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Abstract: The current Internet management architecture (SNMP) focuses on network device management and
low-level instrumentation data. A lot of activity is under way to replace or complement it with a solution covering
enterprise management at large, which also includes the management of systems, applications, and services. In
this exercise, the management community runs the risk of throwing the baby out with the bath water, as too much
emphasis is put on a few well-known problems in SNMP (e.g., its poor scalability), and too little on its other
characteristics, including those that contributed to its success. One way to avoid this is to explicitly capture the
experience gained in SNMP-based network management. In this paper, we make one step in this direction by
studying the SNMP management architecture from a software engineering standpoint, and identifying in it some
of the architectural and design patterns defined in the literature. By characterizing Internet network management
in the lingua franca of patterns, we strive to help retain the strengths of SNMP in future management architectures
and make it easier for new software engineers to move to Internet management.
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1. INTRODUCTION

The management of IP networks (i.e., networks transporting traffic primarily based on the Internet Protocol) has
been dominated for a decade by an open management architecture named after its communication protocol: the
Simple Network Management Protocol (SNMP) [17, 20]. SNMP is based on the client-server architecture and the
manager-agent paradigm. A manager is an application that regularly polls data from agents embedded in managed
devices, to work out the states of these devices, detect faults, analyze performance, etc. Some SNMP agents can
spontaneously send events (called traps or notifications) to the manager to inform it of special conditions. In large
organizations, we often have a hierarchy of managers; each of them is in charge of a management domain [12, 19].

Despite its large success in network management, SNMP-based management has been seriously questioned in the
past few years, primarily because of its inability to deal with all aspects of enterprise management. Today, in
Internet management, the goal is not so much to manage individual network devices such as routers or switches,
but rather to integrate the management of network devices, systems, end-to-end networks (e.g., with
quality-of-service guarantees), distributed applications, and services (e.g., in e-business and telecommunications).
To this end, many new approaches have been proposed [12]. To date, the most serious alternative to SNMP is
Web-Based Enterprise Management (WBEM), a management architecture promoted by a large industrial
consortium and well known for its Common Information Model (CIM) [3].

Although technically different, most of these approaches share a common standpoint: there is nothing special in
Internet management that requires management applications to be designed and built with domain-specific
technologies and tools—a characteristic of SNMP today, which has a domain-specific transfer protocol, its own
way of representing management data, a peculiar way of devising information models, etc. Most alternatives to
SNMP contend that management applications are just regular distributed applications, for which the software
engineering and distributed systems communities have plenty of solutions and tools on offer. For instance, some
people now use Web Services or CORBA for manager-to-agent and manager-to-manager communication; others
leverage standard object-oriented modeling techniques such as UML [12].

Before discarding SNMP and specifying a new management architecture, it is important to learn lessons from it,
identify its strengths and weaknesses, and characterize it in terms that are meaningful to the entire software
engineering community (particularly newcomers to Internet management). We have experienced that patterns [6]
are just the right tool for achieving these goals. Patterns are schematic, proven solutions to recurring problems.
They enable software engineers to capture and pass on software-development experience without the need for
code, and currently constitute one of the best tools for design reusability. And in the end, they allow for a better
design [5]:

“Ideally, in real life, we should go through an analysis-design-implementation-use cycle, learn from
our mistakes, and then do it right: redesign properly and reimplement. Patterns help design properly
in the first place.”

Architectural patterns are coarser grained than design patterns. In general, design patterns are object oriented and
describe proven solutions to recurring design problems at the class or object level. Architectural patterns are not
paradigm specific; they capture proven solutions to recurring composition problems of software entities. These
entities can range from groups of modules or packages to single procedures or functions—the former being more
typical than the latter.

Our approach was to study the SNMP management architecture and protocol from a software engineering
perspective, based on three pattern compendia: Gamma et al. [6], Buschmann et al. [4], and Schmidt et al. [18] and
one antipattern compendium: Brown et al. [2]. We limited our scope to these compendia because they are well
known to software engineers, and because a comprehensive study of the literature has become prohibitive (see the
huge number of patterns listed by Rising [16]). Only a selection of the patterns that we identified are presented
here. Note that we generalized some of the original patterns because a number of implementations of
SNMP-compliant managers and agents are not object oriented, and neither the SNMP management architecture
nor the SNMP protocol are.

