented manag
server, once JMX has specified the manager side. Whether the management server is implemented in
transparent to WIMA, and the component-software approach adopted in JMX is consistent with our d
decisions in WIMA. The agent side could also be implemented in Java, although the need for comp
software is less obvious on an agent. Apart from that, WIMA and JMX offer little scope for integration.

10.4 Known Problems with WIMA

WIMA is not immune to problems. We identified three: the reliability of new software, the need
management software integrators, and the need for clock synchronization. We describe them in this sec
show that none is fatal in the long term.

Reliability of new software

The main problem in WIMA is the reliability of new management platforms based on COTS component
object-oriented frameworks. To put it simply: new means buggy. Years of debugging and real-life testing
already gone into all the major SNMP-based management platforms, which gives a lot of confiden
potential buyers. Component-oriented software is comparatively new, so the solution that we prop
WIMA is more prone to errors. On the other hand, component software is all about reuse, so componen
management platforms should supposedly take less time to be debugged if the same component is r
many different contexts.

Note that all possible solutions for the next management cycle are exposed to this problem, exce
SNMP-based management. If we do not change anything, we take no risks, but we have to learn to liv
the same problems for many years.
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Need for management software integrators

The second source of concern in WIMA is the need for management-software integrators. As we mentio
Section 6.2.3, components are frequently developed by different vendors in the component-software m
In order to be shielded from liability issues when two components from different vendors do not intera
they are supposed to, most customers should prefer to buy component software from software inte
These integrators test that the components work fine together, they take care of all legal aspects in
litigation, and they can also transparently replace a family of components with another if a componen
longer supported (e.g., due to repeated interoperability problems, legal issues, or bankruptcy).

The concerns with software integrators are twofold. First, they have to make some profit, so they redu
cost savings compared with SNMP-based management platforms. Second, true competition only exis
a customer is ready to visit many vendor booths at a trade show. By going through a software integrato
are the risks of seeing a reincarnation of the dreaded concept of a “preferred partner”... and of going b
equally dreaded peer-to-peer agreements between vendors. The good news is, because the business o
integration is not overly complex, we can expect many companies to come into this market, thereby incr
competition and the chances for a customer to find a good integrator. The other good news is that, at an
in time, a customer can decide that he/she now knows enough of the component-software market
him/herself from any integrator.

Synchronization of the clocks

The last issue in WIMA is clock synchronization. If all the managers and agents do not regularly synch
their internal clocks, some of these clocks will significantly drift apart over time. This is not a problem
monitoring, because it does not matter, when an agent is configured to send a heartbeat to its manag
5 minutes, whether the manager receives it every 299 seconds or every 301. But it can be a problem
collection, because the data repository often stores the values for a given MIB variable in the form of
series. Without synchronization, the manager could receive too many or too few push cycles per day.
case, to build consistent time series for all MIB variables, some data would have to be discarded arbi
and others would have to be interpolated at a random cycle number. Clearly, this is undesirable. And t
a simple solution: loose synchronization, typically once per day or once per hour.

In WIMA-based management, it is therefore recommended to synchronize the clocks of all the manage
agents on a regular basis. There are many, well-known ways of achieving loose synchronization. Age
managers can receive clock updates via radio waves. Or they can rely on the use of a protocol lik
(Network Time Protocol). These two solutions can also be combined: the management server can up
clock with an absolute time received via radio waves, and it can in turn update the agents via NTP. A
tively, the manager can exchange a few synchronization packets with all the agents in its domain, withad
hocprotocol. Another solution is to make it mandatory for an agent to include a timestamp in each MIME
we simply have to specify the format of this timestamp in WIMA. In all these cases, the synchroniz
overhead is negligible compared to the network and CPU savings induced by going from pull to push.

Note that this synchronization problem is caused by the use of the push model: the agent’s clock decide
it is time for the next push cycle, and the manager’s clock may disagree with it. With the pull mode
manager’s clock decides when it is time for the next pull cycle, so time series always get the right num
entries (unless some data does not come in, e.g. in the case of network congestion, in which case it is
to store an error code such asnotAvailable  for a specific entry, as opposed to a random entry).
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10.5 Summary

In this chapter, we showed that WIMA compares very well with the other approaches suggested thus
the next management cycle. In Section 10.1, we compared WIMA to SNMP-based management and co
that almost all of the problems identified in SNMP have been solved in WIMA. In Section 10.2
Section 10.3, we compared WIMA with WBEM and JMX, two standardization efforts begun by indus
consortia at a time when this thesis work was well under way. We identified some problems in thes
approaches, but also some complementarities with WIMA. Finally, in Section 10.4, we described some
problems in WIMA and suggested ways to solve them.
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Chapter 11

CONCLUSION

In this last chapter, we summarize the main contributions of this Ph.D. work and give some directions for
work.

11.1 Summary

In this dissertation, we have proposed a new architecture for network and systems management in the IP
WIMA (Web-based Integrated Management Architecture). WIMA is destined to replace SNMP in the
management cycle. Its primary achievement is that it solves almost all the problems that we identif
SNMP-based management (that is, in the solution currently adopted by the IP world). WIMA is also sim
implement and does not rely on unrealistic assumptions such as “All IP network devices and sy
worldwide must support the same object-oriented middleware”. In this section, we summarize our tec
contributions, the relevance of our work, and what is needed to migrate from SNMP to WIMA.

