
In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

Common Information vs. Information Overload

J. Schott and A.Westerinen
Cisco Systems

170 West Tasman Dr.
San Jose, CA 95134, USA

{jschott, andreaw}@cisco.com

J. P. Martin-Flatin P. Rivera
AT&T Labs Research LSI Logic
180 Park Avenue, Bldg. 103, Rm. A001 4420 ArrowsWest Dr
Florham Park, NJ 07932, USA Colorado Springs, CO 80907
jp.martin-flatin@ieee.org peter.rivera@lsil.com

Abstract
Coordinating management data across vendors and products is quickly becoming an
overwhelming task. Sophisticated tools are needed to mine information from
varying locations in MIBs, PIBs, CLI constructs, directory schemas, and other
repositories and management standards. As data silos become larger and larger, and
as individuals are expected to support more and more systems, the need for
abstracted data that is consistent across vendors’ platforms has become a
requirement. The detailed information required for management and configuration
must be abstracted into well-defined and meaningful concepts and terms. These
concepts should cross vendor and product boundaries. This paper first describes the
contributing factors to today’s ineffective modeling efforts. It then proposes a new
philosophy and approach for modeling management information, using relevant
abstractions from the DMTF CIM Schema. Included in this work are
recommendations to accomplish successful modeling of management data.

Keywords
 Management, Information Modeling, CIM.

1. Introduction
The sheer quantity of management data that is available in the Internet world is
staggering. As data silos become larger and larger, and as individuals are expected
to support more and more systems, the need for abstracted data that uses consistent
semantics across vendors’ platforms has changed to a requirement. Many companies
spend millions of dollars on management tools whose purpose is to mediate and
normalize data between vendors and products. The best solution is for the products
themselves to deliver information that is “mediated and normalized”.

A second concern is the language of the management information [1]. It seems
that each problem domain chooses its own terms for the same basic concepts. A case
in point is the terminology for network interfaces. Various companies simply refer
to interfaces. But the Distributed Management Task Force (DMTF) chooses the

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

term protocol endpoint [2] while the International Telecommunication Union (ITU)
uses the term termination point [3]. None of these terms are incorrect, but it is
critical to standardize on one set and build upon it. The set of terms must be
semantically explicit, but sufficiently abstracted to be usable and reusable.

Abstracted and reusable information facilitates improved management. Detailed
information for configuration can be abstracted into the concepts useful to a network
administrator (users, systems, ports, access points, etc.). One should not have to
understand every minute detail, of each bit, in every layer of the protocol stack, to do
network management. Standards bodies have worked hard to standardize on every
bit in order for vendors’ equipment to interoperate on the wire. This level of
information is not manageable, but simply exists. High-level concepts like
customers and ports must be managed. The reuse of these concepts is powerful. It
enables implementation code and knowledge to be reused, which reduces design and
development time.

This paper addresses the issues outlined above by first describing the
contributing factors to today’s ineffective modeling efforts. It then proposes a new
philosophy and approach towards information modeling. This new approach
includes a process that is founded upon software engineering techniques.

2. Information Overload
Three factors lend themselves to the information overload phenomenon: (i) the focus
and expertise of the individuals who create the models; (ii) the level of data
abstraction used in the models; and (iii) the desire to differentiate management and
foster NIH (“Not Invented Here” syndrome).

2.1. Focus and Expertise

For organizations developing products such as network equipment, servers, and
storage devices, management-software development is typically secondary to
product-feature development. Consequently, more junior engineers are assigned to
implement the management of those features, and often concentrate only on one
particular aspect of management, such as configuration or fault management, versus
a more complete management story. They are usually not familiar with the technical
details of the product features, and focus on the idiosyncrasies of the languages used
to express Management Information Bases (MIBs [4]), Policy Information Bases
(PIBs [5]), and Common Information Model (CIM) Schemas [6]. Thus, engineers
that specialize in management often have different knowledge, focus and skills than
the feature developers.

Regarding schedule, management often lags behind product development—at
least until the product features and management interfaces are defined. Customers
require manageability, but they do not typically dictate normalized, standard
semantics. The quantity and quality of data supplied is also not specified.
Therefore, when schedules slip (as they customarily do!), management support can
be compromised to fit the schedule.