The rest of this paper is organized as follows. In the next 8 sections, we study one pattern at a time, presenting its
main occurrences in SNMP-based network management. In Section 10, we investigate related work. Last, in
Section 11, we make concluding remarks and give directions for future work.
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2. FACADE AND WRAPPER FACADE

The Facade pattern [6] provides a unified interface to a set of interfaces in a subsystem. An example is depicted in
Fig. 1.

A Facade class can shield the client of a subsystem from the subsystem’s internals. As long as the Facade
interface remains stable, the subsystem can be reorganized without breaking its clients. Another use of a Facade
class is to offer a less complex, but also less powerful, interface as an alternative to working directly with the
constituent classes. Consider for example a development subsystem consisting of scanners, parsers, code
generators, etc. Many of its clients probably only want to translate from high-level language X to machine code Y.
The Facade class can offer a method compileFromXtoY() that accepts a handle to the source code, takes
care of all intermediate compilation steps, and returns a handle to the binary.

The Wrapper Facade design pattern [18] provides concise, robust, portable, maintainable, and cohesive class
interfaces (note the plural) that encapsulate low-level functions and data structures. A WrapperFacade class is
typically intended to provide an object-oriented interface to a subsystem that is not object oriented (see Fig. 2).

In the context of Internet management, an occurrence of the Wrapper Facade is the interface between an
object-oriented manager and a procedural application layer. For efficiency or legacy reasons, many protocols of
the TCP/IP stack1 are implemented in C. And even though Java (through the Java Native Interface) allows a
programmer to directly invoke C functions, an SNMP manager should refrain from doing so. Instead, for
conciseness, robustness, and all the reasons mentioned in the previous paragraph, we should introduce one or
several classes in order to separate the protocol from the manager.

Fig. 1: Facade (adapted from [6])

Fig. 2: Wrapper Facade [18]

1.  The so-called TCP/IP stack does not only include the Internet Protocol (IP) and the Transmission Control
Protocol (TCP), but also other protocols such as the User Datagram Protocol (UDP), the Internet Control
Message Protocol (ICMP), the Simple Network Management Protocol (SNMP), etc.
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The Facade and Wrapper Facade patterns are also found in layered architectures in which the layers feature a
service access point. The SNMP layer (all the layers in the TCP/IP stack, as a matter of fact) is no exception. It has
to provide its clients with a well-defined interface, regardless of how many classes, functions, etc. were used to
implement it. It is the task of the Facade class to support this interface and shield the clients from implementation
details, if the implementation of the layer is object oriented. If it is not, the Wrapper Facade is the pattern of choice.

3. LAYERS

The Layers architectural pattern [4] helps structure applications that can be broken down into groups of subtasks,
whereby each group of subtasks operates at a specific level of abstraction. This pattern is depicted in Fig. 3.

A well-known example of the Layers pattern is the Open Systems Interconnection (OSI) reference model [8], a
seven-layer model defined by the International Organization for Standardization (ISO) for realizing heterogeneous
networks and distributed systems. Together, the application, presentation, session, transport, network, data-link,
and physical layers provide a rich set of communication facilities. Yet, each layer depends solely on the one below
it and provides services only to the one above it through its service access point. The communication facilities can
be changed by replacing one or more layers (e.g., a connection-oriented transport layer instead of a connectionless).

Sometimes, a layer does not provide any functionality of its own. Its sole purpose can be to abstract from lower
layers, to make the entire system more stable or portable (e.g., a hardware abstraction layer). When a layer adapts
the one below it, it acts as an Adapter1 (see Section 4).

Note that the layers do not have to be shielded by incorporating a unified interface, as long as layer (N+1) does not
depend on layer (N-1) or lower (see Fig. 4). A layer is shielded if its clients perceive it as an atomic unit; it is
unshielded if its clients can see inside.

In the context of SNMP, the TCP/IP stack is an incarnation of the Layers pattern. SNMP is located at the
application layer, where it provides services to its clients (SNMP managers and SNMP agents) and uses services
provided by UDP at the transport layer. UDP uses services provided by IP at the network layer (often called internet
layer in the IP world), etc.