Technical contributions

The core contributions of this Ph.D. work are threefold. First, we advocate that regular managemen
should be pushed by agents, not pulled by managers. This leads us to adopt a push-based organization
for regular management in WIMA. Second, we argue that (i) standard Web technologies should be used
of the domain-specific SNMP, and (ii) management data should be reliably transmitted across persiste
connections to avoid the loss of important data. WIMA’s communication model is based on persistent
connections between the manager and the agent (or between the mid- and top-level managers in dis
management). Within these connections, HTTP messages are structured with MIME multipart. Each
part can be an XML document, a binary file with BER-encoded data, a textual file with data encoded in
strings, etc. MIME parts can be transparently compressed, which reduces network overhead significan
creating connections from the manager side, we facilitate crossing firewalls. Our communication mo
totally independent of the information model, which allows us to transfer SNMP data, CIM data, etc. Thir
recommend the use of XML for (i) distributing management across a hierarchy of managers (w
distributed hierarchical management), (ii) integrating management, (iii) dealing with multiple informa
models (especially SNMP MIBs and CIM schemata), and (iv) supporting high-level semantics.
193
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This dissertation also includes four secondary contributions. First, two taxonomies classify all the manag
paradigms that have been proposed to date, and help administrators select a paradigm or technology we
to their needs. The simple taxonomy is based on a single criterion (the organizational model of the mana
architecture), while the enhanced taxonomy is based on four criteria (the delegation granularity, the se
richness of the information model, the degree of automation of management, and the degree of specific
a task). Second, our detailed analysis of the problems with SNMP-based management substantiates
often made but rarely substantiated: SNMP-based management is too simple, it will not suffice in th
future. Many assumptions made in the late 1980s, when SNMPv1 was devised, are no longer valid tod
many things should be changed, in the management architecture and the communication protocol, t
easier to start afresh with a brand-new management architecture. Third, our design innovations are va
by a research prototype, the JAva MAnagement Platform (JAMAP), which demonstrates their simplicit
feasibility. Finally, our state of the art gives a useful overview of the vast and expanding area now kno
Web-based management.

Relevance of our work

The problem that we solved with WIMA is not purely academic: it is a real concern to the manage
industry. As we saw in Chapter 3, many proposals have been made since the mid-1990s to address the p
experienced by SNMP-based management, and most notably scalability. Since the late 1990s, two in
consortia, the Distributed Management Task Force (DMTF) and the Java Community (centered o
Microsystems), have dedicated considerable manpower to solving this problem. So far, CIM and Java
management are their main deliverables.

The results exhibited by WIMA are significant, too. If we compare it with SNMP-based management
Section 10.1), we see that almost all the problems identified in SNMP-based management are solved in
These are not purists’ conundrums, these are real-life problems: firewalls, distribution, network overhea
etc. If we compare WIMA with WBEM, we see that it complements the information modeling work of
DMTF and addresses some issues related to the use of HTTP extensions for firewalls. Finally, if we co
WIMA with Java-based management, we see that by using a more flexible design, it is not exposed
my-middleware-is-better-than-yours syndrome.

The third reason that leads us to believe that this Ph.D. work is relevant is the excellent feedback t
received, in the networking industry, from large vendors (e.g., Lucent Technologies and Nortel Network
small vendors (e.g., Lightning). The service industry also showed notable interest in our activities, inc
AT&T and Swisscom.

What does it take to migrate from SNMP- to WIMA-based management?

When a new management architecture comes in, the market always faces a chicken-and-egg s
equipment vendors are willing to support it if management-platform vendors already do, andvice versa.
Because writing a new manager is a lot more work than writing a new agent, we believe that the way
this deadlock is to convince equipment vendors to support WIMA in their network devices and system
soon as a number of agents have been shipped with embedded support for WIMA, some start-ups will d
WIMA-compliant management platforms to enter the lucrative management market.

What do equipment vendors need to do to support WIMA? They must embed four software components
network devices and systems: an HTTP server (we saw that this is often already the case), a push s
scheduler, and one or several vendor-specific management GUIs. Typically, this software would be em
in EPROM. Writing the push and scheduling systems is simple and inexpensive. Reprogramming e
management GUIs as Java applets is probably the most costly part, but the potential gains are enormou
once, run anywhere... if careful enough!).
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Once WIMA-compliant agents are available on the market, the second step of the migration process
management-platform vendors to develop professional-grade component software for management
When different components are developed by different vendors, we need software integrators to shi
customers from inter-vendor liability mazes (“It does not work, whose fault is it?”). The current explosio
the Web-based management market, with start-ups flocking in, leads us to believe that we could soon
mature market of WIMA-compliant management servers—in less than a year. Note that the risk factor fo
vendors is lower with WIMA than with most alternatives: object-oriented middleware, mobile c
multi-agent systems, etc.

The third step toward WIMA-based management is for administrators to loosely synchronize the clocks
managers and agents. There are simple solutions to achieve this, e.g. the Network Time Protocol (NTP
type of synchronization is already routinely performed in many networks worldwide.

11.2 Directions for Future Work

Many areas could be investigated as a follow-up to this Ph.D. work. We propose five directions for f
research work: wireless networks, IP telephony, integrated management, SNMP-to-XML mapping, a
integration of SNMP MIBs and CIM schemata.

WIMA for wireless networks

The work presented herein focuses on fixed IP networks and systems. Preliminary work suggests that
can also cope with IP wireless networks and systems. For instance, push technologies are promising to
mobile phones and Web-enabled handheld devices, because these devices can remain inaccessib
manager for extended periods of time under normal circumstances. By using push instead of pull techno
we prevent the manager from performing many retries when, for instance, the agent is voluntarily switch
or when it is in an area that is not covered by any antennae.

WIMA for IP telephony

Another worthwhile research area is the suitability of WIMA in QoS-driven networks, and especial
IP telephony. The challenges are great because the telecom world is used to notification-driven manag
with smart agents, whereas WIMA is particularly efficient for transfering bulks of management data from
agent to the manager, to let the manager do most of the management application. Still, WIMA can als
with smart agents, and it would be interesting to compare its efficiency with that of other manage
architectures. Signaling, for instance, has not yet been investigated in the context of WIMA.

WIMA for integrated management

Although we mentioned several times the advantages of WIMA in integrated management at large
network and systems management were studied in detail during this Ph.D. work. We already sa
application management is very similar to systems management, so we expect the integration of app
management to be straightforward. Early work also suggests that WIMA can easily be extended to
management, especially when we use XML to represent management data. To an XML documen
transparent whether the semantics of the management data is high (for policy management) or low (for n
and systems management). Service management still remains to be investigated, but the possibility in
to transfer mobile code within XML documents should prove to be useful for dynamic service provision
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SNMP-to-XML mapping: model or metamodel level?