Under these circumstances, supplying a MIB becomes a “check mark” item.
Supplying standard semantics is often not a requirement. This allows a company to
provide proprietary, non-normalized data in a MIB, using its own attribute names
and terminology. This approach meets the requirement to supply management

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

software. Unfortunately, customers or tool vendors are now required to mediate the
terminology and concepts into a normalized form, or to create specific tools for each
MIB.

2.2. Level of Data Abstraction

Finding the right level of abstraction is a difficult problem. The “right level”
depends on how the data will be used. Some applications require high-level, very
abstract data, while other applications (such as root cause analysis) may need
detailed information on specific components of the management domain. Providing
both levels of information as well as relationships between them can solve the
dilemma. Using an object-oriented design approach and associations between
classes (and therefore levels of abstractions) is one mechanism.

Pertinent to the discussion of levels of abstraction is a change of focus regarding
how management information is defined. Often, management data is published
simply because it is there. In this scenario, the rationale for publishing management
data is trivial: Publishing something is better than publishing nothing at all, or
publishing what is difficult to determine.

We claim that management requires design, and complexity can often be dealt
with by defining use cases. Determining the problems to be solved, the data needed
to solve those problems, and how the data should be traversed and utilized are
important decisions. Object-oriented techniques and UML diagrams have a track
record of helping solve these problems.

There are other issues with data abstraction. Abstraction and object-oriented
design are difficult. Many standards committees do not want to standardize on the
data, but on the mechanism for delivering it. One example is the Internet
Engineering Task Force’s (IETF) Simple Network Management Protocol (SNMP):
The specific bits of a protocol are much more concrete than the more esoteric data
needed for management. It should be noted that although the IETF has already
defined more than 100 standard MIBs they are too often limited in the scope of
products that they cover and rarely reuse concepts and constructs.

Lastly, data abstractions and management models must be extensible. This
allows extension of the standards as well as a means for vendors to provide
additional information critical to their products. Having extensibility as a primary
goal (as opposed to just defining specific data bits) removes the need to include
detailed information that only applies to a limited number of products.

2.3. NIH, the “Not Invented Here” Syndrome

During discussions about the relevance of standardizing management information, a
frequent claim is that “I cannot use a standard management model since my
environment (or my data) is unique.” This is a difficult argument to refute without
drilling down into the details of the environment in question. Most of the time, the
argument is emotional and based on the perception that “my work goes where no
man has gone before.” A simple rebuttal is to ask what is so unique. For example:
• If modeling hardware, does no other product have a chassis or fit into a rack?
• If modeling software, does no other product have a version number and support

specific functionality?

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

• If modeling routing, does no other system have routing tables and a concept of
next-hop addressing?

• If modeling storage, does no other product have a volume?
• If modeling security, does no other product have credentials?

The obvious answer to all these questions is “of course they do”. So, with some
effort, commonality can be found, abstractions can be defined, and standard
semantics can be used and (more importantly) reused.

3. Common Information
With this new mindset, the goal becomes the creation of a single information model1,
defining common semantics and supporting various levels of abstraction for a given
management domain. The translation of the model into a specific protocol and
encoding renders a data model. The information model must be able to represent
different views and abstractions of the management environment—for example,
describing the configuration or operation of Quality of Service (QoS) processing
behind a router, or indicating a network topology. The data from various products
and vendors must be extensible, yet fit together to create a complete description of
the environment.

In order to achieve this in a standard manner, the existing standards
organizations (e.g. IETF, DMTF) need to adopt an efficient process to develop valid
and sufficiently abstracted models. In addition, the standards bodies must work
together to reuse modeling abstractions and constructs, and to avoid creating new
terminology. In short, the bodies must work in conjunction rather than compete with
each other.

