
In L.J. Zhang and M. Jeckle (Eds.), Web Services – Proc. 2nd European Conference on Web 
Services (ECOWS 2004), Erfurt, Germany, September 2004, Springer, LNCS 3250, pp. 239–253

Web Services for Integrated Management: a Case Study

Jean-Philippe Martin-Flatin1, Pierre-Alain Doffoel2 and Mario Jeckle3

1 CERN, Geneva, Switzerland
jp.martin-flatin@ieee.org

2 ESCP-EAP, Paris, France
pa@doffoel.com

3 University of Applied Sciences Furtwangen, Furtwangen im Schwarzwald, Germany
mario@jeckle.de

Abstract. As evidenced by discussions in standards organizations, vendors and
the user community have recently showed a growing interest in using XML
technologies for management purposes. To investigate the relevance of this
approach, we have added support for Web Services to JAMAP (a Java-based
research prototype of a management platform) and managed a gigabit
transoceanic testbed. In this paper, we present the main lessons learned during
this process and attempt to draw conclusions of general interest as to the applica-
bility of Web Services for managing IP networks and systems. Our main
conclusions are that XML, WSDL and SOAP are useful, especially for configu-
ration management, whereas UDDI is not adequate. To date, we still lack a
standard way of publishing, discovering and subscribing to Web Services for the
purpose of managing network devices and systems.

1 Introduction

Recent discussions in the Internet Engineering Task Force (IETF), Internet Research
Task Force (IRTF) and Distributed Management Task Force (DMTF) demonstrate the
management community’s growing interest in using Web technologies—especially
those based on the Extensible Markup Language (XML)—in management systems
[16]. At the same time, the consortia in charge of standardizing Web Services
technologies have showed an increasing interest in management.

In the DataTAG Project [7], we wanted to manage gigabit network devices and
systems in a distributed manner. We had a cluster of PC servers and network devices
(routers and switches from different vendors) at both ends of our transoceanic gigabit
network (at CERN in Geneva, Switzerland and at StarLight in Chicago, IL, USA). To
assess the suitability of Web Services for the purpose of management, we ported
JAMAP [11], an open-source research prototype of a management platform, to Web
Services. We could have used integrated and more sophisticated software suites such
as IBM’s WebSphere and BEA’s WebLogic, or a management product such as HP’s
Web Services Management Framework. But using JAMAP gave us complete control
over the code and allowed us to change each component independently of the others.

The remainder of this article is organized as follows. First, we review the main
building blocks of Web Services. Next, we summarize the management architecture
that underpins JAMAP. Then we analyze the advantages of using XML-based
technologies in integrated management. Next, we describe how we leveraged Web



Services in JAMAP and draw some lessons of general interest. Finally, we conclude
and present directions for future work.

2 Overview of Web Services

Because interoperability is crucial to Web Services, their standardization has been of
key importance since their inception. So far, two consortia have been particularly
active in this field: the World Wide Web Consortium (W3C) [25] and the Organization
for the Advancement of Structured Information Standards (OASIS) [15]. More
recently, a new industrial consortium, the Web Services Interoperability Organization
(WS-I) [24], has begun standardizing interoperability aspects of Web Services. 

2.1 W3C Activities

The W3C’s activities on Web Services are split into four areas:
– Simple Object Access Protocol (SOAP)1

– Web Services Definition Language (WSDL)
– Web Services Architecture (WSA)
– Web Services Choreography (WS-Choreography)

SOAP [8][9] is a protocol that allows applications to exchange structured
information in a distributed environment. The SOAP binding used by most
applications specifies how to carry a SOAP message within an HTTP entity-body;
with this binding, SOAP can be viewed as a way to structure XML data in an HTTP
pipe between two applications running on distant machines. A SOAP message consists
of a header and a body. The header is optional and carries metadata; the body is
mandatory and includes the actual application payload. A SOAP message is used for
one-way transmission between a SOAP sender and a SOAP receiver, possibly via
SOAP intermediaries. Multiple SOAP messages can be combined by applications to
support more complex interaction patterns such as request-response. The SOAP
specification also specifies an XML representation for Remote Procedure Call (RPC)
invocations and responses carried in SOAP messages.

