
In M. Sloman, S. Mazumdar and E. Lupu (Eds.),Proc. 6th IFIP/IEEE International
Symposium on Integrated Network Management (IM’99), Boston, MA, USA, May
1999, pp. 3–18. IEEE Press, 1999.

ork

in the
ent

ond,
ute
lows
the

Pull

ew.
nd

ary
was
ent.
the

s for
ore

rk
ages

rks
Push vs. Pull in Web-Based Network
Management

J.P. Martin-Flatin
Swiss Federal Institute of Technology, Lausanne (EPFL)

Institute for computer Communications and Applications (ICA)
1015 Lausanne, Switzerland

martin-flatin@epfl.ch

Abstract
In this paper, we build on the concept ofembedded management application,
proposed by Wellens and Auerbach, and present two models of netw
management application designs that rely on Web technologies. First, thepull model,
based on the request/response paradigm, is a generalization of data polling
SNMP management framework. We explain how to use it for ad hoc managem
(e.g, troubleshooting) and regular management (e.g., network monitoring). Sec
the push modelis a novel approach that relies on the publish/subscribe/distrib
paradigm. It is better suited to regular management than the pull model, and al
administrators to conserve network bandwidth as well as CPU time on
management station.

Keywords
Web-Based Management, Network Management, IP Networks, Push Model,
Model, Java, Embedded Management Application.

1. Introduction

The idea of using Web technologies in IP network management is not n
Experiments with the early Web technologies (Web browsers, HTTP, HTML a
CGI scripts) started in 1993-94. Initially, they were only confined to second
tasks [4]. The first important step toward Web-based network management
taken when vendors began embedding HTTP servers in their network equipm
Bruins [1] reports some early experiments made by Cisco in 1995, whereby
entire command line interface was mapped to URLs. This opened new door
configuration management and symptom-driven HTML forms, as there was no m
need totelnet into network devices. Mullaney [7] also describes some wo
conducted by FTP Software, whereby agents send static or dynamic HTML p
back to the Network Management Station (NMS) in response to an HTTPget or
post request. Many network equipment vendors, including Cisco, Nortel Netwo
and 3Com, now routinely embed HTTP servers in their new equipment.
1

cape’s
[11]

s and
the
ment
ting
the

uni-
MP.

oday,
emote
and

ment
s and
digm

gular

n the
sfers
eb
s part

the
nt the
Web
MS.
Web
y, in
ment.

The
your
, or
s an
onse
The second important step was taken when Java applets appeared in Nets
famous Web browser, in 1995. The seminal article by Wellens and Auerbach
introduces the concept ofembedded management application, and shows the
advantages of using HTTP rather than SNMP to vehicle data between manager
agents. Although the authors do not explicitly refer to applets in their article,
solution they propose is to transform an add-on (i.e., a vendor-specific manage
GUI that has to be ported to many different management platforms and opera
systems) into a single applet that can run anywhere. This applet is stored in
managed device, and loaded by the administrator into a Web browser. Comm
cation between the applet and its origin agent later relies on HTTP instead of SN

Since the time of this proposal, new technologies have appeared on the Web. T
in addition to applets and Java applications, we can use Java servlets and R
Method Invocation (RMI), we can open persistent sockets between applets
servlets, etc. All these new possibilities enable new designs of network manage
applications. Leveraging on these new technologies, we propose to push Wellen
Auerbach’s idea two steps further. In section 2, we show that the design para
they propose is just one instance of a more general paradigm, thepull model, which
can not only be applied to ad hoc management, as they do, but also to re
management. In section 3, we introduce a novel approach based on thepush model.
Unlike the pull model, it is not based on the request/response paradigm, but o
publish/subscribe/distribute paradigm. With this scheme, management data tran
are always initiated by the agent, as SNMP notifications delivery in pre-W
network management. The push model reduces network overhead, and move
of the CPU burden from managers to agents.