3.1. Multi-tier Development Model

We propose that information modeling be developed using a multi-tier development
model (see Figure 1REFSTYLESEQARABE). The top tier of the model is the high-
level abstraction layer for a technology or management domain2. The Abstract
Technology Model captures the main concepts of the domain and the relationships
between these concepts. At this stage of development, it is important to ignore low-
level data details, and focus on the concepts and goals of the management model.
Work on the top tier should be done first by the technology and domain experts.
Then, the model should be normalized and further designed by developers who are
experienced in object-oriented technologies and familiar with the concepts of the
Common Abstraction Model (see Section 3.1.2). (Note that there is only a single
“Common” Model. This enables the technology and management domains work to
fit together and be reused.)

Once the Abstract Technology Model is complete, work begins on adding low-
level data details to it and fleshing out the contents, objects and associations. At this
stage of development, the model may go through several iterations of adding detail
(based on input from the technology experts), conducting reviews and analyses

1 See Martin-Flatin’s concept of Universal Information Model (UIM) [1, 7].
2 In the figure, shadowed boxes imply that multiple models exist, for example, for
different technologies.

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

against use cases, and normalizing the design using the Common Abstraction Model
(by the developers of the common model). The result of this work is the Detailed
Technology Model.

The Common Abstraction Model provides the basic concepts and root for all the
technology models. It is built by promoting general concepts of the technology
models (i.e., the concepts applicable to more than just one technology domain). The
Common Abstraction Model developers are responsible for working with the
technology experts to promote the correct classes and associations.

C om m o n
A b strac tion

M o de l

A b strac t
T e chn o lo gy

M o de ls

D eta ile d
D ata

M o de ls

D eta ile d
T e chn o lo gy

M o de ls

E n co d in g
C on verte rs

REFSTYLESEQARABEFigure 1: The Multi-Tier Development Model

Lastly, after the Detailed Technology Model is finalized, it can be converted to a
variety of encodings. Some examples are SMI for use with SNMP [9], MOF for use
with CIM [6], and/or LDIF for use as a directory schema [10]. The result of this
encoding is a Detailed Data Model.

3.1.1. Abstract Technology Models
The top tier of the model gives the “big picture” for a technology. There may be
models for routers, Storage Area Networks (SANs), relational databases, etc. There
are as many Abstract Technology Models as there are teams that wish to provide
standard data for managing these domains. With our approach, the increase in the
quality of these models comes from the multi-tier methodology for designing these
models, and from the reuse of common abstractions and the structured object
hierarchy of the Common Abstraction Model.

The group of individuals working on the Abstract Technology Model should be
a mixture of individuals:
• Technology experts (with detailed knowledge of the technology),
• Customers (defining the management problems and use cases), and
• Information modeling experts (providing expertise on object-oriented design and

the Common Abstraction Model).

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

3.1.2. Common Abstraction Model
The high-level classes of the DMTF’s CIM Core Schema [6] describe general
concepts useful in a Common Abstraction Model. Following our philosophy of
reuse and avoiding duplication of effort, we recommend the adoption of this model
as a start toward normalizing data for all technology domains.

There are several words of caution, however. It is essential to avoid overloading
the basic abstractions with detailed data (as has happened to some of the DMTF
classes). A minimalist approach should be taken. Data should be included that
meets the 80/20 rule (applicable to 80% of all users and subclasses of the model).
Also, we avoid adopting all the language constructs of the DMTF in this discussion,
and focus solely on concepts.

The purpose of the Common Abstraction Model in Figure
1REFSTYLESEQARABE (and the CIM Core Schema) is to introduce basic
concepts that bring organization and common semantics to objects in the Abstract
Technology Models. Some of the abstractions recommended from the CIM Core
Schema are: ManagedElement, Collection, Setting, StatisticalInformation,
PhysicalElement, LogicalElement, LogicalDevice, System, Service, and
ServiceAccessPoint (seeRENV Figure 2). Also depicted in this figure is the
Capabilities class. This class is proposed for inclusion in the CIM Core Schema by
several of the authors. The common base associations also recommended are:
Dependency, Component, AssociatedStatistics, ElementSetting, Element Capabilities
and MemberOfCollection. Proposed by the authors is a new association, “SeeAlso”.