WSDL [6][10] is an XML language for describing Web Services. Building on the
base communication mechanism defined by SOAP, each Web Service is characterized
by its signature, which consists of a procedure name, the type of the result returned by
this procedure, the names and types of the procedure parameters, and the actual
message pattern chosen for communication. Multiple Web Services can be published
in a single WSDL file, often called a WSDL repository. If we compare Web Services
with CORBA, the WSDL language is similar to the Interface Definition Language
(IDL); a WSDL repository is similar to CORBA’s Interface Repository; Web
applications may discover Web Services in a WSDL repository and invoke them

1. At the time of its definition, the acronym stood for Simple Object Access Protocol. In the
standardized version, SOAP is no longer an acronym.



dynamically, just as CORBA applications may discover an object’s interface on the fly
and invoke it using the Dynamic Invocation Interface. But the underlying development
paradigm fundamentally differs. CORBA requires a developer to create an IDL
description before implementing clients and servers that match the defined interface,
whereas WSDL descriptions may be deployed for generating implementations but
their use is not mandated. WSDL-compliant interface descriptions may be provided
after the initial creation of the service. Additionally, the central storage of WSDL
descriptions within a designated repository is not required by the Web Service
paradigm. The service provider may also choose to serve WSDL descriptions at the
physical location where the service is offered. When doing so, no standard repository
has to be offered, although standard lightweight discovery mechanisms may be
deployed [3]. 

WSA [5] defines core architectural concepts (e.g., discovery and life cycle) and
relationships that are central to the interoperability of Web Services. It also defines a
set of constraints and examines how the architecture meets the Web Services
requirements expressed by stakeholders. Management issues are mentioned in the final
document but the W3C has paid little attention to them. To date, this activity has not
produced a formal standard prescribing a fixed architecture; it merely collected current
concepts and terms and documented their relationships. 

Choreography deals with the composition of Web Services and the description of
relationships between Web Services. It is also known as orchestration, collaboration or
coordination. The nascent W3C activity on choreography [12] is essentially based on
Sun’s Web Service Choreography Interface (WSCI) [1].

2.2 OASIS Activities

OASIS is an industrial consortium responsible for standardizing many domain-specific
aspects of Web Services, especially ebXML, a markup language for e-business. The
main general-purpose technology standardized by OASIS and relevant to integrated
management is Universal Description, Discovery and Integration (UDDI). We will
come back to UDDI later.

The OASIS Web Services Distributed Management Technical Committee recently
began working on Web Services management. This activity covers two aspects: using
Web Services to manage distributed resources and managing Web Services (the latter
includes modeling a Web Service as a manageable resource).

In the area of choreography, the OASIS Web Services Business Process Execution
Language Technical Committee took over the BPEL4WS [19] proposal by Microsoft,
IBM et al. and is now standardizing it under the name Business Process Execution
Language (BPEL). The main objectives of this work are to describe process interfaces
for business protocols and define executable process models.

2.3 WS-I Activities

WS-I focuses on developing profiles, usage scenarios, use cases, sample applications
and testing tools to facilitate interoperability between the Web Services platforms of its
members. This industrial consortium began its activities in February 2002; few specifi-



cations have been released to date. The most significant is Basic Profile 1.0 [4], which
consists of implementation guidelines as to how core Web Services specifications
should be used together to develop an interoperable Web Services infrastructure.
Management aspects have not been addressed yet by WS-I, but interoperability is
critical for management systems.

3 WIMA and Design of JAMAP

Now that we have summarized the state of the art in Web Services, let us study the
design of the open-source software used in this project: JAMAP. This research
prototype of a management platform implements the Web-based Integrated
Management Architecture (WIMA) [14] in Java. WIMA leverages XML’s self-
description capability to integrate SNMP1 Management Information Base (MIB) data
and Common Information Model (CIM) objects in a seamless manner, which is partic-
ularly useful in heterogeneous environments. WIMA is well suited to integrated
management, that is, the integration of management data pertaining to network
devices, systems, applications, end-to-end networks, services, etc.

In WIMA, agents publish the monitoring data and notifications they can send, and
management applications (managers) subscribe to them in a semi- or fully automated
way. The same publish-subscribe mechanism is used for manager-to-manager
communication, when managers are organized hierarchically to manage a large
domain or different domains. Data transfers are based on HTTP.

WIMA supports distributed management—to be precise, a weakly distributed
hierarchical paradigm if we use the taxonomy defined in [14]. This allows adminis-
trators to split an organization into multiple management domains if the amount of
management data to process grows large. Management domains may be defined
according to many criteria: geographical location, management area (e.g., network

1. SNMP is the Simple Network Management Protocol [18], currently the main standard for
managing networks.

Fig. 1. Distribution aspects in WIMA

Top-level 
manager

Mid-level 
manager for 

domain 1

SNMP
agent

CIM
agent

Mid-level 
manager for 

domain 2

SNMP
agent

CIM
agent



management vs. service management), profit center, customer (e.g., when Internet
Service Providers do virtual hosting), etc.