In Section 8.2, we explained the difference between model- and metamodel-level mappings. An imp
research area for integrating SNMP-compliant agents and managers with their CIM counterparts is whe
SNMP-to-XML mapping should be performed at the model level (that is, one XML document per SN
MIB), or at the metamodel level (that is, one XML document for the entire SNMP information model).

Integration of SNMP MIBs and CIM schemata

A fifth interesting research area is the integration of the SNMP and CIM information models. What ar
issues? What semantics do we lose when we translate CIM schemata into SNMP MIBs, andvice versa? A few
years ago, IIMC and JIDM studied information-model integration for SNMP, OSI, and CORBA
Section 3.1.6.2). It would be very useful to extend this work to CIM, which is backed by many vendors
seems likely to gradually complement, or perhaps even replace, the SNMP information model in th
management cycle.
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API Application Programming Interface
ARP Address Resolution Protocol
ASN.1 Abstract Syntax Notation 1
ATM Asynchronous Transfer Mode
A-TRT Agent’s TCP Retransmission Timer
A-TRTO Agent’s TCP Retransmission TimeOut
AWT Abstract Window Toolkit
BDI Belief Desire Intention
BER Basic Encoding Rules
BNF Backus-Naur Form
BOF Birds Of a Feather
BSD Berkeley Software Distribution
CD-ROM Compact Disk - Read-Only Memory
CER Canonical Encoding Rules
CGI Common Gateway Interface
CIM Common Information Model
CIMOM Common Information Model Object Manager
CLHS Component Launched by an HTTP Server
CLI Command-Line Interface
CLNS ConnectionLess Network Service
CMIP Common Management Information Protocol
CMIS Common Management Information Service
CMU Carnegie Mellon University
COD Code On Demand
CONS Connection-Oriented Network Service
CORBA Common Object Request Broker Architecture
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
DAI Distributed Artificial Intelligence
DAP Distributed Application Performance
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DCOM Distributed Component Object Model
DEN Directory-Enabled Networks
DER Distinguished Encoding Rules
DHCP Dynamic Host Configuration Protocol
DISMAN DIStributed MANagement
DMI Desktop Management Interface
DMTF Distributed Management Task Force
DoS Denial of Service
DPE Distributed Processing Environment
EDI Electronic Data Interchange
EJB Enterprise JavaBean
EPROM Erasable Programmable Read-Only Memory
FCAPS Fault, Configuration, Accounting, Performance, and Security
FDDI Fiber Distributed Data Interface
FIPA Foundation for Intelligent Physical Agents
FMA Federated Management Architecture
FPGA Field-Programmable Gate Array
FTP File Transfer Protocol
GDMO Guidelines for the Definition of Managed Objects
GIF Graphics Interchange Format
GRM General Relationship Model
GUI Graphical User Interface
HMMP HyperMedia Management Protocol
HMMS HyperMedia Management Schema
HMOM HyperMedia Object Manager
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IANA Internet Assigned Numbers Authority
ICMP Internet Control Message Protocol
IDL Interface Definition Language
IESG Internet Engineering Steering Group
IETF Internet Engineering Task Force
IIMC ISO-Internet Management Coexistence
IIOP Internet Inter-ORB Protocol
I/O Input/Output
IOS Internetwork Operating System
IRTF Internet Research Task Force
IP Internet Protocol
IPSec IP Security
ISO International Organization for Standardization
ISP Internet Service Provider
ITU-T International Telecommunication Union - Telecommunication standardization sector
J2EE Java 2 Enterprise Edition
J2ME Java 2 Micro Edition
J2SE Java 2 Standard Edition
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JAMAP JAva MAnagement Platform
JDBC Java DataBase Connectivity
JDK Java Development Kit
JIDM Joint Inter-Domain Management
JMAPI Java Management Application Programming Interface
JMX Java Management eXtensions
JNI Java Native Interface
JVM Java Virtual Machine
KQML Knowledge Query and Manipulation Language
LAN Local-Area Network
LDAP Lightweight Directory Access Protocol
LWER LightWeight Encoding Rules
M2M Manager to Manager
MAC Medium Access Control
MAS Multi-Agent System
MbD Management by Delegation
MBean Management Bean
MCS Mobile-Code System
MIB Management Information Base
MIME Multipurpose Internet Mail Extensions
MIT Massachusetts Institute of Technology
MMO Memory-Management Overhead
MOF Managed Object Format
MRTG Multi-Router Traffic Grapher
MSS Maximum Segment Size
M-task macrotask
µ-task microtask
M-TKT Manager’s TCP Keepalive Timer
M-TKTO Manager’s TCP Keepalive TimeOut
MTU Maximum Transmission Unit
NFS Network File System
NIM Network Information Model
NIS Network Information Service
NMF Network Management Forum
NOC Network Operations Center
NSM Network and Systems Management
NTP Network Time Protocol
ODBC Open DataBase Connectivity
ODMA Open Distributed Management Architecture
OID Object IDentifier
ODP Open Distributed Processing
OLE Object Linking and Embedding
OMG Object Management Group
OO agent Object-Oriented agent
OODBMS Object-Oriented DataBase Management System
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ORB Object Request Broker
OSI Open Systems Interconnection
PC Personal Computer
PDU Packet Data Unit
PER Packed Encoding Rules
POS-EWS POStech Embedded Web Server
QoS Quality of Service
RDBMS Relational DataBase Management System
REV Remote EValuation
RFC Request For Comments
RMI Remote Method Invocation
RM-ODP Reference Model - Open Distributed Processing
RMON Remote MONitoring
RPC Remote Procedure Call
RST Reset
RTO Retransmission TimeOut
RTP Real-time Transport Protocol
SCTP Stream Control Transmission Protocol
SLA Service-Level Agreement
SME Small or Midsize Enterprise
SMI Structure of Management Information
SNMP Simple Network Management Protocol
SQL Structured Query Language
SS7 Signaling System No. 7
SSL Secure Sockets Layer
SYN SYNchronize
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
TINA Telecommunications Information Networking Architecture
TMF TeleManagement Forum
TMN Telecommunications Management Network
TOS Type Of Service
UDP User Datagram Protocol
URL Uniform Resource Locator
VACM View-based Access Control Model
VPN Virtual Private Network
WAIS Wide-Area Information Servers
WAN Wide-Area Network
WbASM Web-based ATM-Switch Management
WBEM Web-Based Enterprise Management
WIMA Web-based Integrated Management Architecture
WIMA-CM Web-based Integrated Management Architecture - Communication Model
WIMA-OM Web-based Integrated Management Architecture - Organizational Model
XML eXtensible Markup Language
xmlCIM CIM-to-XML mapping
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Appendix A

THE INTERFACES GROUP IN SNMP MIB-II

In this appendix, we include the definition of the Interfaces Group in SNMP MIB-II [143, pp. 16–23]. Th
used in Chapter 8.