Although the class names are fairly intuitive, some overview of the concepts and
their relationships is required for completeness. ManagedElement is the root for all
non-association class definitions and defines the key structure and basic properties
(such as Description) of the object hierarchy. Dependency describes both directional
and peer dependencies between two instances. Component indicates a whole-part
(composition) and/or containment relationship between instances. (Although not
specifically noted in Figure 2, associations are full classes and can define properties
beyond simply references.) Lastly, SeeAlso relates different aspects of a real world
element, instantiated through different classes of the object hierarchy. An example is
a keyboard that is also a USB device. This could be represented using multiple
inheritance – deriving from both the KeyboardDevice and a USBDevice class.
Unfortunately, many implementations do not support multiple inheritance. Hence,
an association that describes the basic concept is provided – and implementations are
free to use whatever mechanisms are available to manipulate or realize the
association.

It may be asked why classes such as Capabilities, Settings or Statistical
Information are defined. The base classes themselves could be defined to contain the
properties found in these other classes. However, some capabilities, statistics, and
setting information are dependent upon the usage of the instance versus the class
itself. Therefore, having separate classes to describe these properties is more flexible
than burdening the class definition with all possibilities. Also, depending on the
users’ eventing and notification schemes, it may be more straightforward to notify on
any change to a base class – and less often on changes to statistical data. The
associations ElementCapabilities, AssociatedStatistics, and ElementsSetting relate

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

the Capabilities, Statistical Information, and Settings values to the object(s) to which
they apply or that make use of them.

Collection is a bit strange as a fundamental object. Programmers understand its
use in a class library, but do not often think of it as a management concept. It is
useful, however, as a way to collect instances into a “bag”. An example is a group of
Settings that apply to a particular user. This could be defined as a subclass of
Collection (a Profile) that gathers together the appropriate instances of (subclasses
of) Settings; the MemberOfCollection association is used to express the instances
that are “collected”. Collection is different from the Component association since it
does not describe a composition or containment relationship but only basic
aggregation.

So far, the instances of classes that we described (such as StatisticalInformation)
would not have statuses. Therefore, ManagedSystemElement is intended as the
parent to all classes that are parts of “systems” (a very general concept) and that have
status. Status defines the basic operational states of an element using one standard
set of terms (OK, Error, Failure Predicted, Non-Recoverable Error, etc.). This
concept aligns with that of M.3100 OperationalState [3]. No longer is it necessary to
translate all synonyms of “OK” (“good”, “functional”, “working”, etc.) to determine
status. It should be noted that subclasses can expand on these basic states using new
properties, specific to their problem domain. For example, a printer class may
include a property, ErrorInformation, that details specific “Error” states (such as low
toner and paper jam). (In addition, the Common Model provides other properties,
that are not discussed here, to describe concepts such as enabled/disabled state.)

It is desirable to have a clean separation between describing the physical world
and the logical world. Often, different mechanisms or software are used to obtain
this information. Therefore, PhysicalElement is the parent for the class hierarchy
that describes the physical world (things that must adhere to the laws of physics and
that can be seen or touched). LogicalElement is the parent of the class hierarchy that
describes things in a logical sense. Under LogicalElement is where most of the
management occurs. PhysicalElements can be moved, replaced, powered, etc. but
not much more. The subclasses of LogicalElement are:
• LogicalDevice - Describing the specific functionality provided by the physical

hardware (such as a KeyboardDevice)
• System - Describing entities that are composed of ManagedSystemElements and

which are managed at a high level as a single entity (such as a NetworkElement
or an AdminDomain)

• Service - Describing any functionality, especially that provided by the
“running” of software (such as RoutingService)

• ServiceAccessPoint - Describing the means of accessing Services (such as
ProtocolEndpoints that access network Services)

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

LogicalElement (Abs tract)

System (Abstract)LogicalDevice (Abs tract)

*

ManagedSystemElement (Abs tract)

PhysicalElement (Abs tract)

Component

Service (Abs tract) ServiceAccessPoint (Abstract)

*

*

*

Collec tion (Concrete)

*
*
*

Dependency

ManagedElement (Abs tract)

*

Capabilities (Abstract)

StatisticalInformation (Abstract) Setting (Abstract)

Assoc iation
Aggregation

Inheritance

* equivalent to: 0 .. n

Member
O fCollection

SeeAlso

Element
Setting

*

*

ElementCapabilities
*

*

Assoc iatedStatis tics 1

*

REFSTYLESEQARABE Figure 2: High-Level Common Abstraction Objects
The authors acknowledge that agreeing on common interpretations, terminology and
abstractions is very difficult. However, it is not impossible as proven by the work of
the DMTF.