2. The Pull Model

In sections 2.1 and 2.2, we describe the pull and push models, and explain
difference between ad hoc and regular management. In section 2.3, we prese
engineering details of pull-based ad hoc management, and show how
technologies can complement the management functionalities offered by the N
In this case, network troubleshooting can be done from any machine running a
browser, whereas the NMS remains in charge of regular management. Finall
section 2.4, we show that Web technologies can also deal with regular manage

2.1. Pull vs. push: the newspaper metaphor

In software engineering, thepull model and the push modeldesignate two
well-known approaches for exchanging data between two distant entities.
newspaper metaphor is a simple illustration of these models: if you want to read
favorite newspaper everyday, you can either go and buy it every morning
subscribe to it once and then receive it automatically at home. The former i
example of pull, the latter of push. The pull model is based on the request/resp
paradigm (calleddata polling, or simply polling, in the SNMP management
2

either
ent
ted
the

hat
inis-
ed in,
er on,
r on
e.g.,

hoc
the

sient
, and
with
d to

ions
on

ary to
Es),
erator
n an
., a
the
up a

They
issue

cut
nt of
the

.

cific
t

framework); the client sends a request to the server, then the server answers,
synchronously or asynchronously. This is functionally equivalent to the cli
“pulling” the data off the server. In this approach, the data transfer is always initia
by the client, i.e. the manager. The push model, conversely, is based on
publish/subscribe/distribute paradigm. In this model, agents first advertise w
MIBs they support, and what SNMP notifications they can generate; the adm
trator then subscribes the manager (the NMS) to the data he/she is interest
specifies how often the manager should receive this data, and disconnects. Lat
each agent individually takes the initiative to “push” data to the manager, eithe
a regular basis via a scheduler (e.g., for network monitoring) or asynchronously (
to send SNMP notifications).

2.2. Ad hoc management vs. regular management

The simplest and most intuitive application of the applet technology is ad
management, which requires a user (administrator or operator) to interact with
management software via some GUIs. Ad hoc management is typical of tran
tasks: you connect to a network device, retrieve some data to check something
disconnect shortly after. Regular management, conversely, is concerned
ongoing data collection, network monitoring and event handling. It is automate
a large extent, and generally runs continuously.

Ad hoc management takes place in virtually all companies. In large organizat
who can afford staff dedicated to monitoring the network (operators), or who rely
entirely automated regular management, ad hoc management is complement
regular management. Conversely, in Small and Medium-sized Enterprises (SM
ad hoc management generally replaces regular management. There is no op
and no dedicated NMS: the management software is only used occasionally, o
ad hoc basis. Ad hoc management typically consists in troubleshooting (i.e
network problem just showed up, and the administrator tries to identify and fix
problem manually), or configuration management (e.g., the administrator sets
new router, or checks if a router is configured properly).

2.3. Pull-based ad hoc management

Applets address several issues in SNMP-based network management [4].
decrease vendors’ development costs for management GUIs; they address the
of having different versions of a vendor-specific MIB in the same network; they
the time-to-market of management GUIs down to zero; and they are independe
the machine where the Web browser runs. Applets can also replace all
management GUIs that we find in pre-Web network management platforms [6]

Vendor-specific management GUIs coded as applets

In the approach proposed by Wellens and Auerbach, the vendor-spe
management GUI is coded as an applet. They call it theembedded managemen
3

1.
ment
ser.
eed:

g on
and 2
e the
step 2
ager.
and

-Web
ated
eset
g

is to
pplet
So
NMP
sfer
MP

may

ested
and
application. The uploading of the applet by the Web browser is depicted in Figure
The HTTP server running on the agent retrieves its vendor-specific manage
applet from local storage, e.g. from EPROM, and sends it back to the Web brow
Once the applet is uploaded by the Web browser, there are two ways to proc
either use SNMP or HTTP.

If we use SNMP, the interactions between the manager (Web browser runnin
any machine) and the agent (network device) are depicted in Figure 1. Steps 1
describe the applet transfer; they occur only once. Steps 3 and 4 describ
management data transfers; they are an iterative process. The dotted arrow for
is a visual aid that shows that the applet is transferred from the agent to the man
In reality, this transfer takes place between the HTTP client of the Web browser
the HTTP server of the agent.

Once the applet is uploaded, the user has the equivalent of an add-on in a pre
network management platform to interact with. Graphical interactions are transl
into SNMP commands by the applet (e.g., a mouse click on the drawing of a r
button can be mapped to an SNMPset). In other words, we have a Java API makin
SNMP calls underneath.