          -- the Interfaces group

          -- Implementation of the Interfaces group is mandatory for
          -- all systems.

          ifNumber OBJECT-TYPE
              SYNTAX  INTEGER
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The number of network interfaces (regardless of
                      their current state) present on this system."
              ::= { interfaces 1 }

          -- the Interfaces table

          -- The Interfaces table contains information on the entity’s
          -- interfaces.  Each interface is thought of as being
          -- attached to a ‘subnetwork’.  Note that this term should
          -- not be confused with ‘subnet’ which refers to an
          -- addressing partitioning scheme used in the Internet suite
          -- of protocols.

          ifTable OBJECT-TYPE
209
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              SYNTAX  SEQUENCE OF IfEntry
              ACCESS  not-accessible
              STATUS  mandatory
              DESCRIPTION
                      "A list of interface entries.  The number of
                      entries is given by the value of ifNumber."
              ::= { interfaces 2 }

          ifEntry OBJECT-TYPE
              SYNTAX  IfEntry
              ACCESS  not-accessible
              STATUS  mandatory
              DESCRIPTION
                      "An interface entry containing objects at the
                      subnetwork layer and below for a particular
                      interface."
              INDEX   { ifIndex }
              ::= { ifTable 1 }

          IfEntry ::=
              SEQUENCE {
                  ifIndex
                      INTEGER,
                  ifDescr
                      DisplayString,
                  ifType
                      INTEGER,
                  ifMtu
                      INTEGER,
                  ifSpeed
                      Gauge,
                  ifPhysAddress
                      PhysAddress,
                  ifAdminStatus
                      INTEGER,
                  ifOperStatus
                      INTEGER,
                  ifLastChange
                      TimeTicks,
                  ifInOctets
                      Counter,
                  ifInUcastPkts
                      Counter,
                  ifInNUcastPkts
                      Counter,
                  ifInDiscards
                      Counter,
                  ifInErrors
                      Counter,
                  ifInUnknownProtos
                      Counter,
                  ifOutOctets
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                      Counter,
                  ifOutUcastPkts
                      Counter,
                  ifOutNUcastPkts
                      Counter,
                  ifOutDiscards
                      Counter,
                  ifOutErrors
                      Counter,
                  ifOutQLen
                      Gauge,
                  ifSpecific
                      OBJECT IDENTIFIER
              }

          ifIndex OBJECT-TYPE
              SYNTAX  INTEGER
              ACCESS  read-only
              STATUS  mandatory

              DESCRIPTION
                      "A unique value for each interface.  Its value
                      ranges between 1 and the value of ifNumber.  The
                      value for each interface must remain constant at
                      least from one re-initialization of the entity’s
                      network management system to the next re-
                      initialization."
              ::= { ifEntry 1 }

          ifDescr OBJECT-TYPE
              SYNTAX  DisplayString (SIZE (0..255))
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "A textual string containing information about the
                      interface.  This string should include the name of
                      the manufacturer, the product name and the version
                      of the hardware interface."
              ::= { ifEntry 2 }

          ifType OBJECT-TYPE
              SYNTAX  INTEGER {
                          other(1),          -- none of the following
                          regular1822(2),
                          hdh1822(3),
                          ddn-x25(4),
                          rfc877-x25(5),
                          ethernet-csmacd(6),
                          iso88023-csmacd(7),
                          iso88024-tokenBus(8),
                          iso88025-tokenRing(9),
                          iso88026-man(10),
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                          starLan(11),
                          proteon-10Mbit(12),
                          proteon-80Mbit(13),
                          hyperchannel(14),
                          fddi(15),
                          lapb(16),
                          sdlc(17),
                          ds1(18),           -- T-1
                          e1(19),            -- european equiv. of T-1
                          basicISDN(20),
                          primaryISDN(21),   -- proprietary serial
                          propPointToPointSerial(22),
                          ppp(23),
                          softwareLoopback(24),
                          eon(25),            -- CLNP over IP [11]
                          ethernet-3Mbit(26),
                          nsip(27),           -- XNS over IP
                          slip(28),           -- generic SLIP
                          ultra(29),          -- ULTRA technologies
                          ds3(30),            -- T-3
                          sip(31),            -- SMDS
                          frame-relay(32)
                      }
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The type of interface, distinguished according to
                      the physical/link protocol(s) immediately ‘below’
                      the network layer in the protocol stack."
              ::= { ifEntry 3 }

          ifMtu OBJECT-TYPE
              SYNTAX  INTEGER
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The size of the largest datagram which can be
                      sent/received on the interface, specified in
                      octets.  For interfaces that are used for
                      transmitting network datagrams, this is the size
                      of the largest network datagram that can be sent
                      on the interface."
              ::= { ifEntry 4 }

          ifSpeed OBJECT-TYPE
              SYNTAX  Gauge
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "An estimate of the interface’s current bandwidth
                      in bits per second.  For interfaces which do not
                      vary in bandwidth or for those where no accurate
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                      estimation can be made, this object should contain
                      the nominal bandwidth."
              ::= { ifEntry 5 }

          ifPhysAddress OBJECT-TYPE
              SYNTAX  PhysAddress
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The interface’s address at the protocol layer
                      immediately ‘below’ the network layer in the
                      protocol stack.  For interfaces which do not have
                      such an address (e.g., a serial line), this object
                      should contain an octet string of zero length."
              ::= { ifEntry 6 }
          ifAdminStatus OBJECT-TYPE
              SYNTAX  INTEGER {
                          up(1),       -- ready to pass packets
                          down(2),
                          testing(3)   -- in some test mode
                      }
              ACCESS  read-write
              STATUS  mandatory
              DESCRIPTION
                      "The desired state of the interface.  The
                      testing(3) state indicates that no operational
                      packets can be passed."
              ::= { ifEntry 7 }