3.1.3. Detailed Technology and Data Models

The most specific tiers of the management models are those of the Detailed
Technology and Data Models. The Detailed Technology Models define the low-
level details of the technology or management domains, addressing the needs of the
use cases. The Data Models are the transformation of the Technology Models into
specific syntaxes, for transmission using specific protocols, possibly destined for
specific repositories.

It is required that the terminology used to express the Detailed Data Models
match that of the Detailed Technology Models, to avoid confusion and divergence.
However, it is also anticipated that some changes will be required as the models are
adapted to specific syntaxes, and the idiosyncrasies of those syntaxes are taken into
account. It is desirable for both the Technology and Data Models to be standardized.
For example, for IP-based models, MIBs and PIBs would be published by the IETF,
while the DMTF would produce MOF files. Either standards group (or ideally both
in conjunction) would publish the Detailed Technology Models.

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

4. Example
In order to make the preceding discussion more understandable, a concrete example
is helpful. For the example, our technology model is an IP Router. We map,
normalize, and expand data from the IETF’s RFC 1213 [8] and include mapping of
information for the ITU’s M.3100 specification [3]. A lighter-weight version of the
DMTF CIM Core Model is used as our Common Abstraction Model (This model
was briefly overviewed in 3.1.2)3. In addition, various concepts from DMTF’s CIM
Network Model are also discussed as part of our Common Abstraction Model.

Since this paper cannot address all aspects of a router, RFC1213 or M.3100
(due to limited space), the authors request some leeway regarding the completeness
of this analysis. The focus is on the use of the development model presented in
Section 3, as it pertains to a specific technology domain.

Partitioning the management of an IP Router into its logical aspects such as
interfaces, statistics, hardware, routes and routing protocols is a necessary first step
in creating an Abstract Technology Model. The managed information is partitioned
as shown inRENV Figure 3.

Once the “abstract” concepts of the technology model are identified, the
next step is to map the management information into the Common Abstraction
Model. The IP Router maps to the abstract model as an instance of the
ManagedNetworkElement class whose inherited property, Dedicated, is used to
indicate that the system is dedicated to routing (see RENVFigure 4 where the model
and its properties are explicitly shown).

IPR ou te r S ta tis tics

R ou ting
P ro toco ls

N e tw o rk
In te rfaces

H ardw are

S o ftw a re

. . .

REFSTYLESEQARABEFigure 3: IP Router Functionality Technology
Model

It is also important to describe how the IP Router is managed in the context of a
Network. As can be seen in the Figure 4, an instance of a Network (corresponding to
ITU’s M.3100 Network) is a subclass of AdminDomain. Reviewing the object
hierarchy, it is seen that both the IP Router and its Network are instances of a System
(a very general and abstract concept). They are managed as single entities that are

3 The authors have chosen a “lighter weight” version of the DMTF CIM Core Model
to simplify the discussion.

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

the sum of their components (i.e., their hardware, software, services, other systems,
etc.).