In the example depicted in Figure 1, the organization has adopted a three-tier
management hierarchy. We have one top-level manager for the entire organization, one
mid-level manager per management domain, and a number of agents (up to a few
hundred) per domain.

In WIMA, the top-level manager runs the event correlator, which is the smart part
of the management application. JAMAP 1.3 features a simple rule-based engine
implemented in Java.

In WIMA, each mid-level manager is broken up into five components [14]:
– the data analyzer, which analyzes monitoring data on the fly, detects problems, and

sends events to the event correlator when problems are detected;
– the data collector, in charge of collecting and filtering data on a regular basis for

the purpose of monitoring; incoming data can be processed immediately by the
data analyzer, archived in the data repository, or both;

– the notification collector, in charge of receiving incoming SNMP traps and CIM
events, filtering them and forwarding them to the event correlator; it may also
archive some of these incoming events in the data repository;

– the configuration manager, in charge of automatically configuring agents;
– the background analyzer, which performs data mining and non-realtime analysis

on the data archived in the data repository; it may also send events to the event
correlator when problems are detected.

WIMA allows each mid-level manager to be distributed across several physical
machines. The mapping between the five previous components and physical machines
is not constrained by WIMA.

In JAMAP 1.3, the first three components are implemented and the fourth is under
development. Data collection, notification collection and data analysis are fully
distributed, whereas event correlation is not. Each mid-level manager can comprise
one or several data collectors (e.g., one for network management and another for
service management), one or several notification collectors (e.g., one for SNMP traps
and another for CIM events), and exactly one data analyzer.

Unlike most SNMP-based management platforms found to date on the market,
JAMAP uses publish-subscribe (see Figure 2). SNMP MIBs supported by the agent
are published in the data subscription applet, which can be downloaded by any
management station. This applet communicates with the data subscription servlet
inside the agent. This allows the manager to subscribe to specific MIB Object
Identifiers (OIDs) and specify a push frequency for each OID. The data subscription
servlet updates the push schedules in a persistent repository. From then on,
management data is pushed regularly by the agent to the manager. The data is sent
directly to the manager when we can run JAMAP software directly on the agent (e.g.,
when the agent is a Linux PC or a Windows PC); otherwise, data is pushed via a proxy
(e.g., in our testbed, when the agent is a Cisco router).



When JAMAP was implemented, the focus was on the communication and organi-
zational aspects. Release 1.3 includes no fancy GUIs and no dynamic discovery of the
network topology. The event correlator supports a limited set of rule templates, and no
state is currently retained by the rule engine between successive push cycles.

4 Why Use XML in Integrated Management?

The main reasons for using Web technologies in general, and XML in particular, in
integrated management are analyzed in detail in [14] and only summarized here. Some
of them are generic, others are specific to network and systems management.

4.1 Advantages of Using XML in General

Probably the main advantage of using XML in software engineering is that it is both
standard and stable. It is backed by the W3C, which has a good track record of
independence vis-à-vis any particular vendor’s interests. Unlike Java, whose specifi-
cations changed several times a year for many years, XML has been through very few
release cycles, and the ill-designed DTDs were swiftly replaced by XML schemas.
Markup languages defined in XML come and go and may change often, but XML
itself is very stable.

Second, it is platform-neutral and facilitates interoperability. The people who
devised XML had learned from the mistakes of the Common Object Request Broker
Architecture (CORBA); e.g., the Object Management Group (OMG), which is in
charge of CORBA, took many years to standardize the Portable Object Adapter, even
though important operations had not been standardized in the Basic Object Adapter
and required platform-specific extensions.

Third, XML is simple and easy to learn. The learning curve of developers is
usually short and training costs low (many XML tools are freely available).

Fourth, XML is widely used in industry. As a result, most software engineering
students want to learn it, people who recently graduated usually know it, and many
mature developers want to study it.

Fig. 2. Publish-subscribe

Data
subscription

applet

Data
subscription

servlet

Data
subscription

applet

Push
schedules

Management
station

Agent



Fifth, using XML-based technologies is often a way to reduce costs. With XML
and Web Services, organizations can often implement simple solutions based on
loosely coupled middleware, instead of reengineering legacy applications and
replacing legacy systems. 