How can we load this SNMP stack into the browser? The simplest approach
include an SNMP stack in the applet, as described by Bruins [1], because the a
security model prevents it from retrieving this stack from the local file system.
each time a management applet is uploaded from a network device, the entire S
stack needs to be moved along. This is clearly inefficient, especially if this tran
takes place across a WAN link. An improvement on this is to retrieve the SN
stack separately, via a socket. Because of the applet security model, sockets
only be opened between an applet and itsorigin server, in HTTP parlance; so we
need a proxy to act as the origin server [4]. The management applet is first requ
by the Web browser to the proxy; second, the proxy contacts the network device

Figure 1: Pull model: HTTP together with SNMP

Network device
Any machine

Administrator

Web browser

1,2

Vendor-specific
GUI (applet)

3,4
MIBs

3,4

1,2

Vendor-specific
GUI

23,4

1

1

3,4

Network
map GUI

Applet

or Operator HTTP
client

HTTP
server

SNMP
client

SNMP
server
4

o the
hich
cket;
r and

efit
ork
rrent
there

TTP
eway
etc.
way
MP

ific
Is as

h as

ss, it
ice

IB.
retrieves the applet without the SNMP stack; third, the applet is passed along t
Web browser which executes it; fourth, the applet opens a socket to the proxy, w
runs the server side of the socket; fifth, the SNMP stack is transferred via the so
and sixth the socket is closed. All subsequent SNMP traffic between the manage
the agent is simply relayed “as is” by the proxy.

This approach works fine; it is of limited interest though, because we do not ben
from the advantages of using HTTP instead of SNMP [4]: reduced netw
overhead, improved security, etc. So let us now study the case when the recu
steps 3 and 4 are based on HTTP rather than SNMP (see Figure 2). This time,
is no need for an SNMP client in the Web browser, thus no need for a proxy.

When a MIB variable is requested by the applet, the request is made to the H
server run by the agent. The HTTP server then launches an HTTP-to-SNMP gat
to access the local MIB. The gateway can be a CGI script, a Java servlet,
Depending on the degree of optimization of the code run by the agent, the gate
can either directly access the MIB data structures in memory, or do an explicit SN
get or set . This gives a useful migration path to network equipment vendors.

Generic management GUIs coded as applets

So far, we followed the original idea of Wellens and Auerbach: only vendor-spec
management GUIs are coded as applets. The next step is to code generic GU
applets, too. (A generic GUI supports a generic vendor-independent MIB suc
MIB-II, the RMON MIB or the ATM MIB [6].) At this point, ad hoc management
relies entirely on Web technologies (see Figure 3).

The Web server can be any machine on the Internet or the intranet; for robustne
should clearly be attached to the intranet. The “MIBs” icon in the network dev
represents all the generic MIBs supported by the agent, plus its vendor-specific M

Figure 2: Pull model: HTTP instead of SNMP

Network device
Any machine

Administrator

Web browser

1,2

Vendor-specific
GUI (applet) MIB

1,2

Vendor-specific
GUI (applet)

2
3,4

1

1Network
map GUI

3,4

3,4 3,4

3,4

HTTP
client

HTTP
server

HTTP/SNMP
gateway
5

their
sing
ork
ork

ular
xtent,

ons
pose

gular
Web
In this section, we showed that SMEs that only rely on ad hoc management for
network equipment can save the cost of a network management platform by u
Web technologies instead. Thus, depending on the pricing policy of netw
equipment vendors, the move from SNMP-based to Web-based netw
management can completely reshape the SMEs segment of this market.

2.4. Regular management

In addition to ad hoc management, many organizations need to perform reg
management. For them, network management must be automated to a large e
including data polling and event handling which are not dealt with by the soluti
we presented so far. Let us concentrate on data polling in this section. Let us sup
we have two separate management platforms, side by side: one for re
management, based on SNMP, and one for ad hoc management, based on
technologies. Let us now describe, step by step, how to integrate them.

