
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

An Automated Approach for Supporting
Application QoS
in Shared Resource Pools

Jerry Rolia, Lucy Cherkasova, Martin Arlitt, and
Vijay Machiraju
HPLabs

2

Introduction

• Adaptive enterprise and automation – are key
research topics on HP agenda.

• Resource pools are computing environments
that offer virtualized access to shared
resources:
− Clusters of servers
− Racks of blades
− SMPs

• When these environments used effectively, they
can:
− align the use of capacity with business needs

(flexibility),
− lower infrastructure costs (via resource sharing),
− lower operating costs (via automation).

• We designed the Quartermaster capacity manager
service for automatically managing such pools: it
implements a trace-based approach and provides
answers to classic problems:
− how much capacity is needed?
− which workloads should be assigned to each

resource?
− what is the performance impact of workload scheduler

and/or policy settings?

Application Services

Adaptive
Infrastructure

Business Processes

Adaptive
Management

S
up

pl
y

D
em

and

Application Services

Adaptive
Infrastructure

Business Processes

Adaptive
Management

S
up

pl
y

D
em

and

3

Problem statement
• Develop method that provides each hosted

application with the QoS it requires while making
effective use of the resource pool.

• General approach
−Define range of acceptable application QoS
−Relate application QoS to target utilization of resource

allocation
−Partition allocations across two Classes of Services

(CoS 1 and Cos2) to manage resource access QoS:
• CoS 1: guaranteed access to resources
• CoS 2: access with some pre-specified probability

−Model resource access using capacity manager
• Assign applications to resources such that the application QoS

requirements are met.

4

Approach
• There are existing tools (like HP Workload Manager or

IBM Enterprise Workload Manager) that aim to support the
resource management tasks in such resource pools.

• However, the process of setting and adjusting parameters in
these tools for managing required capacities is still a manual
process. For example:
− each resource in the pool has a scheduler that monitors workloads’

demands and dynamically varies the allocation of capacity,
− the scheduler can implement, at least, two priorities, where

• all demands associated with highest priority satisfied first,
• the remaining capacity is used to satisfy the demands of the next priority.

• Question: how to split workload demands between these two
priority classes to satisfy range of acceptable application
QoS.

5

Trace-Based Approach and
Resource Access QoS
• Each application workload is characterized using several

weeks to several months of demand observations (e.g. one
observation every 5 min).

• We designed and implemented the Quartermaster capacity
management tool that has an optimized search method that
supports consolidation (e.g. tight packing) and load leveling
(e.g. load balancing) exercises.

• This tool supports capacity planning across two different
Classes of Services (CoS 1 and CoS 2) in such a way that
− demands associated with CoS 1 are guaranteed and
− demands associated with CoS 2 are offered with an operator

specified resource access probability .

• This way, it allows the controllable overbooking of the
available capacity for exploiting the benefits of statistical
multiplexing of application demands while providing the
desirable application QoS.

6

Resource Access QoS

7

Application QoS

• The relationship between acceptable application QoS and
system resource usage is complex.

• For interactive applications (like web servers), the
responsiveness is important.

• To optimize the application response time it can be
desirable to support the utilization of assigned resource
allocation at a given level (e.g. 50%).

• This goal can be achieved by controlling the relationship
between demand and allocation using a burst factor n, i.e.
workload resource allocation is n times its recent demand.

• Another angle: allocations are adjusted using periodic
utilization measurements: mean values hide the bursts of
demand within the interval. Typically, workloads with
higher variation of demands require a higher allocation
scaling factor (i.e higher burst factor).

8

Application QoS (cont.)
• We employ empirical approach that aims to find an

acceptable range for the burst factor and application QoS
objectives.

• Stress testing exercise is used to estimate the application
performance under different burst factor.

• We search for a value of burst factor nideal >=1 that supports
desirable application responsiveness, as well as nok :
1<= nok <= nideal that
offers adequate responsiveness (not as good as “ideal” but
still acceptable).

• These values for a burst factor bound lower and upper
values for the utilization of an allocation:

Ulow = 1/ nideal Uhigh = 1/ nok

Thus the utilization of allocation must remain in the range
(Ulow ,Uhigh)

where Uhigh is acceptable but not ideal.

9

Application QoS (cont.)
• We aim to partition an application’s workload demands across two classes

of service, CoS 1 and CoS 2, to ensure that the application’s burst factor
remains within an acceptable range, i.e. that the utilization of allocation is
kept within the desirable range (Ulow , Uhigh).

• Let p be a fraction of peak demand D for the CPU attribute of application
workload that is associated with CoS 1.

• Value p x D gives a breakpoint for the application workload that is
associated with CoS 1:
− all demand that less or equal to p x D is placed in CoS 1, and
− the remaining demand is places in CoS 2.

• When system has enough capacity, each application gets access to all
capacity it needs, and utilization of allocation is Uideal .

• When demands exceed supply, the demands associated with CoS 1 are
guaranteed to be satisfied. However, demands associated with CoS 2 are
not guaranteed and offered with access probability . This could lead to a
smaller allocation (than ideal) and to higher utilization of allocation Uhigh.

10

Computation of Breakpoint
• To ensure that the allocation utilization remains within the

desirable range (Ulow ,Uhigh), the range of allocations must be
between Aideal = D x nideal and Aok = D x nok.

• So the allocation for the lower but acceptable QoS offered to the
applications is:

• This breakpoint p is a scheduler parameter that we automatically
compute.

11

Case Study
• The top Figure shows general

relationship between resource
access probability for COS 2, the
allocation utilization, and the
fraction of application’s peak
demand associated with CoS 2.
− Even for a low access probability of

0.6, 40% to100% of workload demand
can be put in CoS 2.

• The bottom Figure shows similar
results: Quartermaster capacity
manager can automatically map
the desirable allocation utilization
and selected value to the
recommended breakpoint value.

12

Case Study
• The Figure illustrates the proposed

approach using the 26 applications of
a large order entry system.

• In this scenario, the application
utilization of allocation is in the range
(0.5, 0.6).

• The Figure shows
− the peak number of CPUs needed by

each application,
− how many CPUs must be provisioned

using the guaranteed CoS 1 under
different (0.7 and 0.8) for CoS 2.

• As expected, higher value for
increases the use of the shared
portion of resource pool, that supports
higher resource overbooking, and
leads to the higher resource utilization
in the pool.

13

Case Study (cont.)

• These Figures provide insight into how the
selected breakpoint affects each of 26
applications

• The breakpoint is chosen based on the
application peak demands.

• The top Figure shows that 11 of 26
applications spend 80% of their time at
50% utilization of allocation, i.e. at the low
end of its utilization allocation Ulow.

• The bottom Figure shows that only 2 of 26
applications spend 80% of their time at
50% utilization of their allocation.

• Increasing the access probability for CoS
2, allows us to put more of the application
demand in CoS 2, while at the same time
putting the application at a greater risk of
operating closer to the higher end of its
utilization allocation Uhigh.

14

Conclusion and Future Work
• We presented a method for selecting application workload

specific scheduling parameters for shared resource pool
environments.

• The approach lets the application owner specify
application QoS requirements using a range of a
desirable allocation utilization for the CPU demand
attribute.

• This range along with the resource access QoS determine
how much of the applications’ demands must be
associated with a guaranteed Class of Service CoS 1 and
how much can be put in a second class CoS 2 with a
given resource access probability.

• Future work includes developing a better understanding of
scheduler behavior on allocations, its impact on capacity
management at long timescales, and application QoS.