Sixth, W3C’s XML Schema Definition (XSD) allows XML parsers to validate
XML documents. This increases the robustness of XML-based distributed
applications. Robustness has become a major concern in industry, as a growing
number of enterprises entirely depend on the availability of their software systems to
run their businesses.

Seventh, and more arguably, XML-based applications are easier to debug because
XML is human readable. This argument is less compelling than it used to be, because a
large number of XML documents now use metamodel mappings rather than model
mappings [14].

4.2 Advantages of Using XML in Network and Systems Management

Middleware technologies have blossomed in the past decade. Until recently, when
administrators purchased a management platform, they had to choose between
CORBA, EJBs, .NET, proprietary middleware, etc. This variety of poorly compatible
solutions increases development costs for vendors, who need to support multiple
technologies; it augments purchase costs for customers, who pay for this variety even
if they do not need it; but most of all, it decreases the safety and long-term visibility of
customers’ investments. If an administrator selects a middleware that is abandoned by
his company a couple of years later, he will bear the responsibility for this “wrong”
decision.

XML and Web Services allow for a “truce in the middleware war” [14]. Compared
to full-blown object-oriented distributed environments, where everything must be an
object, they keep a low profile. They can cope with object-oriented models at the edges
but do not require them; they can also deal with data models; they can even extract
data from old proprietary repositories designed several decades ago. By trying to
achieve less and by successfully tackling interoperability from day one, XML-based
technologies constitute a rather safe investment.

Another advantage of using XML in management is that it allows for a clean
separation between information and communication models. The limitations of SNMP,
which bundles the two, are explained in [14].

Third, as far as the communication model is concerned, XML is easy to use for
representing management data in transit between agents and managers, or between
managers in hierarchical management.

Fourth, regarding the information model, the success encountered by XML
schemas is compelling: they have been adopted exceptionally quickly throughout the
industry, and there is nothing specific to integrated management that should prevent
this industry from leveraging XML. This message has been advocated by the DMTF
for years; the IETF may soon be convinced, as evidenced by the recent work of the
Network Configuration Working Group.



Fifth, as we experimented during this project, XML is appropriate for expressing
persistent management data, especially configuration files, in a heterogeneous
environment.

Sixth, XML facilitates the integration of multiple management areas (in our case,
network management and systems management) by offering a general-purpose means
of representing self-describing data, whatever the data. By doing so, it makes it easy to
deal with the heterogeneity of information models found in real life.

4.3 Disadvantages of Using XML

XML is not the panacea, however. Its main disadvantages are threefold.
First, it is verbose. This increases network overhead, but also processing time and

resource consumption at the edges. Although this is generally not an issue, as most
layered software architectures used today are quite verbose, it can be problematic for
resource-constrained equipment such as embedded systems, cell phones and
inexpensive commodity devices. To cope with bandwidth problems arising from
XML’s verbose textual notations, W3C recently started the XML Binary Character-
ization Working Group, which deals with binary compression of XML content.

Another problem is that XML schemas and DTDs are so simple to create that
vendors lack incentives to comply with standards. Why should self-describing data
comply with XML schemas produced by slow-paced multi-vendor consortia, when
they could be produced quicker and made publicly available by each vendor? Since it
emerged in 1990, the SNMP management market has demonstrated that customers are
not eager to use SNMP MIBs and information models produced by standards bodies:
they want functionality. This problem can be alleviated by using Extensible Stylesheet
Language Transformations [13], a generic and standard mechanism for transforming
automatically instances of one XML vocabulary into another.

Last, validating an XML document takes time and consumes CPU and memory
resources. Some agents cannot afford to do that. Therefore, management applications
cannot always rely on validation. This is unfortunate because validating incoming
XML documents is a proven way to make management applications more robust.

These disadvantages exist, but they are in our view outweighed by the advantages
of using XML.

5 How to Use Web Services in a Management Platform

In the Internet world, most management platforms focus on four aspects [14]:
– Regular management consists of management tasks that run continuously, in

pseudo-real time, over long periods of time. It encompasses monitoring, data
collection (for background analysis), and notification handling.

– Ad hoc management consists of management tasks that run occasionally, if need
be, for a short time. It comprises troubleshooting and short-term monitoring, and
operates in pseudo-real time.



– Configuration management consists in changing the setup of an agent to make it
operate differently.

– Background analysis includes all the management tasks that run in the background
(as opposed to pseudo-real time) and strive to make sense of the data gathered by
regular management (data collection). Examples include security analysis and the
generation of daily usage reports.

For the sake of conciseness, let us focus on monitoring, a form of regular
management that is implemented in JAMAP 1.3.