Figure 3: Pull model: ad hoc management based on HTTP

Network device

Any machine

Administrator

Web browser

Vendor-specific
GUI (applet) MIBs

Vendor-specific
GUI (applet)

Network
map GUI

WWW server
(intranet or Internet)

Generic GUI
(applet)

Generic GUI
(applet)

Firewall

HTTP
client

HTTP
server

HTTP
server

HTTP/SNMP
gateway
6

, in
re is

map
cally
The first step is to integrate a Web browser in the network management platform
order to have a unified interface for ad hoc and regular management. This featu
now offered by some commercial network management platforms. The network
GUI is an applet that is uploaded by the Web browser. It can be updated dynami

Figure 4: Pull model: data polling based on HTTP

Any machine

Administrator

Web browser

Vendor-specific
GUIs (applets)

WWW server
(intranet or Internet)

Generic GUIs
(applets)

MIBsVendor-specific
GUI (applet)

SNMP
trap

client

or Operator

Report
definition

GUI
(applet)

Data server
General

purpose data
repository

Event
correlator

Network
map GUI
(applet)

Network
device

SNMP

NMS

socket

Firewall

socket

WWW server
(intranet or Internet)

Report
generator

Report
scheduler

GUI
(applet)

Polling
scheduler

GUI
(applet)

Polling
definition

GUI
(applet)

HTTP
client

HTTP
server

HTTP
server

HTTP
server

HTTP/SNMP
gateway

Event
handling

Event
handler

glue

Event
handler

glue

Polling data
interpreter

JDBC
server

JDBC
client

JDBC
client

JDBC
client

Management
software

repository

Polling
engine

client

server clientserver

servlet servlet

Networkmap
registry

Scheduler HTTP
client
7

this
lator.
t can
e, the
blem
map
can

chine
and
ented

[6]
All
W

ment
t we
data
any
ake

olling

a
nd
ular
ata

ent is
work
HTTP.

e by
ed by
r the

ling,

eb
ork

s still
by the event correlator, with icons turning red, green, etc. An easy way to update
map would be to open a socket directly between the applet and the event corre
But we do not necessarily want to have a network map GUI: regular managemen
rely entirely on event handlers, when it runs in unattended mode. In such a cas
administrator is automatically paged, mailed or telephoned when a serious pro
is detected. To cope with this case, we add an intermediary, the network
registry, between the network map GUI(s) and the event correlator. Thus, we
have zero, one or several network map GUIs registered independently.

The applet security model mandates that the applet be downloaded from the ma
with the server side of the socket. So the WWW server at the bottom of Figure 4
the WWW server at the top right are actually the same machine. They are repres
separately to avoid too many overlapping arrows.

The second step is to replace all the GUIs of the network management platform
with applets. The vendor-specific applet is still loaded from the network device.
other GUIs are retrieved from the management software repository; the WW
server must then act as a proxy because of the applet security model.

The third step is to make the data repository independent of the network manage
platform. We assume here that data is stored in a third-party RDBMS; note tha
may as well use a plain text file system, or an object-oriented database. The
repository resides on a machine that we call the data server, which can be
machine of the intranet. To store or retrieve data, we use JDBC. In order to m
Figure 4 easier to read, we assume that we have a single data repository for p
and report definitions and schedules; but this is not mandatory.

The fourth step is to implement data polling with HTTP. This is achieved by
servlet. Upon start-up, the polling engine retrieves all polling definitions a
schedules from the RDBMS. The scheduler makes it poll all agents on a reg
basis. The data retrieved for network monitoring is checked by the polling d
interpreter, which may generate an event in case a problem is inferred. This ev
then dispatched to the event correlator, which can decide to update the net
map(s). The communication between the manager and the agent is based on

The fifth step is to migrate reports generation to Web technologies. This is don
another servlet, which accesses the data repository via JDBC. This data is stor
the polling servlet, and is accessed independently by the report generator. Fo
sake of simplicity, we pictured the two servlets, report generation and data pol
as running on the same machine; but this does not have to be the case.