Managed nodes (in particular, managed network devices) are another occurrence of the Layers pattern in the SNMP
world. According to Rose [17], any managed node can be conceptualized as containing three components: “useful
stuff”, which performs the functions desired by the user; management instrumentation, which interacts with the
implementation of the managed node; and a management protocol, which permits the monitoring and control of
the managed node.

Fig. 3: Layers [4]

1.  Patterns having similar intents or structures are no exception. There are situations where multiple patterns apply,
depending on the viewpoint taken. When the differences become philosophical rather than technical, they
usually do not matter in practice.
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Layers vs. Wrapper Facade

Unlike the Wrapper Facade pattern, which we can choose to apply or not to apply in the context of SNMP, the
Layers pattern is implicit in SNMP. But we are still free to choose whether to apply the Layers pattern within the
application layer, the manager, or the agent.

The Layers pattern does not specify what the different layers consist of, whereas the Wrapper Facade pattern
would have no raison d’être without the object-oriented and procedural parts. Note also that the Wrapper Facade
pattern can be considered a special case of the Layers pattern, with an intermediate layer shielding a higher,
object-oriented layer from a lower, procedural layer.

4. ADAPTER

The Adapter pattern [6] converts the interface of a pre-existing class into another interface that the clients expect1.
It enables the implementation (and thus the functionality) of the class to be reused, even if the interface of the class
is not known by the potential clients.

For instance, a class providing encryption and decryption may feature a method with the following signature:

crypt(bool flag, int[] plainText, int[] cipherText)

whereas its clients may expect it to have methods such as:

encrypt(int[] plainText, int[] cipherText)

decrypt(int[] cipherText, int[] plainText)

Fig. 4: Shielded and Unshielded Layers

1.  In a strongly typed language such as Java, the Adapter pattern is even necessary in case the interface expected
by the clients is contained in the interface of the pre-existing class, but the types differ.
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Instead of reimplementing the functionality, a new class can simply forward encrypt() and decrypt()
requests by invoking crypt(), setting the flag, and ordering the arguments accordingly. Methods returning a
value also need to transform the replies whenever necessary.

Gamma et al. [6] discuss two versions of the Adapter pattern: the Object Adapter (see Fig. 5) and the Class Adapter
(see Fig. 6). The Object Adapter realizes the adaptation by using object composition; the Class Adapter achieves
it by using multiple inheritance (e.g., in C++) or single implementation inheritance with multiple interface
inheritance (e.g., in Java).

In SNMP-based network management, the Object Adapter can be found in networks with proxy agents. When a
managed node hosts an agent that is not SNMP-compliant, a proxy agent needs to translate the manager’s requests
from SNMP to the protocol supported by the managed node, and vice versa for the replies. The proxy agent thus
plays the role of the Adapter object, the manager corresponds to the Client, and the managed node is the
Adaptee. As these three entities are located on different network nodes and run in different address spaces,
information between them is not exchanged through direct method invocations but through the network.

When an agent issues an SNMPv1 trap or an SNMPv2 notification (different types of events in the SNMP world
[20]), the proxy agent also needs to translate it before forwarding it to the manager. The proxy agent thus behaves
as a two-way adapter [6], as depicted in Fig. 7.

Fig. 5: Object Adapter (adapted from [6])

Fig. 6: Class Adapter (adapted from [6])
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5. PROXY

The Proxy pattern [4, 6] makes the client of an object communicate with a representative of this object rather than
the object itself. Such a representative can serve many purposes determined by its pre- and post-processing of
requests. For transparency reasons, it is important that the Proxy and the Original classes have the same
interface (see Fig. 8).

Because of its name and because it acts as an intermediary, a Proxy object may seem to correspond to a proxy
agent in SNMP. In general, however, this is wrong! The Proxy class has the same interface as the Original,
whereas a proxy agent may not have the same interface as the agent it represents.

The Proxy pattern can be broken down into more specific patterns, including the Remote Proxy, the Virtual Proxy,
the Protection Proxy, the Cache Proxy, the Synchronization Proxy, the Counting Proxy, and the Firewall Proxy [4,
6]. The most relevant to SNMP-based network management are the Protection Proxy and the Firewall Proxy.