The four phases of monitoring (publication, discovery, subscription and delivery)
are explained in detail in [14] and summarized in Figure 3. A priori, Web Services
could be used at all levels in JAMAP:
– Publication phase: To allow agents to announce what data (e.g., SNMP OIDs or

CIM objects) can be pushed to managers (respectively, in hierarchical
management, to allow mid-level managers to announce what data can be pushed to
top-level managers).

– Discovery phase: To allow managers to discover dynamically what management
data can be pushed by agents (respectively, to allow the top-level manager to
discover what data can be pushed by mid-level managers).

– Subscription phase: To allow managers to subscribe to data provided by agents by
invoking Web Services directly on these agents (respectively, to allow the top-level
manager to subscribe to data provided by mid-level managers).

– Distribution phase: To allow agents to push data to managers (respectively, to
allow mid-level managers to push data to the top-level manager).

Fig. 3. Four phases of regular management

Manager

Web services
registry

Agent

1: publication2: discovery

3: subscription

4: distribution



6 Publish-Subscribe and Discovery with UDDI

The UDDI technology is often advertised, or thought of, as a general-purpose
technology implementing publish-subscribe for Web Services [20][22]. As we needed
such a mechanism in JAMAP, we studied, deployed, tested and evaluated UDDI.

To analyze the relevance of this technology for managing our testbed, we first
adopt a top-down approach and study where UDDI registries allow us to store data
useful for integrated management. Next, in a bottom-up approach, we model the
management information that we want to store in a publish-subscribe registry and
investigate how it fits with UDDI.

6.1 Top-Down Approach

Three versions of UDDI have been specified to date. UDDIv1 is now considered
historic. When we conducted this work, the market was dominated by UDDIv2 and
had not yet begun migrating to UDDIv3. The main new features in UDDIv3 are
registry interaction and versioning [20]. 

After investigating a number of platforms listed in the Soapware directory [17] or
mentioned in the xml-dist-app@w3.org mailing list, we selected Systinet’s WASP
UDDI [23], which offers a good balance between features, compliance with the latest
specifications and free availability to researchers. The version that we tested (release
4.5.2) implements UDDIv2 and supports a few UDDIv3 features (e.g., subscriptions
and notifications, which allow clients to automatically receive notification of changes
made to registered Web Services).

The XML schema that underlies UDDI registries is rather simple. It consists of
four elements:
– businessEntity: describes a business or an organization; the information provided

here is equivalent to the yellow pages of a telephone directory: name, description,
contact people, etc.

– businessService: provides a high-level description of a service provided by a
company or an organization in business terms; this information is similar to the
taxonomic entries found in the white pages of a telephone directory.

– bindingTemplate: provides a technical description of a given business service; it
includes either the access point (e.g., a URL or an e-mail address) of this Web
Service or an indirection mechanism that leads to the access point.

– tModel: technical models contain (i) pointers to technical documents used by
developers of Web Services and (ii) metadata about these documents; they
represent unique concepts or constructs, facilitate reuse and enable interoperability;
they are primarily used as sources for determining compatibility between providers
and consumers of Web Services and as keyed namespace references.
The first three elements are hierarchically structured: a business entity logically

contains one or several business services, and a business service logically contains one
or several binding templates. The fourth element lies outside this hierarchy: a binding
template includes references to technical models (tModels) but does not contain the



tModels themselves; as a result, a single tModel may be referenced by several binding
templates.

The UDDI business entities and services are very coarse-grained. In practice, they
can be used in two ways. First, a UDDI registry may be used to advertise the business
services offered by a given business entity to other companies. A business publishes its
core business activities and a potential customer may want to discover this
information. 

Alternatively, or sometimes concurrently, a UDDI registry may be used to
announce within a company the services offered to its own staff. This use was not
initially envisioned in UDDIv1 and UDDIv2, but the authors of UDDIv3 now
advocate it as an important use of UDDI [20]. Corporations are sometimes organized
into profit centers that run as independent businesses and charge each other. Using
UDDI registries to discover what services are available within a corporation makes
sense in such environments. For example, within CERN, IT and Administration
(among others) offer services to all CERN staff. Both of them can therefore be
modeled as business services within the business entity named “CERN”.

Next in the UDDI hierarchy, the concept of binding template is more flexible than
business entities and services: we can put more or less anything we want into it. So,
binding templates are the only entities that we can define to make UDDI useful to
manage network devices and systems.