LogicalE lement
(Abstract)

System (Abstract)
PrimaryO wnerName: s tring
PrimaryO wnerContact: s tring
Roles: s tring[]

ManagedSystemElement (Abstract)

O perationalStatus: uint16 [] (enum)
O therStatusDescription: s tring

InstanceID : s tring
InstanceName: s tring
Description: s tring
Caption: s tring

ManagedElement (Abstract)

ComputerSystem (Abstract)
O therIdentifyingInfo: s tring[]
Dedicated: uint16[]
O therDedicatedDescription: s tring

O ffic ialHostName: s tring
LastScanT ime: datetime
LastBootT ime: datetime
SystemT imeZone: uint16 (enum)
DaylightSavingsT ime: uint16 (enum)

ManageSystemT ime ([IN] RequestType: uint16,
 [IN , O UT] SystemDateT ime: datetime,
 [IN , O UT] SystemT imeZone: uint16): uint32

ManagedNetworkElement

AdminDomain

Network

REFSTYLESEQARABEFigure 4: IP Router Common Abstraction Model
When adding detailed data to the general concepts of the Common Abstraction

Model and Abstract Technology Model, the authors looked to other standards bodies
for insight. In particular, the detailed data of RFC 1213 and the ITU M.3100
specification were considered. RENVTable 1 shows the relationship between the
properties of the router’s Detailed Technology Model and the MIB attributes from
the IETF RFC 1213.

In the next phase of model development, it is important to drill down beyond the
systems themselves to more detailed aspects of the IP Router, such as its interfaces,
routes and routing services. These aspects are not part of the System class, but
individual concepts associated with the System (router).

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

REFSTYLESEQARABETable 1: Model Properties and 1213 MIB Attributes

Abstract Technology Model RFC 1213 MIB
Property Name Attribute Name

InstanceID sysObjectID
InstanceName
Description sysDescr
Caption
OperationalStatus
OtherOperationalDescription
PrimaryOwnerName sysContact
PrimaryOwnerContact sysContact
Roles sysServices
OtherIdentifyingInfo
Dedicated
OtherDedicatedDescription
OfficialHostName sysName
LastScanTime
LastBootTime sysUpTime
SystemTimeZone
DaylightSavingsTime
Location sysLocation

 (part of the PhysicalElement hierarchy)

Network interfaces are subclasses of ServiceAccessPoints, hosted by the IP
Router, permitting access of the network, other systems and the local protocol stack,
and used to describe the layering of the protocols in the stack. They are equivalent to
the concept of “termination points” defined in ITU’s M.3100. Network interfaces
map to the abstract model as subclasses of ServiceAccessPoints,
RemoteServiceAccessPoints and ProtocolEndpoints. Examples of
ProtocolEndpoints are IPProtocolEndpoint, LANEndpoint, UDPProtocolEndpoint,
etc. RemoteAccessPoints hold the protocol information used by one system to
contact a “remote” system.

A ServiceAccessPoint has several specialized relationships. It uses an
association to indicate the system that hosts it. (This association can be directly
translated to containment in implementations that support this concept.) It can have
Dependency relationships to entities that use it. A subclass of Dependency
association (BindsTo) shows the layering of the Endpoints in the protocol stack.

The concepts of RoutingServices, ProtocolEndpoints, and NextHopRoutes are
related as shown inRENV Figure 5. A RoutingService is Dependent on the use of
static and dynamic routes to reach a target (destination) address. These
NextHopRoutes are typically defined within the context of the Router or Switch, as
described by the HostedRoute association. In addition, the NextHopRoute describes
the mechanism of getting to the next “hop” via a specific Endpoint and/or
RemoteServiceAccessPoint. The particular instances used for a route are described
using the associations, RouteUsesEndpoint and/or NextHopAddresss. Both of these
associations are optional.

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

D estinationA ddress: s tring
D estinationM ask: s tring

N extHopR oute

*

1 M anagedN etworkElem ent

P rotocolE ndpointR emoteS erviceA ccess Point

R outeU sesE ndpoint
S ubc lass of D ependency

0..1

*
N extHopA ddress

S ubc lass of D ependency

*
0..1

R outingS erv ice
(A bstrac t)

D ependency

* * S erv iceA ccessP oint (A bstrac t)

H ostedRoute
S ubc lass of D ependency

REFSTYLESEQARABEFigure 5: Routing and Routing Protocols Example
of the Abstraction Model

A benefit of the iterative approach and object-oriented techniques is small
incremental cost to defining additional classes. In addition, there is advantage to not
burdening all instances with data that may not be available or applicable. This
applies well to statistics and allows the statistical information contained in the
Interface table of RFC 1213 to be logically grouped into specific classes, and not
forced into the general ProtocolEndpoint class. ProtocolEndpoints can be associated
with the statistical information that is applicable to them. Therefore, not every
ProtocolEndpoint is burdened with all statistical properties. For example,
RENVFigure 6 shows a set of statistics classes that are related to traffic (based on
attributes in RFC 1213).