In the Protection Proxy pattern [4], a Proxy object controls access to the Original. It checks the access rights
of a Client whenever a service is requested. A proxy agent can do the same for an agent that is not security aware,
but is able to communicate in an SNMP-compliant way. For instance, an SNMP set request coming from an
unauthorized manager would be discarded by the protecting agent, whereas a similar request from an authorized
manager would be forwarded to the protected agent, possibly after removing the request’s authentication tag.

Fig. 7: SNMP Adapter

Fig. 8: Proxy (adapted from [4])
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In the Firewall Proxy pattern [4], a proxy process protects an internal trusted network from an external untrusted
network. It represents server processes that communicate with a potentially hostile environment in order to protect
against attacks—typically to avoid the disclosure of sensitive information or the misuse of network resources. In
addition to supporting security management, firewalls are also relevant to SNMP-based network monitoring
insofar as a managed node and its manager need not be on the same side with respect to the firewall (e.g., when
managing a small branch office across a wide-area network link).

6. BRIDGE

The Bridge pattern [6] decouples an abstraction from its implementation so that the two can vary independently. It
is depicted in Fig. 9. One of its benefits is that changes in the implementation of the abstraction have no impact on
clients. The Bridge pattern unleashes its full power when there are several variants of the
RefinedAbstraction and ConcreteImp classes.

For example, let us assume that the Abstraction class provides the building blocks to draw different kinds of
windows (document windows, dialog boxes, etc.). Every RefinedAbstraction corresponds to one such kind
and is implemented in terms of abstraction services. A variant of ConcreteImp corresponds to a certain
look-and-feel. By changing the imp reference, we can easily give a new look-and-feel to an existing kind of
window. The Bridge pattern allows us to design only (NumberOfRefinements +
NumberOfImplementations) classes, instead of having to design (NumberOfRefinements *
NumberOfImplementations) classes.

By applying the Bridge pattern, an SNMP-based management application can use different logs (variants of
RefinedAbstraction) without having to worry about the type of persistent storage (relational database,
LDAP directory, flat file, etc.) that actually underlies their implementation. In particular, the management
application becomes independent of any vendors.

Another instance of the Bridge pattern is the way different encryption or compression schemes can be specified in
SNMPv3. The rest of the management application uses them transparently: the abstraction is completely decoupled
from the implementation.

7. WHOLE-PART

The Whole-Part pattern [4] helps with the composition of objects that together form a semantic unit. A Whole
class (see Fig. 10) encapsulates its constituent Part classes, organizes their collaboration, and provides a common
interface to its functionality. The Whole class prevents the Client classes from accessing its constituent Part
classes directly.

Fig. 9: Bridge (adapted from [6])
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In addition to simply managing homogeneous or heterogeneous Part classes, the Whole class may exhibit
different behaviors depending on its Part classes (e.g., a molecule consisting of atoms in a simulation program).
Buschmann et al. [4] call this emergent behavior.

In SNMP-based management, the Whole-Part pattern shows up in distributed management. SNMPv1 only works
in centralized mode and SNMPv2’s support for distributed management is broken [12]; but SNMPv3 does allow
for hierarchically distributed management (although its use is marginal in practice). The idea is to divide networks
into multiple management domains—typically geographical domains (see Fig. 11). Each domain is managed by a
mid-level manager, and the top-level manager is in charge of managing the boundary effects between these
domains [12]. Conceptually, the Client in the Whole-Part pattern corresponds to the top-level manager in
SNMPv3, the Whole to the mid-level manager, and each Part to an agent.

In practice, distributed network management today usually relies on proprietary schemes, because the semantics
of manager-to-manager interactions are still not fully specified in SNMPv3. This may change in the future.

8. ITERATOR

The Iterator pattern [6] provides a way to access sequentially the elements of an aggregate object without exposing
its underlying structure. This technique is depicted in Fig. 12.