6.2 Bottom-Up Approach

In JAMAP, publish-subscribe operates at a much finer-grained level of abstraction than
UDDI business entities and services. For instance, a managed element may want to
publish that it supports SNMPv2c and the version of MIB-II specified in RFC 1213;
another may publish that it supports CIM Specification 2.2, CIM Core schema 2.7 and
CIM System schema 2.7. How can we model that in a hierarchical way à la UDDI?

An intuitive information model would be as follows. Within the business entity
“CERN”, we find the business service “IT”. Within the latter, we find the finer-grained
service “DataTAG networking research”. Within the latter, we find the service “gigabit
network monitoring”. Within the latter, we want to list all the agents that can be
managed by JAMAP. Each agent then wants to announce the information models
(SNMPv2c, CIM, etc.) that it supports. For a given agent (e.g.,
w02gva.datatag.org) and a given information model (e.g., “SNMP”), we want to
advertise the list of data models (e.g., SNMP MIBs) supported by this agent. Since
many agents only support portions of MIBs, we want agents to be able to publish what
SNMP OIDs they support. And finally, we want to allow managers (programs) to
subscribe to each OID at a given frequency (e.g., retrieve ifInOctets every
15 minutes).

This model has two shortcomings: the DataTAG project involves several research
institutes, not just CERN, and we monitor a testbed network that does not belong to
CERN.

A more suitable information model would be the following. Within business entity
“European Union”, we have another finer-grained business entity called “FP5/IST



Projects”. Within this entity, we find an element “project” of which “DataTAG
Project” is an instance. Within a project, we find partners and activities. We model
project partners by a sequence of XML elements each called partner; one of them is
“CERN”. So, our XML schema would already require four layers where UDDI only
provides one: the business entity.

Next, project activities can similarly be modeled as a sequence of XML elements
each called activity; one of them is “network monitoring”. This activity can legiti-
mately be modeled as a Web Service, since it is indeed a service offered to all project
partners. Within this activity, we define two management domains: one called
“CERN”, which covers all the testbed systems and network devices located in Geneva;
and another called “StarLight”, which covers equipment in Chicago. In each
management domain, we have agents, one per managed element. Each agent then
advertises the information models that it supports. The rest of the information model is
similar to the previous.

Unfortunately, this cannot be modeled using UDDI. We investigated whether finer-
grained information could be stored in UDDIv2 and UDDIv3. We tried to leverage the
instanceParms element of an instanceDetails structure in a bindingTemplate, to no
avail.

With the simple information model currently supported by UDDI, we can only
model that a company supports a management application and provides an access
point for it at a given URL. This model is much higher level than what is required by
JAMAP for the purpose of publish-subscribe and discovery between agents and
managers. This conclusion is valid for all three versions of UDDI.

7 XML-Based Configuration Management in JAMAP

As UDDI registries are not appropriate to publish and discover agents in integrated
management, we devised an XML schema for monitoring networks and systems with
JAMAP, and used XML files to publish and discover management information.

7.1 Publication and Coarse-Grained Discovery

In JAMAP 1.3, a manager can discover all the agents within its domain by parsing an
XML configuration file (networkMap.xml) that describes the organization’s network.
This file contains the addresses of the agents, management domain by management
domain, and, for each agent, dynamic information such as the URL of its data collector
servlet, an optional proxy address, and the URL of the agent’s configuration file
(agentManagement.xml).

To increase robustness, we strived to be precise in the XML schema definition file
(networkMap.xsd). For instance, an IP address is not simply a string: we give precise
definitions of IPv4 and IPv6 addresses. This allows JAMAP to validate effectively the
XML documents exchanged between managers and agents. In JAMAP 1.3,
publication is still manual.



7.2 Fine-Grained Discovery

Each agent has an agentManagement.xml file associated with it. This file may be
published by the agent itself or another machine. It can be validated against the tailor-
made XML schema mentioned above.

The agentManagement.xml file contains agent-specific information that a
manager needs to know in JAMAP (see Figure 4). First, we find information
pertaining to the configuration Web Service of the agent (access point and WSDL file
location). Next, we find the URL of the Java applet used for manual configuration.
Then, we define the URLs of a number of Java servlets run by the agent: one for
configuring the agent, another for pushing data to the manager, etc. Last, we specify
the information models and data models that are supported by the agent. For the
SNMP information model, each entry indicates the RFC defining a specific version of
an SNMP MIB, the community string, and the encoding: Basic Encoding Rules, XML,
serialized Java, plain text, etc. For the CIM information model, each entry includes the
name of the schema, its version number, and the encoding.