          ifOperStatus OBJECT-TYPE
              SYNTAX  INTEGER {
                          up(1),       -- ready to pass packets
                          down(2),
                          testing(3)   -- in some test mode
                      }
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The current operational state of the interface.
                      The testing(3) state indicates that no operational
                      packets can be passed."
              ::= { ifEntry 8 }

          ifLastChange OBJECT-TYPE
              SYNTAX  TimeTicks
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The value of sysUpTime at the time the interface
                      entered its current operational state.  If the
                      current state was entered prior to the last re-
                      initialization of the local network management
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                      subsystem, then this object contains a zero
                      value."
              ::= { ifEntry 9 }

          ifInOctets OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The total number of octets received on the
                      interface, including framing characters."
              ::= { ifEntry 10 }

          ifInUcastPkts OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The number of subnetwork-unicast packets
                      delivered to a higher-layer protocol."
              ::= { ifEntry 11 }

          ifInNUcastPkts OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The number of non-unicast (i.e., subnetwork-
                      broadcast or subnetwork-multicast) packets
                      delivered to a higher-layer protocol."
              ::= { ifEntry 12 }

          ifInDiscards OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The number of inbound packets which were chosen
                      to be discarded even though no errors had been
                      detected to prevent their being deliverable to a
                      higher-layer protocol.  One possible reason for
                      discarding such a packet could be to free up
                      buffer space."
              ::= { ifEntry 13 }

          ifInErrors OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The number of inbound packets that contained
                      errors preventing them from being deliverable to a
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                      higher-layer protocol."
              ::= { ifEntry 14 }

          ifInUnknownProtos OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The number of packets received via the interface
                      which were discarded because of an unknown or
                      unsupported protocol."
              ::= { ifEntry 15 }

          ifOutOctets OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The total number of octets transmitted out of the
                      interface, including framing characters."
              ::= { ifEntry 16 }

          ifOutUcastPkts OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The total number of packets that higher-level
                      protocols requested be transmitted to a
                      subnetwork-unicast address, including those that
                      were discarded or not sent."
              ::= { ifEntry 17 }

          ifOutNUcastPkts OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The total number of packets that higher-level
                      protocols requested be transmitted to a non-
                      unicast (i.e., a subnetwork-broadcast or
                      subnetwork-multicast) address, including those
                      that were discarded or not sent."
              ::= { ifEntry 18 }

          ifOutDiscards OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The number of outbound packets which were chosen
                      to be discarded even though no errors had been
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                      detected to prevent their being transmitted.  One
                      possible reason for discarding such a packet could
                      be to free up buffer space."
              ::= { ifEntry 19 }

          ifOutErrors OBJECT-TYPE
              SYNTAX  Counter
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The number of outbound packets that could not be
                      transmitted because of errors."
              ::= { ifEntry 20 }
          ifOutQLen OBJECT-TYPE
              SYNTAX  Gauge
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "The length of the output packet queue (in
                      packets)."
              ::= { ifEntry 21 }

          ifSpecific OBJECT-TYPE
              SYNTAX  OBJECT IDENTIFIER
              ACCESS  read-only
              STATUS  mandatory
              DESCRIPTION
                      "A reference to MIB definitions specific to the
                      particular media being used to realize the
                      interface.  For example, if the interface is
                      realized by an ethernet, then the value of this
                      object refers to a document defining objects
                      specific to ethernet.  If this information is not
                      present, its value should be set to the OBJECT
                      IDENTIFIER { 0 0 }, which is a syntatically valid
                      object identifier, and any conformant
                      implementation of ASN.1 and BER must be able to
                      generate and recognize this value."
              ::= { ifEntry 22 }



-II.
d by
s and
Appendix B

METAMODEL -LEVEL XML M APPING OF THE INTERFACES

GROUP IN SNMP MIB-II

In this appendix, we include the metamodel-level XML mapping of the Interfaces Group in SNMP MIB
This document is an excerpt of the representation of MIB-II module definitions in XML. It was generate
using the SimpleWeb IETF MIB converter [193] maintained by the University of Twente, The Netherland
the Technical University of Braunschweig, Germany. This mapping is used in Chapter 8.

<?xml version=”1.0”?>
<!DOCTYPE smi:smi SYSTEM “/ietf/mibs/modules/xml/smi.dtd”>

<!-- This module has been generated by smidump 0.2.4.
     then manually edited by J.P. Martin-Flatin -->

<smi xmlns:smi=”http://www.irtf.org/nmrg/”>
  <module name=”RFC1213-MIB” language=”SMIv1”>
  </module>

  <imports>
    <import module=”RFC1155-SMI” name=”mgmt”/>
    <import module=”RFC1155-SMI” name=”NetworkAddress”/>
    <import module=”RFC1155-SMI” name=”IpAddress”/>
    <import module=”RFC1155-SMI” name=”Counter”/>
    <import module=”RFC1155-SMI” name=”Gauge”/>
    <import module=”RFC1155-SMI” name=”TimeTicks”/>
    <import module=”RFC1212-MIB” name=”OBJECT-TYPE”/>
  </imports>

  <typedefs>
217
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    <typedef name=”DisplayString” basetype=”OctetString”>
    </typedef>
    <typedef name=”PhysAddress” basetype=”OctetString”>
    </typedef>
  </typedefs>

  <nodes>
    <node name=”mib-2” oid=”1.3.6.1.2.1”>
    </node>

    <!-- Deleted all groups except the Interfaces Group -->

    <node name=”interfaces” oid=”1.3.6.1.2.1.2”>
    </node>
    <scalar name=”ifNumber” oid=”1.3.6.1.2.1.2.1” status=”current”>
      <syntax>
        <type module=”” name=”Integer32”/>
      </syntax>
      <access>readonly</access>
      <description>
          The number of network interfaces (regardless of
          their current state) present on this system.
      </description>
    </scalar>
    <table name=”ifTable” oid=”1.3.6.1.2.1.2.2” status=”current”>
      <description>
          A list of interface entries.  The number of
          entries is given by the value of ifNumber.
      </description>
      <row name=”ifEntry” oid=”1.3.6.1.2.1.2.2.1” status=”current”>
        <linkage>
          <index module=”RFC1213-MIB” name=”ifIndex”/>
        </linkage>
        <description>
            An interface entry containing objects at the
            subnetwork layer and below for a particular
            interface.
        </description>