At this stage, data collection and network monitoring rely entirely on W
technologies. They no longer require an expensive NMS, dedicated to netw
management. SNMP notifications delivery and event handlers are the only task
performed in the traditional way.
8

way
are
IP
ent

at
el.

width
work
ancy
ction
gent

what
data

gent
). The
itions
hese
eve

ease
ent

ost
than
(see

, or

roni-
nize
k
t is
gular
del.

and
this
n the

e.g.
ent.
3. The Push Model

The push model generalizes to network monitoring and data collection the
SNMP notifications are delivered today. Despite its large success in softw
engineering, it has always been confined to SNMP notification delivery in
network management. To the best of our knowledge, no network managem
platform uses it today for network monitoring or data collection. Yet, we claim th
its very design makes it better suited to regular management than the pull mod

The chief advantages of using the push model are to conserve network band
and move part of the CPU burden from managers to agents. Much of the net
overhead caused by the pull model is due to the fact that there is a lot of redund
in what the manager keeps asking all agents at every polling cycle for data colle
and network monitoring. With the push model, the manager contacts each a
once, subscribes to an OID once (push data definition), and specifies at
frequency (push frequency) the agent should send the value of this OID (push
schedule). Afterward, there is no more traffic going from the manager to the a
(except in the rare cases when the manager wishes to change its subscription
agent “remembers” what the manager subscribed to by keeping the push defin
and schedules on local storage; if this is EPROM, the agent can retrieve t
definitions and schedules by itself after a reboot; if this is RAM, it needs to retri
them from the manager, which stores them in the data server.

The point of moving part of the CPU burden from managers to agents is to decr
the requirements put on NMSs in terms of CPU and memory. Network managem
platforms for large networks are often big Unix or Windows NT servers, which c
a fortune to buy and maintain. Agents, on the other hand, are more powerful
they used to be, and many of them can reasonably do a bit of processing locally
the rationale behind Goldszmidt’s Management by Delegation scheme [3]
Wellens and Auerbach’s myth of the dumb agent [11]).

Compared to the pull model, the push model introduces a new issue: synch
zation. If the manager and the agent have internal clocks that do not synchro
regularly, they will probably drift apart. This is not a problem for networ
monitoring, but it can be for data collection [4]. For push technologies to work, i
therefore recommended to synchronize the clocks of network equipment on a re
basis, e.g. with NTP. Let us now delve into the engineering details of the push mo

3.1. Publication and subscription phases

In the first phase, the network device (agent) publishes what MIBs it supports,
what SNMP notifications it can send to the manager. A simple way to implement
is to use applets, as depicted in Figure 5. First, the user selects an agent o
network map applet, and loads from that agent a well-known HTML page,
<http://agent.domain/mgmt/mibs.html>, which lists the applets stored on the ag
9

ent,

s and
IB
at the
sh
the

otifi-
et is
her

f the
gent
the

does
data
MIB
ibed
ap
Every applet publishes one MIB (vendor-specific or generic) supported by the ag
except one, which publishes the SNMP notifications supported by this agent.

In the second phase, the administrator subscribes the manager to MIB variable
SNMP notifications. MIB data subscription applets allow him/her to select M
variables as well as push frequencies. The push frequency can be specified
MIB variable level: it need not be the same for all variables of a given MIB. The pu
frequency is equal to the polling frequency considered in section 2. Obviously,
notification subscription applet does not have to specify a push frequency, as n
cations are inherently asynchronous. In fact, the notification subscription appl
simply a filter: it specifies what notifications the manager is interested in. Ot
notifications are discarded by the agent.

The publication and subscription phases are depicted in Figure 5. The details o
MIB and notification subscriptions are stored in the data server. In case an a
loses all its push configuration data, this allows the manager to resend all
definitions and schedules for that agent in unattended mode: the administrator
not have to enter it all over again manually, via a GUI. The general purpose
repository of the data server includes (i) the definitions and schedules of the
data subscribed to by the manager, (ii) the definitions of the notifications subscr
to by the manager, and (iii) the network topology definition used by the network m

Figure 5: Push model: publication and subscription phases

Any machine

Administrator

Web browser

WWW server
(intranet or Internet)

or Operator

MIB data
subscription
GUI (applet)

Data server

Network
map GUI
(applet)

Network
device

MIB data
subscription GUI

(applet)

Notification
subscription
GUI (applet)

Notification
subscription
GUI (applet)

Push
scheduler

servlet

Push
definition

servlet

Network map
GUI (applet)

Push definitions
and schedules

repository

HTTP
client

HTTP
server

HTTP
server

JDBC
client

General
purpose data
repository

JDBC
server

Firewall
10

ay

only
In
ata
ling
d in
ally
er are

erent
ions
, and
applet to construct its GUI. In real life, these three logical data repositories m
actually be stored into different databases, or a single database.