One advantage of our XML schema is that it makes it easy to add new information
models or agent-specific information. Another is that it allows for strong validation of
XML documents.

7.3 Subscription

Subscriptions can be either manual or automated. If a subscription is done manually,
we can call directly the subscription Web Service on the agent by using the
information retrieved from the previous files. Alternatively, we can use an applet if a
URL is specified. When subscriptions are automated, we just need to edit an XML

Fig. 4. Example of agentManagement.xml file

<agentManagement>
<accessPoint>

http://137.138.35.18:8080/services/AgentConfigurationService
</accessPoint>
<WsdlFileLocation></WsdlFileLocation>
<dataSubscriptionApplet>

http://137.138.35.18:8080/DataSubscriptionApplet.jsp
</dataSubscriptionApplet>
<subscriptionSheetServlet>

http://137.138.35.18:8080/servlet/jamap.servlet.SubscriptionSheetServlet?
</subscriptionSheetServlet>
<getServlet>

http://137.138.35.18:8080/servlet/jamap.servlet.Get?
</getServlet>
<pushDispatcherServlet>

http://137.138.35.18:8080/servlet/jamap.servlet.PushDispatcherServlet?
</pushDispatcherServlet>
<agentConfigurationServlet>

http://137.138.35.18:8080/servlet/jamap.servlet.AgentConfigurationServlet?
</agentConfigurationServlet>
<informationModels>

<snmpInformationModel>
<rfc>/mibs/rfc1213-mib.txt</rfc>
<snmpv1CommunityString>public</snmpv1CommunityString>
<encodingType>plainText</encodingType>

</snmpInformationModel>
</informationModels>

</agentManagement>



subscription file that is located at a certain URL and contains, for each agent, the
subscribed data and its push frequency.

The automation of subscriptions relies on simple criteria, as illustrated by the
following examples:

– in management domain “CERN”, for all devices of type “Linux PC” supporting the
SNMP information model, retrieve the ifInOctets and ifOutOctets columnar
objects every 15 minutes if the PC supports RFC 1213 (MIB-II), and retrieve the
hrSWRunPerfCPU and hrSWRunPerfMem columnar objects every 5 minutes if the
PC supports RFC 1514 (Host Resources MIB);

– in all management domains, for all devices of type “Cisco 76xx”, retrieve the
ifInOctets and ifOutOctets columnar objects every 5 minutes.

8 Lessons Learned

A number of lessons of general interest can be learned from this case study and may
hopefully prove useful to other projects.

Easy to use: As claimed by many Web enthusiasts, XML is indeed easy to use and
debug. The Simple API for XML (SAX) makes it very easy to parse an XML
document in Java and validate it against an XML schema. Tomcat [21], the Apache
open-source package that implements Java servlets, is simple to use and well
documented.

Web Services: Axis [2], the Apache incarnation of Web Services, works in simple
cases but still suffers from teething problems. Web Services discovered in a WSDL
repository cannot be invoked dynamically if they use complex types (other than string
and integer); instead, one has to use stubs à la CORBA. This explains why WsdlFile-
Location is empty in Figure 4. Also, invoking a Web Service from within an applet
requires the Java applet security scheme to be turned off, unless one uses commercial
security certificates. Hopefully, future versions of Axis will address these issues.

Portability: XML is highly portable and is very appropriate for defining configu-
ration files used by management applications. Similarly, both Tomcat and Axis are
portable: they work fine on Linux 2.4.20, Windows XP and Windows 2000 platforms.

SOAP: SOAP can be used to push data between managers and agents but it offers
little flexibility. A SOAP toolkit usually comes as a black box: there is often no easy
way to control the HTTP connection underneath (e.g., for setting socket or TCP
options, or for using long-lived HTTP connections). This is a problem for JAMAP,
since we want to avoid the overhead of frequently setting up and tearing down HTTP
connections.

Discovery: There are currently no standard ways of publishing, discovering and
subscribing to fine-grained Web Services for integrated management. UDDI is too
coarse-grained for our purposes. Hopefully, a new solution will come up in the future.



9 Conclusion

In this paper, we have described how we implemented Web Services in JAMAP and
summarized the lessons learned in this process. Our conclusions are fourfold: Web
Services are suitable for managing network devices and systems; XML portability
facilitates integration in a heterogeneous environment; UDDI is a white-page service
for e-commerce and is too coarse-grained for managing network devices and systems;
and we still lack a standard way of publishing, discovering and subscribing to
monitoring services between managers and agents.