<column name=”ifIndex” oid=”1.3.6.1.2.1.2.2.1.1” status=”current”>
          <syntax>
            <type module=”” name=”Integer32”/>
          </syntax>
          <access>readonly</access>
          <description>
              A unique value for each interface.  Its value
              ranges between 1 and the value of ifNumber.  The
              value for each interface must remain constant at
              least from one re-initialization of the entity’s
              network management system to the next re-
              initialization.
          </description>
        </column>
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<column name=”ifDescr” oid=”1.3.6.1.2.1.2.2.1.2” status=”current”>
          <syntax>
            <typedef basetype=”OctetString”>
              <parent module=”RFC1213-MIB” name=”DisplayString”/>
              <range min=”0” max=”255”/>
            </typedef>
          </syntax>
          <access>readonly</access>
          <description>
              A textual string containing information about the
              interface.  This string should include the name of
              the manufacturer, the product name and the version
              of the hardware interface.
          </description>
        </column>
        <column name=”ifType” oid=”1.3.6.1.2.1.2.2.1.3” status=”current”>
          <syntax>
            <typedef basetype=”Enumeration”>
              <namednumber name=”other” number=”1”/>
              <namednumber name=”regular1822” number=”2”/>
              <namednumber name=”hdh1822” number=”3”/>
              <namednumber name=”ddn-x25” number=”4”/>
              <namednumber name=”rfc877-x25” number=”5”/>
              <namednumber name=”ethernet-csmacd” number=”6”/>
              <namednumber name=”iso88023-csmacd” number=”7”/>
              <namednumber name=”iso88024-tokenBus” number=”8”/>
              <namednumber name=”iso88025-tokenRing” number=”9”/>
              <namednumber name=”iso88026-man” number=”10”/>
              <namednumber name=”starLan” number=”11”/>
              <namednumber name=”proteon-10Mbit” number=”12”/>
              <namednumber name=”proteon-80Mbit” number=”13”/>
              <namednumber name=”hyperchannel” number=”14”/>
              <namednumber name=”fddi” number=”15”/>
              <namednumber name=”lapb” number=”16”/>
              <namednumber name=”sdlc” number=”17”/>
              <namednumber name=”ds1” number=”18”/>
              <namednumber name=”e1” number=”19”/>
              <namednumber name=”basicISDN” number=”20”/>
              <namednumber name=”primaryISDN” number=”21”/>
              <namednumber name=”propPointToPointSerial” number=”22”/>
              <namednumber name=”ppp” number=”23”/>
              <namednumber name=”softwareLoopback” number=”24”/>
              <namednumber name=”eon” number=”25”/>
              <namednumber name=”ethernet-3Mbit” number=”26”/>
              <namednumber name=”nsip” number=”27”/>
              <namednumber name=”slip” number=”28”/>
              <namednumber name=”ultra” number=”29”/>
              <namednumber name=”ds3” number=”30”/>
              <namednumber name=”sip” number=”31”/>
              <namednumber name=”frame-relay” number=”32”/>
            </typedef>
          </syntax>
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          <access>readonly</access>
          <description>
              The type of interface, distinguished according to
              the physical/link protocol(s) immediately `below’
              the network layer in the protocol stack.
          </description>
        </column>
        <column name=”ifMtu” oid=”1.3.6.1.2.1.2.2.1.4” status=”current”>
          <syntax>
            <type module=”” name=”Integer32”/>
          </syntax>
          <access>readonly</access>
          <description>
              The size of the largest datagram which can be
              sent/received on the interface, specified in
              octets.  For interfaces that are used for
              transmitting network datagrams, this is the size
              of the largest network datagram that can be sent
              on the interface.
          </description>
        </column>

<column name=”ifSpeed” oid=”1.3.6.1.2.1.2.2.1.5” status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Gauge”/>
          </syntax>
          <access>readonly</access>
          <description>
              An estimate of the interface’s current bandwidth
              in bits per second.  For interfaces which do not
              vary in bandwidth or for those where no accurate
              estimation can be made, this object should contain
              the nominal bandwidth.
          </description>
        </column>

<column name=”ifPhysAddress” oid=”1.3.6.1.2.1.2.2.1.6”
status=”current”>
          <syntax>
            <type module=”RFC1213-MIB” name=”PhysAddress”/>
          </syntax>
          <access>readonly</access>
          <description>
              The interface’s address at the protocol layer
              immediately `below’ the network layer in the
              protocol stack.  For interfaces which do not have

              such an address (e.g., a serial line), this object
              should contain an octet string of zero length.
          </description>
        </column>

<column name=”ifAdminStatus” oid=”1.3.6.1.2.1.2.2.1.7”
status=”current”>
          <syntax>
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            <typedef basetype=”Enumeration”>
              <namednumber name=”up” number=”1”/>
              <namednumber name=”down” number=”2”/>
              <namednumber name=”testing” number=”3”/>
            </typedef>
          </syntax>
          <access>readwrite</access>
          <description>
              The desired state of the interface.  The
              testing(3) state indicates that no operational
              packets can be passed.
          </description>
        </column>

<column name=”ifOperStatus” oid=”1.3.6.1.2.1.2.2.1.8”
status=”current”>
          <syntax>
            <typedef basetype=”Enumeration”>
              <namednumber name=”up” number=”1”/>
              <namednumber name=”down” number=”2”/>
              <namednumber name=”testing” number=”3”/>
            </typedef>
          </syntax>
          <access>readonly</access>
          <description>
              The current operational state of the interface.
              The testing(3) state indicates that no operational
              packets can be passed.
          </description>
        </column>