3.2. Distribution phase

In the distribution phase, the case of data collection and network monitoring is
marginally different from the case of notification delivery and event handling.
order to facilitate the comparison with the pull model, we will concentrate on d
collection and network monitoring in this paper, that is, how to replace data pol
with push technologies. Notification delivery and event handling are presente
detail in [5]. Let us stress that the solutions we will describe below apply equ
well to both cases: the communication issues between the agent and the manag
the same, only the servlets running on the manager side are different.

The general purpose data repository depicted in Figure 6 includes seven diff
repositories: the three listed in section 3.1, plus (iv) the event handler definit
repository, (v) the event handlers invocation log, (vi) the pushed data repository

Figure 6: Push model: distribution phase

Any machine

Administrator

Event
handler

MIB data
dispatcher

Firewall

How?
Network
device

Event
correlator

Web browser

Network
map GUI
(applet)

client

server

Any machine

servlet

Pushed
data

collector

Pushed
data

interpreter

JDBC
client

Data server

General
purpose data
repository

JDBC
server

Administrator
or Operator

Pager Email Telephone

Networkmap
registry

ne
tw

or
k

m
on

ito
rin

g

data collection
11

lly

, we
r the
r via

ea to
pull
o the
data
form

nts in
the
er, in

ow
the

server
ion,
ver
cation

ted
and,
. To

f the
y of
(vii) the pushed notifications repository. Again, in real life, all these logica
different data repositories may actually reside in one or more databases.

Compared to Figure 4 (pull model), we no longer have a polling engine; instead
have a pushed data collector, which receives the data necessary to monito
network or build usage statistics reports. This data is stored on the data serve
JDBC. Since the execution speed of Java code is slow, it may be a good id
increase the performance by storing data in bulk. As the polling engine in the
model, the pushed data collector sends data collected for network monitoring t
pushed data interpreter. If an abnormal condition is detected by the pushed
interpreter, e.g. a device no longer sends any data, an alarm is generated in the
of an event sent to the event correlator. The event correlator also receives eve
the form of notifications (not shown here), and identifies the problem with
network. It can invoke an event handler, when an event is not masked by anoth
which case the call to the event handler is logged in the data server.

The main difficulty when going from pull to push is that the data transfer is n
initiated by the agent, instead of the manager, while the client remains on
manager side, and the server on the agent side. Somehow, the client and the
are on the wrong sides! We would like the server to initiate the communicat
whereas communication is always initiated by the client in a client/ser
architecture. To address this issue, we have the choice between three communi
technologies: HTTP, sockets and RMI [9].

Sockets

The fact that sockets are bidirectional solves the problem of server-initia
communication: we can open a socket as usual, from the client to the server,
later on, only use it to send MIB data from the socket server to the socket client
ensure that this connection remains persistent, the pushed data collector, on the
manager side, sets an infinite time-out value on the socket when it creates it. I
underlying TCP connection times out for whatever reason, it is the responsibilit
the manager (pushed data collector) to open a new socket to the agent.

Figure 7: Push model: distribution via sockets

Network
device

Any machine

socket

servlet

serverclient
Pushed

data
collector

Firewall

MIBs

Push
scheduler

Push definitions
and schedules

repository

MIB data
dispatcher
12

very
cks.

eeps
r the

the
ated
se, we
e of
reate
wall
Most

we
by
em
ause
TCP
ut it
for

has
gant
ork
igner
plex
VM
one

this
rge
ice
CPU
This socket-based solution presents a big advantage: simplicity. Sockets are
simple to program, especially in Java. But it also presents two potential drawba
First, if the underlying operating system of either the manager or the agent k
timing out the connection (e.g., because the administrator has no control ove
time-out value of the socket, and this time-out value happens to be lower than
push frequency), then this solution is clearly inappropriate. Not only do the repe
socket creations and time-outs cause network and CPU overhead, but even wor
cannot take the risk to make notifications delivery depend on such a versatile typ
persistent connection; there must be a way for the agent, not the manager, to c
a new connection if the previous timed out. Second, if we need to go across a fire
between the manager and the agent, there is a potential issue with sockets.
firewalls filter out UDP, and let only a few TCP ports go through [2]. So whether
use TCP or UDP sockets, firewalls will generally not let sockets go through
default. Thus, in order for this socket-based solution to work, the firewall syst
needs to be modified. This may not be a problem for large organizations, bec
they either have in-house expertise in firewalls to set up UDP relays or change
filtering rules, or they can afford expensive external consultants to do the job. B
may well be a problem for SMEs, who generally lack this kind of expertise, and
whom expensive external consultants may not be an option.

