
Effective “Small Site” Web
Loadbalancing through
Statistical Monitoring

George Porter, Randy H. Katz
Univ. of California Berkeley

May 19, 2005
Selfman 2005 - Nice, France

Outline
Motivation: Need for dynamic admission control for
web services

Targeting “unmanaged” high variance sites such as open-
source blogs

My focus today is on the deployment problem via
1. Black-box component monitoring
2. Ultra-lightweight request effect discovery
3. Visualizing correlations
4. Network-level, selective request throttling
Initial investigation with live 3-tier system
Conclusion

Web services under excessive
load

Composable building blocks to build web sites
Web containers, various app/ejb containers, persistent state via
automatically managed DB pools

Problem: Open control loop/requests driven by users
Flash traffic, increased workload can overload components of the
web service
Hard to provision; hard to make performance guarantees; this
leads to seemingly broken behavior to the end user

WEB APP DB
• Amazon,
eBay.com

•Dailykos,
alternet.org

Examples:

Target Environment
High variability of workload

300k/day visitors
Sometimes > 1M users/day

Limited resources
Cannot turn on spare servers/blades

Not business critical
But important that the service is available during
flash traffic events (elections, news events, etc).

Increasing load leads to
undesirable behavior

Requests per second vs # clients

0

50

100

150

200

250

10
0

System
in overload
state…

…this leads
to the
following
problem:

Requests per second vs # clients

0

50

100

150

200

250

10
0

Behavior at low
load

Requests per second vs # clients

0

50

100

150

200

250

10
0

Behavior at high
load

For users, the
system seems
defective in many
cases

Observation: Ant and
Elephant flows

Ant flows
Invokes few components
Invokes inexpensive
processing
Often more common

Elephant flows
Touches several
layers
Heavyweight
processing /
searching / DB joins

Objective
Discover Elephant flows

Approach: Black box analysis of running system with
statistical learning theory (SLT)
Minimal disruption to running system

Why? Fast-growing sites based on unmanaged open source
software; hardware/software platforms which undergo frequent
change

Selective Admission Control
Goal in this case is a responsive system, even if “heavy”
requests take more time
Approach: Network-level bandwidth shaping of elephant
flows

Web-server independent actuator
HTTP-level pushback ok as well

1- Black box component
monitoring

Goal is to provide operator with hints of elephant
flows
Without fine-grained O/S instrumentation

Underlying components often change
Hooks often os/driver specific
Heisenberg principle (at least perception of)

[Cohen04, Barham04] Finer-grained instrumentation
of components leads to better request effect
discovery

Their approach complementary to this work

1- Black box component
monitoring
From Web server’s Apache logs:

t0 t1
t1 t2
t2 t3
t3 t4
t4 t5

ur
l 1

ur
l 2

ur
l 3

ur
l 4

ur
l 5

Number of
active

requests per
class still

being
processed

10.1.1.2 20296 + 1377 1102213360 0 /PHP/RUBiS_logo.jpg
10.1.1.2 1393 + 1375 1102213360 0 /PHP/SearchItemsByCategory.php
10.1.1.2 3736 + 1390 1102213360 0 /PHP/BrowseCategories.php

Request duration

Data collected:
servers

Utilized sysstat
Collected for web, db:

CPU idle, system, user,
busy
Network traffic between tiers
Context switches
Disk I/O operations

This work focuses on DB
CPU, which in my
deployment was the
bottleneck

2- Finding correlated requests
(elephants)

BrowseCategories.php 0.1747 -0.035
BrowseRegions.php 0.0926 -0.0434
SearchItemsByCategory.php 0 0.5654
SearchItemsByRegion.php 0.0034 0.0756
AboutMe.php 0.7702 0.0075
RegisterUser.php 0.4876 -0.0179
SellItemForm.php 0.4891 0.0179
RegisterItem.php 0.8767 0.004
ViewItem.php 0.0953 -0.0431
PutComment.php 0.5157 -0.0168
ViewUserInfo.php 0.4646 -0.0189
PutBidAuth.php 0.8641 -0.0044
PutBid.php 0.2566 -0.0293
BuyNowAuth.php 0.971 -0.0009
BuyNow.php 0.1206 0.0401
ViewBidHistory.php 0.9741 -0.0008

Pearson’s correlation
coefficient

Easy to use, quick
Run periodically for each
measured parameter

Web server CPU, DB cpu,
disk I/o activity, O/S context
switching

Produces candidate set of
requests
Some unexpected results--
namely, fewer correlated
URLs than expected

Browse seemed to be a
superset of search, for
example

Pval coeff

3- Visualization tool for results

• Allows network
operators to include
domain-specific
knowledge

• Entry-point for operator
in the loop

• Can enhance “top
talkers” graph

• Development in progress

/dbLookup.php

4- Effective actuators for new
policies

SLOW
DOWN

/storeBid.php

/lightRequest.php

/lightRequest.php

HTTP
Header
Visibility

S
e
r
v
e
r
s

Need for network-level action point with HTTP header visibility
Commercial products such as Nortel Alteon Web Switch
Part of “iBox” project at Berkeley

Per-session packet tagging and bandwidth fencing system
In our BladeCenter testbed, use of 802.1q VLAN tags and Linux ‘tc’
extensions

Experimental setup
IBM BladeCenter testbed

Reconfigurable
interconnect, linux-based
platform, 12 2x3 Ghz
Pentiums

RUBiS (Rice Univ. Bidding
System)

eBay like workload,
transition matrix driven
Default matrix, 7 sec

10 client machines
Apache + PHP app
MySQL DB server
Nortel Alteon HTTP parsing
with 802.1q VLAN tagging +
Linux tc extentions for b/w
shaping

Clients

DB

Apache+PHP

Request time distribution results

stock adm control
total requests 756137 1143264
correlated URLs 112521 105964
req/sec (avg) 462 782
session time (avg) 670 872
max request time 154.7 32.7

Stock Adm Cntl

Conclusions
Need for more self-managed web services
Role for ultra-lightweight mechanisms in
addition to fine-grained solutions
Four mechanisms to enable this

1. Black-box component monitoring
2. Ultra-lightweight request effect discovery
3. Visualizing correlations
4. Network-level, selective request throttling

Operator in the loop beneficial for many web
service operators