<column name=”ifLastChange” oid=”1.3.6.1.2.1.2.2.1.9”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”TimeTicks”/>
          </syntax>
          <access>readonly</access>
          <description>
              The value of sysUpTime at the time the interface
              entered its current operational state.  If the
              current state was entered prior to the last re-
              initialization of the local network management
              subsystem, then this object contains a zero
              value.
          </description>
        </column>

<column name=”ifInOctets” oid=”1.3.6.1.2.1.2.2.1.10”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The total number of octets received on the
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              interface, including framing characters.
          </description>
        </column>

<column name=”ifInUcastPkts” oid=”1.3.6.1.2.1.2.2.1.11”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The number of subnetwork-unicast packets
              delivered to a higher-layer protocol.
          </description>
        </column>

<column name=”ifInNUcastPkts” oid=”1.3.6.1.2.1.2.2.1.12”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The number of non-unicast (i.e., subnetwork-
              broadcast or subnetwork-multicast) packets
              delivered to a higher-layer protocol.
          </description>
        </column>

<column name=”ifInDiscards” oid=”1.3.6.1.2.1.2.2.1.13”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The number of inbound packets which were chosen
              to be discarded even though no errors had been
              detected to prevent their being deliverable to a
              higher-layer protocol.  One possible reason for
              discarding such a packet could be to free up
              buffer space.
          </description>
        </column>

<column name=”ifInErrors” oid=”1.3.6.1.2.1.2.2.1.14”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The number of inbound packets that contained
              errors preventing them from being deliverable to a
              higher-layer protocol.
          </description>
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        </column>
<column name=”ifInUnknownProtos” oid=”1.3.6.1.2.1.2.2.1.15”

status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The number of packets received via the interface
              which were discarded because of an unknown or
              unsupported protocol.
          </description>
        </column>

<column name=”ifOutOctets” oid=”1.3.6.1.2.1.2.2.1.16”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The total number of octets transmitted out of the
              interface, including framing characters.
          </description>
        </column>

<column name=”ifOutUcastPkts” oid=”1.3.6.1.2.1.2.2.1.17”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The total number of packets that higher-level
              protocols requested be transmitted to a
              subnetwork-unicast address, including those that
              were discarded or not sent.
          </description>
        </column>

<column name=”ifOutNUcastPkts” oid=”1.3.6.1.2.1.2.2.1.18”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The total number of packets that higher-level
              protocols requested be transmitted to a non-
              unicast (i.e., a subnetwork-broadcast or
              subnetwork-multicast) address, including those
              that were discarded or not sent.
          </description>
        </column>
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<column name=”ifOutDiscards” oid=”1.3.6.1.2.1.2.2.1.19”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The number of outbound packets which were chosen

              to be discarded even though no errors had been
              detected to prevent their being transmitted.  One
              possible reason for discarding such a packet could
              be to free up buffer space.
          </description>
        </column>

<column name=”ifOutErrors” oid=”1.3.6.1.2.1.2.2.1.20”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Counter”/>
          </syntax>
          <access>readonly</access>
          <description>
              The number of outbound packets that could not be
              transmitted because of errors.
          </description>
        </column>

<column name=”ifOutQLen” oid=”1.3.6.1.2.1.2.2.1.21”
status=”current”>
          <syntax>
            <type module=”RFC1155-SMI” name=”Gauge”/>
          </syntax>
          <access>readonly</access>
          <description>
              The length of the output packet queue (in
              packets).
          </description>
        </column>

<column name=”ifSpecific” oid=”1.3.6.1.2.1.2.2.1.22”
status=”current”>
          <syntax>
            <type module=”” name=”ObjectIdentifier”/>
          </syntax>
          <access>readonly</access>
          <description>
              A reference to MIB definitions specific to the
              particular media being used to realize the
              interface.  For example, if the interface is
              realized by an ethernet, then the value of this
              object refers to a document defining objects
              specific to ethernet.  If this information is not
              present, its value should be set to the OBJECT
              IDENTIFIER { 0 0 }, which is a syntatically valid
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              object identifier, and any conformant
              implementation of ASN.1 and BER must be able to
              generate and recognize this value.
          </description>
        </column>
      </row>
    </table>

    <!-- Deleted all groups except the Interfaces Group -->

  </nodes>

</smi>



226 Appendix B



the

ter 8.
Appendix C

METAMODEL -LEVEL XML M APPING OF A SIMPLE CIM
CLASS

In this appendix, we reproduce “as is” an example of CIM-to-XML metamodel-level mapping given by
DMTF [64]. The purpose of this example is not to showthe way to map the CIM class below in XML, but
rather to illustrate the metamodel-level mapping philosophy of the DMTF. This mapping is used in Chap

The MOF syntax for the class is shown below:

[Abstract] class CIM_ManagedSystemElement
{
[MaxLen(64)] string Caption;
string Description;
[MappingStrings{"MIF.DMTF|ComponentID|001.5"}] datetime InstallDate;
string Name;
[Values{"OK","Error","Degraded","Unknown"}] string Status;
};

The corresponding XML mapping for this class is shown below:

<?xml version=”1.0” ?>

<!DOCTYPE CIM SYSTEM
“http://WBEM_TECRA_2/wbem/cim.dtd”>
<CIM CIMVERSION=”2.0”
DTDVERSION=”1.0” >
<CLASS>
<CLASSPATH>
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<NAMESPACEPATH>
<HOST>WBEM_TECRA_2</HOST>
<NAMESPACE>
<NAMESPACENODE>ROOT</NAMESPACENODE>
<NAMESPACE>
<NAMESPACENODE>CIMV2</NAMESPACENODE>
</NAMESPACE>
</NAMESPACE>
</NAMESPACEPATH>
<CLASSNAME>CIM_ManagedSystemElement</CLASSNAME>
</CLASSPATH>
<QUALIFIER NAME=”Abstract”
LOCAL=”true” TYPE=”boolean”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”Restricted”
TRANSLATABLE=”false”>
<VALUE>TRUE</VALUE>
</QUALIFIER>
<PROPERTY NAME=”Caption” CLASSORIGIN=
“CIM_ManagedSystemElement”
LOCAL=”true”TYPE=”string”>
<QUALIFIER NAME=”CIMTYPE”
LOCAL=”true” TYPE=”string”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”ToSubclass”
TRANSLATABLE=”false”>
<VALUE>string</VALUE>
</QUALIFIER>
<QUALIFIER NAME=”MaxLen” LOCAL=”true”
TYPE=”sint32”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”Restricted”
TRANSLATABLE=”false”>
<VALUE>64</VALUE>
</QUALIFIER>
<QUALIFIER NAME=”read” LOCAL=”true”
TYPE=”boolean”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”Restricted”
TRANSLATABLE=”false”>
<VALUE>TRUE</VALUE>
</QUALIFIER>
</PROPERTY>
<PROPERTY NAME=”Description”
CLASSORIGIN=”CIM_ManagedSystemElement”
LOCAL=”true” TYPE=”string”>
<QUALIFIER NAME=”CIMTYPE”
LOCAL=”true” TYPE=”string”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”ToSubclass”
TRANSLATABLE=”false”>
<VALUE>string</VALUE>
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</QUALIFIER>
<QUALIFIER NAME=”read” LOCAL=”true”
TYPE=”boolean”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”Restricted”
TRANSLATABLE=”false”>
<VALUE>TRUE</VALUE>
</QUALIFIER>
</PROPERTY>
<PROPERTY NAME=”InstallDate”
CLASSORIGIN=”CIM_ManagedSystemElement”
LOCAL=”true” TYPE=”datetime”>
<QUALIFIER NAME=”CIMTYPE”
LOCAL=”true” TYPE=”string”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”ToSubclass”
TRANSLATABLE=”false”>
<VALUE>datetime</VALUE>
</QUALIFIER>
<QUALIFIER NAME=”MappingStrings”
LOCAL=”true” TYPE=”string”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”Restricted”
TRANSLATABLE=”false”>
<VALUE.INDEXED INDEX
=”0”>MIF.DMTF|ComponentID|001.5</VALUE.INDEXED>
</QUALIFIER>
<QUALIFIER NAME=”read” LOCAL=”true”
TYPE=”boolean”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”Restricted”
TRANSLATABLE=”false”>
<VALUE>TRUE</VALUE>
</QUALIFIER>
</PROPERTY>
<PROPERTY NAME=”Name”
CLASSORIGIN=”CIM_ManagedSystemElement”
LOCAL=”true” TYPE=”string”>
<QUALIFIER NAME=”CIMTYPE”
LOCAL=”true” TYPE=”string”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”ToSubclass”
TRANSLATABLE=”false”>
<VALUE>string</VALUE>
</QUALIFIER>
<QUALIFIER NAME=”read” LOCAL=”true”
TYPE=”boolean”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”Restricted”
TRANSLATABLE=”false”>
<VALUE>TRUE</VALUE>
</QUALIFIER>
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</PROPERTY>
<PROPERTY NAME=”Status”
CLASSORIGIN=”CIM_ManagedSystemElement”
LOCAL=”true” TYPE=”string”>
<QUALIFIER NAME=”CIMTYPE”
LOCAL=”true” TYPE=”string”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”ToSubclass”
TRANSLATABLE=”false”>
<VALUE>string</VALUE>
</QUALIFIER>
<QUALIFIER NAME=”read” LOCAL=”true”
TYPE=”boolean”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”Restricted”
TRANSLATABLE=”false”>
<VALUE>TRUE</VALUE>
</QUALIFIER>
<QUALIFIER NAME=”Values” LOCAL=”true”
TYPE=”string”
OVERRIDABLE=”EnableOverride”
TOSUBCLASS=”Restricted”
TRANSLATABLE=”false”>
<VALUE.INDEXED INDEX
=”0”>OK</VALUE.INDEXED>
<VALUE.INDEXED INDEX
=”1”>Error</VALUE.INDEXED>
<VALUE.INDEXED INDEX
=”2”>Degraded</VALUE.INDEXED>
<VALUE.INDEXED INDEX
=”3”>Unknown</VALUE.INDEXED>
</QUALIFIER>
</PROPERTY>
</CLASS>
</CIM>
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REMOTE METHOD INVOCATION OF A CIM O BJECT

In this appendix, we reproduce “as is” an example of remote method invocation of a CIM object given b
DMTF [64, pp. 75–76]. Compared to the original document, we simply removed the HTTP header of th
messages. The purpose of this example is to illustrate the containment hierarchy of operations and
invocations as well as the use of the namespace. This XML document is used in Chapter 8.

Request message:

 <?xml version="1.0" encoding="utf-8" ?>
 <CIM CIMVERSION="2.0" DTDVERSION="2.0">
  <MESSAGE ID="87872" PROTOCOLVERSION="1.0">
   <SIMPLEREQ>
    <METHODCALL NAME="SetPowerState">
     <LOCALINSTANCEPATH>
      <LOCALNAMESPACEPATH>
       <NAMESPACE NAME="root"/>
       <NAMESPACE NAME="myNamespace"/>
      </LOCALNAMESPACEPATH>
      <INSTANCENAME CLASSNAME="MyDisk">
       <KEYBINDING NAME="C:"><KEYVALUE>C:</KEYVALUE></KEYBINDING>
      </INSTANCENAME>
     </LOCALINSTANCEPATH>
     <PARAMVALUE NAME="PowerState"><VALUE>1</VALUE></PARAMVALUE>
     <PARAMVALUE NAME="Time">
      <VALUE>00000001132312.000000:000</VALUE>
     </PARAMVALUE>
    </METHODCALL>
   </SIMPLEREQ>
  </MESSAGE>
 </CIM>
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Response message:

<?xml version="1.0" encoding="utf-8" ?>
 <CIM CIMVERSION="2.0" DTDVERSION="2.0">
  <MESSAGE ID="87872" PROTOCOLVERSION="1.0">
   <SIMPLERSP>
    <METHODRESPONSE NAME="SetPowerState">
     <RETURNVALUE>
      <VALUE>0</VALUE>
     </RETURNVALUE>
    </METHODRESPONSE>
   </SIMPLERSP>
  </MESSAGE>
 </CIM>
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