RMI

Just like sockets, RMI offers a bidirectional association: once an RMI client
bound to an RMI server, both of them can send data to the other. RMI is an ele
solution in terms of design, because it gives a fully object-oriented view of netw
management. It offers semantics to the network management application des
that are higher than mere MIB variables, and makes it easier to design com
applications. But RMI also presents several drawbacks. First, it requires a full J
to be embedded in all agents (as opposed to a light-weight JVM such as the
included in the EmbeddedJava platform [10]). Very few network devices offer
feature today. And many will not have a full JVM for some time, because of the la
footprint of this software on bottom-of-the-range devices that are very pr
sensitive. Second, current RMI implementations are very slow, and use many

Figure 8: Push model: distribution via RMI

Network
device

Any machine

RMI
client

Java
appl.

Pushed
data

collector

servlet

RMI
server

Push
scheduler

MIBs
Push definitions
and schedules

repository

Firewall

MIB data
dispatcher
13

lable.
t to
ven

d on
add
by
r IP

not
tent
so a

ber
TTP
of the

case
y is

tion
/1.1
few
work
e the

t idle
nge

the
and memory resources; today, RMI-based network management is not sca
Third, RMI communication is actually based on sockets, which are transparen
applications; so once again, we face a problem with firewalls. In fact, things are e
worse with RMI, because the administrator no longer controls what port is use
the client side. So, in order to use RMI across a firewall, it is necessary to
RMI-specific software to the firewall system; and RMI relays are not supported
all firewall systems today. Therefore, sockets appear to be better than RMI fo
network management.

HTTP

HTTP does not share the property we exploited for sockets and RMI. It is
possible for the HTTP server to initiate a data transfer via a pre-existing persis
connection. All HTTP 1.1 methods rely on a strict request/response protocol,
server cannot send a response without having received a request beforehand.

We can work around this by having the HTTP server send an infinitely large num
of responses to a single request from an HTTP client. More precisely, the H
server sends a single endless reply, with separators embedded in the payload
HTTP messages. Netscape proposed to use themultipart type of MIME in the
context of the Web [8]. We propose to use it in IP network management. In the
of push, we send one MIME part at each new time interval; the MIME boundar
then interpreted as anend of time interval marker.

The main problem here is the control of the time-out value of the TCP connec
underlying the persistent HTTP/1.1 connection. First, persistent HTTP
connections are assumed to be short-lived by the Web community, typically a
seconds, because they were created primarily for busy Web servers. In IP net
management, we typically need several minutes, so we must be able to chang
time-out value of the HTTP server. Second, the operating system can time ou
TCP sockets (as we saw with sockets). Will vendors allow their customers to cha
these two time-out values? For the HTTP server, the answer is probablyyes. Apache,
reportedly the most successful HTTP server to date, already allows it. As to
operating system, the answer is likely to beno, because it would require a modifi-

Figure 9: Push model: distribution via HTTP (MIME)

Network
device

Any machine

HTTP
client

Pushed
data

collector

servlet

HTTP
server

Push
scheduler

MIBs
Push definitions
and schedules

repository

Firewall

MIB data
dispatcher

servlet
14

dors
eir
the

put
as to
tion
as we
t can
have
ange
rnal

nge
red
rnal

ogies:
pted

n and
to
re

mited
ven
ay.
our
lieve
hort
cation of the kernel on most machines – a very sensitive task that many ven
would not want their customers to do. In fact, they would rather configure th
equipment with a rather high default time-out value, e.g. 20 minutes, to cope with
most common push frequencies.