In the future, it would be useful to devise a generic mechanism to publish, discover
and subscribe to management Web Services. This mechanism should make it possible
for management application designers to use any XML schema, as opposed to a fixed
schema as in UDDI. Another interesting challenge would be to allow generic
components of a management application to discover and bind to one another by using
Web Services. Would the flexibility offered by component software be outweighed by
the decrease in performance?

Acknowledgments

This research was carried out while P.A. Doffoel was an M.Sc. student at ENSIMAG
doing an internship at CERN. Part of this work was funded by the FP5/IST Program of
the European Union (DataTAG project, grant IST-2001-32459).

References

1. A. Arkin, S. Askary, S. Fordin et al., (Eds.), Web Service Choreography Interface (WSCI)
1.0, W3C Note, World Wide Web Consortium, 2002. Available at http://www.w3.org/
TR/2002/NOTE-wsci-20020808/.

2. Axis, http://ws.apache.org/axis/.
3. K. Ballinger, P. Brittenham, A. Malhotra et al., (Eds.), Web Services Inspection Language

(WS-Inspection) 1.0, IBM, 2001. Available at http://www-106.ibm.com/
developerworks/webservices/library/ws-wsilspec.html.

4. K. Ballinger, D. Ehnebuske, M. Gudgin et al., (Eds.), Basic Profile Version 1.0, Final
Material, Web Services Interoperability Organization, 2004. Available at
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

5. D. Booth, H. Haas, F. McCabe et al., (Eds.), Web Services Architecture, W3C Working
Group Note, World Wide Web Consortium, 2004. Available at
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

6. R. Chinnici, M. Gudgin, J.J. Moreau et al. (Eds.), Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language, W3C Working Draft, World Wide Web
Consortium, 2004. Available at http://www.w3.org/TR/2004/WD-wsdl20-20040326/

7. DataTAG Project, http://www.datatag.org/.
8. M. Gudgin, M. Hadley, J.J. Moreau et al. (Eds.), SOAP 1.2 Part 1: Messaging Framework,

W3C Candidate Recommendation, World Wide Web Consortium, 2002. Available at
http://www.w3.org/TR/soap12-part1/.



9. M. Gudgin, M. Hadley, J.J. Moreau et al. (Eds.), SOAP 1.2 Part 2: Adjuncts, W3C
Candidate Recommendation, World Wide Web Consortium, 2002. Available at
http://www.w3.org/TR/soap12-part2/.

10. M. Gudgin, A. Lewis and J. Schlimmer (Eds.), Web Services Description Language (WSDL)
Version 2.0 Part 2: Message Exchange Patterns, W3C Working Draft, World Wide Web
Consortium, 2004. Available at
http://www.w3.org/TR/2004/WD-wsdl20-patterns-20040326/.

11. JAMAP 1.3, http://www.datatag.org/jamap/.
12. N. Kavantzas, D. Burdett and G. Ritzinger (Eds.), Web Services Choreography Description

Language Version 1.0, W3C Working Draft, World Wide Web Consortium, 2004. Available
at http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

13. M. Kay (Ed.), XSL Transformations (XSLT) Version 2.0, W3C Working Draft, 2003.
Available at http://www.w3.org/TR/2003/WD-xslt20-20031112/.

14. J.P. Martin-Flatin, Web-Based Management of IP Networks and Systems, Wiley, 2002.
15. Organization for the Advancement of Structured Information Standards (OASIS),

http://www.oasis-open.org/.
16. J. Schönwälder, A. Pras and J.P. Martin-Flatin, “On the Future of Internet Management

Technologies”, IEEE Communications Magazine, Vol. 41, No. 10, pp. 90-97, Oct. 2003.
17. Soapware.org, http://www.soapware.org/.
18. W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, 3rd Edition, Addison-Wesley,

1999.
19. S. Thatte (Ed.), Business Process Execution Language for Web Services (BPEL4WS)

Version 1.1, 2003. Available at
http://www.ibm.com/developerworks/library/ws-bpel/.

20. The Stencil Group, The Evolution of UDDI—UDDI.org White Paper, July 2002.
21. Tomcat, http://jakarta.apache.org/tomcat/.
22. UDDI.org, UDDI Technical White Paper, Sept. 2000.
23. WASP UDDI, http://www.systinet.com/products/wasp_uddi/overview/.
24. Web Services Interoperability Organization (WS-I), http://www.ws-i.org/.
25. World Wide Web Consortium (W3C), http://www.w3.org/.