Ins tanceID : s trin g
Ins tanceN am e: s tring
D escrip t ion: s tring
C aption : s tring

M an agedE lem ent
(A bs trac t) S tatis ticalIn form ation (A bs trac t) O c tets : u in t32

U nicas tPackets : u in t3 2
N onU n icas tPackets : u in t3 2
D iscardedP ackets : u in t32
E rrorPac kets : u in t32

T raff icS tats

U nknow nP rotocolP ackets : u in t32

InT raff ic S tats

Q ueueLen gth: u in t32

O utT raff icS tats

AssociatedStatistics1

R elatedStatis tics
**

*

REFSTYLESEQARABE Figure 6: Statistics Example of the Abstraction
Model

Although many more details of the IP Router could be discussed, this is left to
another paper. However, it is important to consider one additional item with respect
to the Models – that of implementation. Once the Detailed Technology Models are
sufficiently complete, they are translated into various syntaxes for implementation.
For example, the Models can be translated into one or more IETF MIB(s), DMTF

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

MOF(s) and/or used in APIs. This permits instrumentation to work in the “standard”
protocols, while delivering information that is “mediated and normalized.”
Implementation is the realization of the abstractions and concepts from the Detailed
Technology Model and Common Abstraction Model.

5. Related Work
Why was CIM chosen, and not one of the many other standards? One reason is the
desire of the DMTF to address the complete management space (systems, networks,
telecommunications, databases, users, policy, and more). Another reason is to map
other standards into the CIM Schemas. A third reason is the very powerful, high-
level abstractions of the CIM Schemas (especially the Core Model) adequately
model the wide variety of concepts needed by the authors.

Admittedly, many other standards could have been chosen – for example,
the M.3100 standard from ITU. Its drawback, however, is that it is not typically used
outside of the telecommunications environment. On the other hand, SNMP and
MIBs from the IETF are widely deployed in network devices. The IETF Working
Groups have never really focused on defining common abstractions and reusable
concepts. Unfortunately, standard access does not translate to standard data. SNMP
MIB(s) are typically focused on the Network Element Layer and are not used for
provisioning and configuration, nor is SNMP implemented in all problem domains.

Combining the best of all worlds, CIM can take M.3100 and other ITU
standards, as well as standard SNMP MIB data (for example, RFC1213), and
organize the information using the CIM hierarchy. The other standards are not
ignored or dismissed. They can be mapped into the CIM object model.

However, no standard is perfect and CIM is still rather new in the standards
space (having been defined in the mid 1990’s). Several problems in CIM were
encountered in areas such as keys/naming, model consistency and model
complexity/heaviness. These are being addressed as part of future CIM releases.

6. Conclusion
In the first part of this paper, we have presented a multi-tier model that solves the
issue of non-normalized management information overload and improves the design
of information models. For each technology, we define three models through an
iterative process: an Abstract Technology Model, a Detailed Technology Model and
a Detailed Data Model. The multiple iterations ensure the quality and stability of the
data models eventually used by the vendors and customers.

In the second part, we have studied the example of the management of an IP
Router, and built upon the work already performed by the IETF (RFC 1213) and
DMTF (CIM Core and Network Schemas) to define some of the technology-specific
models required to manage an IP router. It is the intent of the authors to further
expand this mapping and example in other papers and presentations.

In the future, we intend to refine the Common Abstraction Model while defining
new Abstract Technology Models. Another interesting direction for future work is to
improve the models for managing an IP router, in order to better highlight the
commonalities and discrepancies between the ITU, IETF and DMTF efforts. Work is

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

needed to analyze the cost benefits of a single information model versus a federated
approach.