Alternatively, we can swap the positions of the HTTP client and server, that is,
an HTTP/1.1 client on the agent, and an HTTP/1.1 server on the manager, so
re-establish a normal client/server communication (see Figure 10). This solu
presents several advantages. First, it does not rely on counterintuitive designs
saw previously: the client and the server are on the right side. Second, the agen
reconnect immediately in case the persistent connection times out: it does not
to count on the manager to do this, which improves the robustness. Third, no ch
is required on the firewall system if the management application runs on the exte
Web server of the organization; if it runs on a different machine, only a minor cha
is needed. The main drawback of this solution is that the firewall must be configu
to let external agents create new persistent HTTP connections to the inte
manager; this is less secure than letting the manager create new connections.

4. Conclusion

We presented two complementary design approaches based on Web technol
the pull model, well suited to ad hoc management, and the push model, well ada
to regular management. Engineering solutions were presented for data collectio
network monitoring for both models. A companion paper [5] describes how
perform notification delivery and event handling with the push model. Mo
technical details can be found in [4].

To implement the push model, the changes required in managed devices are li
when data distribution relies on HTTP or sockets. For the pull model, they are e
more limited: we only need an HTTP server and an HTTP-to-SNMP gatew
Top-of-the-range network equipment can optionally use RMI, but none of
models mandates that a full JVM be embedded in all agents. We therefore be
that the solutions we described can be deployed in the industry in a relatively s
time frame. Early contacts with network equipment vendors confirmed that.

Figure 10: Push model: distribution via HTTP (client and server swapped)

Network
device

Any machine

HTTP
server

Pushed
data

collector

servlet

HTTP
client

Push
scheduler

MIBs
Push definitions
and schedules

repository

Firewall

MIB data
dispatcher
15

tion
ank
ions,

. In

and,

nt
ne,

b
ne,
Acknowledgments

This research was partially funded by the Swiss National Science Founda
(FNRS) under grant SPP-ICS 5003-45311. The author would like to th
G. Madhusudan for discussions on communication in distributed Java applicat
and H. Cogliati for proofreading this paper.

References

[1]. B. Bruins. “Some experiences with emerging management technologies”
The Simple Times, 4(3):6–8, 1996.

[2]. D.B. Chapman and E.D. Zwicky.Building Internet firewalls. O’Reilly &
Associates, Sebastopol, CA, USA, 1995.

[3]. G. Goldszmidt.Distributed management by delegation. Ph.D. thesis, Columbia
University, New York, NY, USA, December 1995.

[4]. J.P. Martin-Flatin.Push vs. pull in Web-based network management. Technical
Report SSC/1998/022, version 3, SSC, EPFL, Lausanne, Switzerl
November 1998.

[5]. J.P. Martin-Flatin. The push model in Web-based network manageme.
Technical Report SSC/1998/023, version 3, SSC, EPFL, Lausan
Switzerland, November 1998.

[6]. J.P. Martin-Flatin. IP network management platforms before the We.
Technical Report SSC/1998/021, version 2, SSC, EPFL, Lausan
Switzerland, December 1998.

[7]. P. Mullaney. “Overview of a Web-based agent”. InThe Simple Times,
4(3):8–12, 1996.

[8] Netscape.An Exploration of Dynamic Documents. 1995. Available at
<http://home.mcom.com/assist/net_sites/pushpull.html>.

[9]. P. Sridharan.Advanced Java networking. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1997.

[10].Sun Microsystems. EmbeddedJava. Available at
<http://www.javasoft.com/products/embeddedjava/>.

[11].C. Wellens and K. Auerbach. “Towards useful management”. InThe Simple
Times, 4(3):1–6, 1996.
16

	Push vs. Pull in Web-Based Network Management
	1.�� Introduction
	2.�� The Pull Model
	2.1.�� Pull vs. push: the newspaper metaphor
	2.2.�� Ad hoc management vs. regular management
	2.3.�� Pull-based ad hoc management
	Vendor-specific management GUIs coded as applets
	Generic management GUIs coded as applets

	2.4.�� Regular management

	3.�� The Push Model
	3.1.�� Publication and subscription phases
	3.2.�� Distribution phase
	Sockets
	RMI
	HTTP

	4.�� Conclusion
	Acknowledgments
	References