Containers such as lists and trees often need to be traversed. By making an Iterator object responsible for
access and traversal of the container, different kinds of traversal (e.g., forward and backward) can be supported
without clogging up the container’s interface, and several traversals can be pending on the same container (one

Fig. 10: Whole-Part (adapted from [4])

Fig. 11: Hierarchical Network Management

Client

doTask()

Whole

service1()
service2()

...

PartA

serviceA1()
serviceA2()

...

...

PartN

serviceN1()
serviceN2()

...

Agent AgentAgentAgent Agent

Top-level 
manager

Mid-level 
manager

Mid-level 
manager



10

traversal per iterator). Furthermore, by defining interfaces common to all containers and iterators, the dynamic type
of the container can easily be changed at a later time and methods need not depend on it.

SNMP managers can iterate over agent MIBs (using get-next or get-bulk operations) to perform an
SNMP-walk (i.e., to retrieve an entire MIB subtree), or to discover all the interfaces of a managed node (the
Interfaces subgroup in MIB-II [13]). At first sight, this may seem to have nothing to do with the Iterator
pattern: there is no Iterator object between the manager and an agent MIB, and we know in advance that SNMP
MIBs have a tree structure. But if we apply the Iterator pattern at the manager, we make the manager more reusable
as it does not depend on a specific MIB structure (a desirable feature when we consider replacing SNMP with
another management architecture). At least, we get a cleaner design by separating the core of the manager from the
part (namely the Iterator) that knows how SNMP MIBs are represented. But the manager could also use MIBs
that provide Iterator objects of their own without having to make major changes. One such change can consist
in applying the Adapter pattern when the Iterator interface we designed and the one the new MIB provides do
not match.

9. MEDIATOR

The Mediator pattern [6] promotes loose coupling by preventing objects from referring to one another explicitly.
It is depicted in Fig. 13.

The state of an object sometimes depends on the state of other objects—e.g., GUI (Graphical User Interface)
elements within a dialog box. When the state of such an object changes (e.g., when the user checks off a check

Fig. 12: Iterator (adapted from [6])

Fig. 13: Mediator (adapted from [6])
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box), dependent objects may have to change their states as a consequence (e.g., enabling a text field). By applying
the Mediator pattern, ConcreteColleague objects (whose states depend on one another) only need to inform
the Mediator object when their states change. The Mediator object then changes the states of other
ConcreteColleague objects as needed.

In SNMP-based network management, from a conceptual viewpoint, the manager mediates between network nodes
that depend on one another, as an agent may notify the manager about an event that causes the manager to change
the states of other nodes. Nevertheless, some nodes can change their states in a coordinated fashion without the
intervention of the manager. For example, routers exchange and update their routing tables independently of the
SNMP managers.

Another application of the Mediator pattern in SNMP-based network management lies in the network map GUI.
For instance, when an icon representing a router changes its state (typically represented by a color) to “down”, the
map Mediator object must change to “undetermined” the states of all the network nodes that can no longer be
reached via this router.

10. RELATED WORK

In the past, several authors recognized existing patterns in, or defined new patterns for, networking technologies,
e.g. protocols [7, 9] and telecommunication systems [1, 14]. One article defined new patterns for the use of GUIs
in network management [10]. Another proposed navigation patterns for scalability [11]. But to the best of our
knowledge, this article is the first to identify and document the occurrence of well-known patterns throughout the
scope of SNMP-based network management.

11. CONCLUSION

By characterizing SNMP-based network management in the lingua franca of patterns, we have met two goals.
First, patterns allow us to capture and document the best practices of SNMP-based management. By formalizing
this know-how, we make it less likely that good design solutions in SNMP be replaced with poorer solutions in
future management architectures. Second, patterns give software engineers a description of a domain (network
management in the IP world) they may not be familiar with, in a language (patterns) they feel comfortable with.
By doing so, we reduce the learning phase for software engineers moving to Internet management, and we foster
reusability by considering a management application as a standard distributed application.

For future work, it would be interesting to study patterns in different areas of enterprise management (e.g.,
CIM-based management), compare them with those used in SNMP-based management, and learn some lessons for
future management architectures. Another interesting endeavor would be to characterize the entire enterprise
management domain (i.e., network, systems, application, and service management) in terms of patterns, which may
require the definition of new patterns specific to this application domain.
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