References
[1] J.P. Martin-Flatin, "Toward Universal Information Models in Enterprise

Management", in W. Jonker (Ed.), Databases in Telecommunications II—Proc.
VLDB 2001 Workshop on Databases in Telecommunications (DBTel 2001),
Rome, Italy, September 2001, LNCS 2209:167–178, Springer, 2001.

[2] A. Westerinen and J. Strassner, CIM Core Model Whitepaper, DMTF DSP0111,
August 2000.

[3] ITU-T, M.3100, Generic Network Information Model, 1995.
[4] K. McCloghrie and M. Rose (Eds.), RFC 1212, Concise MIB Definitions, IETF,

March 1991.
[5] M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith, and

F. Reichmeyer (Eds.), Framework Policy Information Base, Internet-Draft
<draft-ietf-rap-frameworkpib-06.txt> (work in progress), IETF, November 2001.
Expires May 2002.

[6] DMTF, Common Information Model (CIM) Specification, Version 2.2, June
1999. Available at <http://www.dmtf.org/standards/cim_spec_v22/>.

[7] J.P. Martin-Flatin, D. Srivastava, and A. Westerinen, Iterative, Multi-Tier
Management Information Modeling, Technical Report TD-4XURR2, AT&T
Labs Research, June 2001.

[8] K. McCloghrie and M. Rose (Eds.), RFC 1213, Management Information Base
for Network Management of TCP/IP-based internets: MIB-II, IETF, March
1991.

[9] K. McCloghrie, D. Perkins, and J. Schoenwaelder (Eds.), RFC 2578, Structure
of Management Information Version 2 (SMIv2), IETF, April 1999.

[10] G. Good (Ed.), RFC 2849, The LDAP Data Interchange Format (LDIF) -
Technical Specification, IETF, June 2000.

Biographies
J. Schott is a Technical Leader for the Information Modeling group at Cisco

Systems. She has worked in the industry for over 17 years in the areas of network
and storage management and software development. Julie is the current chair of the
DMTF CIM System and Devices (SysDev) Working Group and is a participant in
the Storage Networking Industry Association (SNIA). Before joining Cisco, Julie
was employed by LSI Logic, Maxtor, Intellistor, Information Storage, and Hewlett-
Packard. She has a B.S. in Computer Science from Iowa State University.

A. Westerinen is a Senior Architect and Manager of Information Modeling at
Cisco Systems. She has worked in the computer industry for more than 20 years, the
last eight years principally in the areas of enterprise, system, network, storage, and
policy-based management. Andrea is the Vice President of Technology of the
DMTF, and an active participant in the IETF and TM Forum. She is an expert on the
CIM schemas published by the DMTF, and is currently acting chair of the DMTF
CIM Networks Working Group. Andrea has co-authored a book, Common

In Proc. of the Network Operations and Management Symposium (NOMS 2002),
Florence, Italy, April 2002.

Information Model, as well as several IETF documents on policy-based
management. Before joining Cisco, Andrea was employed by Microsoft, Intel, IBM,
and NCR. She has a B.S. in Physics and Mathematics from Marquette University,
and an M.S. in Computer Science from Nova University.

J.P. Martin-Flatin is a Principal Technical Staff Member with AT&T Labs
Research. He holds a Ph.D. degree in Computer Science from the Swiss Fed. Inst. of
Technology, Lausanne (EPFL). He has worked 10 years in industry in the areas of
network and systems management, software development, security, and Web
engineering. He is the author of a book, Web-Based Management of IP Networks
and Systems, and was a guest editor for a special issue of the Journal of Network and
Systems Management on the same topic. The bottom line of his research is to build
an interdisciplinary bridge between enterprise management and software
engineering. He is a member of the IEEE, ACM, IRTF Network Management
Research Group, and the DMTF SysDev and Interop Working Groups.

P. Rivera is a Principal Engineer with LSI Logic. He has worked in the
computer industry for over 18 years in the areas of storage management and software
development. Peter is an active participant in the CIM SysDev Working Group of
the DMTF. Before joining LSI Logic, Peter was employed by Sun Microsystems
and Digital Equipment Corporation. He has a B.S in Computer Science and
Electrical Engineering from the University of Colorado at Boulder.

