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Introduction

• Adaptive enterprise and automation – are key 
research topics on HP agenda. 

• Resource pools are computing environments                       
that offer virtualized access to shared                         
resources:
− Clusters of servers
− Racks of blades
− SMPs

• When these environments used effectively, they 
can:
− align the use of capacity with business needs 

(flexibility),
− lower infrastructure costs (via resource sharing),
− lower operating costs (via automation).

• We designed the Quartermaster capacity manager 
service for automatically managing such pools: it 
implements a trace-based approach and provides 
answers to classic problems:
− how much capacity is needed?
− which workloads should be assigned to each 

resource?
− what is the performance impact of workload scheduler 

and/or policy settings?
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Problem statement
• Develop method that provides each hosted 

application with the QoS it requires while making 
effective use of  the resource pool.

• General approach
−Define range of acceptable application QoS
−Relate application QoS to target utilization of resource 

allocation
−Partition allocations across two Classes of Services       

(CoS 1 and Cos2) to manage resource access QoS:
• CoS 1:  guaranteed access to resources
• CoS 2:  access with some pre-specified probability

−Model resource access using capacity manager
• Assign applications to resources such that the application  QoS

requirements are met.
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Approach
• There are existing tools (like HP Workload Manager or       

IBM Enterprise Workload Manager) that aim to support the 
resource management tasks in such resource pools.

• However, the process of setting and adjusting parameters in 
these tools for managing required capacities is still a manual 
process. For example:
− each resource in the pool has a scheduler that monitors workloads’ 

demands and dynamically varies the allocation of capacity,
− the scheduler can implement, at least, two priorities, where  

• all demands associated with highest priority satisfied first,
• the  remaining capacity is used to satisfy the demands of the next priority.

• Question: how to split workload demands between these two 
priority classes to satisfy range of acceptable application 
QoS.
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Trace-Based Approach and 
Resource Access  QoS
• Each application workload is characterized using several 

weeks to several months of demand observations (e.g. one 
observation every 5 min).

• We designed and implemented  the Quartermaster capacity 
management tool that has an optimized search method that 
supports consolidation (e.g. tight packing) and load leveling 
(e.g. load balancing) exercises.

• This tool supports capacity planning across two different 
Classes of Services (CoS 1 and CoS 2) in such a way that 
− demands associated with CoS 1 are guaranteed and 
− demands associated with CoS 2 are offered with an operator 

specified resource access probability .

• This way, it allows the controllable overbooking of the 
available capacity for exploiting the benefits of statistical 
multiplexing of application demands while providing the 
desirable application QoS. 
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Resource Access QoS
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Application QoS

• The relationship between acceptable application QoS and 
system resource usage is complex.

• For interactive applications (like web servers), the 
responsiveness is important. 

• To optimize the application response time it can be 
desirable to support the utilization of assigned resource 
allocation at a given level (e.g. 50%).

• This goal can be achieved by controlling the relationship 
between demand and allocation using a burst factor n, i.e. 
workload resource allocation is n times its recent demand.

• Another angle: allocations are adjusted using periodic 
utilization measurements: mean values hide the bursts of 
demand within the interval. Typically, workloads with 
higher variation of demands require a higher allocation 
scaling factor (i.e higher burst factor).
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Application QoS (cont.)
• We employ empirical approach that aims to find an 

acceptable range for the burst factor and application QoS
objectives.

• Stress testing exercise is used to estimate the application 
performance under different burst factor.

• We search for a value of burst factor nideal >=1 that supports 
desirable application responsiveness, as well as nok :                  
1<=  nok <= nideal that 
offers adequate responsiveness (not as good as “ideal” but 
still acceptable).

• These values for a burst factor bound lower and upper 
values for the utilization of an allocation:                                      

Ulow = 1/ nideal Uhigh = 1/ nok

Thus the utilization of allocation must remain in the range 
(Ulow ,Uhigh)

where Uhigh is acceptable but not ideal.
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Application QoS (cont.)
• We aim to partition an application’s workload demands across two classes 

of service, CoS 1 and CoS 2, to ensure that the application’s burst factor 
remains within  an acceptable range, i.e. that  the  utilization of allocation is 
kept within the desirable range (Ulow , Uhigh).

• Let p be a fraction of peak demand D for the CPU attribute of application 
workload that is associated with CoS 1.

• Value p x D gives a breakpoint for the application workload that is 
associated with CoS 1:
− all demand that  less or equal to p x D is placed in CoS 1, and 
− the remaining demand is places in CoS 2.

• When system has enough capacity, each application gets access to all 
capacity it needs, and utilization of allocation is Uideal .

• When demands exceed supply, the demands associated with CoS 1 are 
guaranteed to be satisfied. However, demands associated with CoS 2 are 
not guaranteed and offered with access probability      . This could lead to a 
smaller allocation (than ideal) and to higher utilization of allocation  Uhigh.
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Computation of Breakpoint
• To ensure that the allocation utilization remains within the 

desirable range (Ulow ,Uhigh), the range of allocations must be 
between       Aideal = D x nideal and     Aok = D x nok.

• So the allocation for the lower but acceptable QoS offered to the 
applications is:

• This breakpoint p is a scheduler parameter that we automatically 
compute.
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Case Study
• The top Figure shows general 

relationship between resource 
access probability for COS 2, the 
allocation utilization, and the 
fraction of application’s peak 
demand associated with CoS 2.
− Even for a low access probability of 

0.6, 40% to100% of workload demand 
can be put in CoS 2.

• The bottom Figure shows similar 
results:  Quartermaster capacity 
manager can automatically map 
the desirable allocation utilization 
and selected value      to the 
recommended breakpoint value.
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Case Study
• The Figure illustrates the proposed 

approach using the 26 applications of 
a large order entry system.

• In this scenario, the application 
utilization of allocation is in the range 
(0.5, 0.6). 

• The Figure shows 
− the peak number of CPUs needed by 

each application, 
− how many CPUs must be provisioned 

using the guaranteed CoS 1 under 
different    (0.7 and 0.8) for CoS 2.

• As expected, higher value for    
increases the use of the shared 
portion of resource pool, that supports 
higher resource overbooking, and 
leads to the higher resource utilization 
in the pool.
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Case Study (cont.)

• These Figures provide insight into how the 
selected breakpoint affects each of 26 
applications 

• The breakpoint is chosen based on the 
application peak demands.

• The top Figure shows that 11 of 26 
applications spend 80% of their time at 
50% utilization of allocation, i.e. at the low 
end of its utilization allocation Ulow.

• The bottom Figure shows that only 2 of 26 
applications spend 80% of their time at 
50% utilization of their allocation.

• Increasing the access probability for CoS
2, allows us to put more of the application 
demand in CoS 2, while at the same time 
putting the application at a greater risk of 
operating closer to the higher end of its 
utilization allocation Uhigh.
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Conclusion and Future Work
• We presented a method for selecting application workload 

specific scheduling parameters for shared resource pool 
environments.

• The approach lets the application owner specify 
application QoS requirements using a range of a 
desirable  allocation utilization for the CPU demand 
attribute.

• This range along with the resource access QoS determine 
how much of the applications’ demands must be 
associated with a guaranteed Class of Service CoS 1 and 
how much can be put in a second class CoS 2 with a 
given resource access probability.

• Future work includes developing a better understanding of 
scheduler behavior on allocations, its impact on capacity 
management at long timescales, and application QoS.


