
An Automated Approach for Supporting Application QoS
in Shared Resource Pools

Jerry Rolia, Ludmila Cherkasova, Martin Arlitt, Vijay Machiraju
Hewlett-Packard Laboratories

1501 Page Mill Road, Palo Alto, CA 94303, USA
{jerry.rolia,lucy.cherkasova,martin.arlitt,vijay.machiraju}@hp.com

Abstract
Many enterprises are beginning to exploit shared resource

pool environments. In these environments, the application work-
loads exploit a common set of hardware resources. These are
complex environments where selecting per-application scheduler
parameter settings is a challenging task. It is a challenge because
i) the capacity of resource pools are generally overbooked, i.e.,
the sum of per-application peak demands are greater than the ca-
pacity of the pool, and ii) because different applications can have
different quality of service (QoS) requirements that are affected by
the applications’ ability to obtain capacity when needed. This pa-
per presents a new method that automates the computation of ap-
propriate values for scheduler parameters. The method takes as
input a characterization of an application’s workload demands,
an application QoS requirement, and a measure of resource ac-
cess QoS for resources that governs overbooking within the pool.
As output, the method automatically specifies resource scheduler
parameter settings that are expected to realize the application’s
requirements. We assume that the pool’s resource schedulers can
support at least two service priorities and can also manage the re-
lationship between resource demand and allocation. A case study
demonstrates the method and illustrates the per-application risks
associated with resource sharing.

1 Introduction

Resource pools are collections of resources, such as clus-
ters of servers or racks of blades, that offer shared access
to computing capacity. Virtualization services offer inter-
faces that support the lifecycle management (e.g., create,
destroy, move, size capacity) of resource containers (e.g.,
virtual machines, virtual disks [1, 2, 3, 4]) that provide
access to shares of capacity. Application workloads are
assigned to the containers which are then associated with
resources. Resources in the pool have capacity attributes,
e.g., CPU, memory, I/O operation rates, and bandwidths,
each with limited capacity.

We assume that each resource in the pool has a sched-
uler that monitors its workloads’ demands and dynamically
varies the allocation of capacity, e.g., CPU, to the work-
loads aiming to provide each with access only to the capac-
ity it needs. As a workload’s demand increases its alloca-
tion increases, as a workload’s demand decreases its allo-
cation decreases. Such allocators typically can control the

relationship between demand and allocation using a burst
factor n, e.g., such that a workload’s allocation will be ap-
proximately some real value n ≥ 1 times its recent de-
mand. The factor addresses the issue that allocations are
adjusted using periodic utilization measurements. Utiliza-
tion measurements over any interval are mean values that
hide the bursts of demand within the interval. In general,
the greater the workload variation and client population,
the greater the potential for bursts in demand, the greater
the need for a larger allocation relative to mean demand
(i.e., utilization), and hence the need for a larger factor. The
product of mean demand and this burst factor estimates the
true demand of the application at short time scales and is
used for the purpose of allocation. Furthermore, we assume
that the scheduler can implement at least two priorities with
all the demands associated with the highest priority satis-
fied first. Any remaining capacity is then used to satisfy the
demands of the next priority.

We consider the problem of hosting enterprise appli-
cations in such resource pools. There are existing tools,
e.g. HP Workload Manager[5], IBM Enterprise Workload
Manager[6], that aim to support the resource management
tasks in such resource pools. However, the process of set-
ting and adjusting the parameters in these tools for manag-
ing required capacities is still a manual process. The hosted
applications often operate continuously, have unique time
varying demands and performance oriented quality of ser-
vice (QoS) objectives. These complexities make it difficult
and time consuming for human operators to make effective
use of such pools. The applications can share individual
resources such as a CPU or may require many resources.
We take the following approach to this problem.

• The resource pool operator decides on the resource ac-
cess QoS objectives for two classes of service for re-
sources in the resource pool [7]. The first class of ser-
vice is associated with the highest scheduling priority.
The second is associated with the lower priority.

• Each application owner specifies its application work-
load’s QoS requirement. This is specified as a range
for the burst factor. The range specifies values for
burst factor that correspond to ideal and simply ade-
quate application QoS.

• The method we propose maps each application’s
workload demands onto the two classes of service.
This mapping determines scheduling parameters for
the workload.

• The Quartermaster [8] capacity manager [7] assigns
application workloads to resources in the pool in a
manner expected to satisfy the resource access QoS
objectives for the pool.

The resource access QoS objectives specified by the re-
source pool operator govern the degree of overbooking in
the resource pool. We assume that the first CoS offers guar-
anteed service. It corresponds to a scheduler’s high priority
service. The capacity manager ensures that the sum of the
demands associated with this first CoS does not exceed the
capacity of the resource. The second CoS offers a lower
QoS. It manages overbooking, i.e., statistical multiplexing,
for each resource.

This paper presents a new method for specifying how to
partition an application’s workload demands across the two
classes of service to realize application level performance
oriented QoS objectives. The method is motivated by port-
folio theory [9]. A case study demonstrates the method and
characterizes the per-application risk associated with shar-
ing.

Section 2 describes the method. Case study results
demonstrate the technique in Section 3. Summary remarks
are offered in Section 4.

2 Portfolio Approach

This section describes the technique for mapping an appli-
cation’s workload demands across two classes of service to
realize its application QoS objectives. The technique takes
as input a characterization of an application’s workload de-
mands on the resource, the resource access QoS objectives
for resources in the resource pool, and the application level
QoS requirements as expressed using a range for the burst
factor. As output it describes how the application’s work-
load demands should be partitioned across the pool’s two
CoS. We now describe each of these inputs and output in
more detail.

2.1 Trace-based characterization of work-
load demand

We employ a trace-based approach to model the sharing of
resource capacity for resource pools [7]. Each application
workload is characterized using several weeks to several
months of demand observations, e.g., with one observa-
tion every 5 minutes. The general idea behind trace-based
methods is that traces capture past demands and that fu-
ture demands will be similar. Though we expect demands
to change, for most applications they are likely to change
slowly, e.g., over several months. By working with recent

history we adapt to such change. Significant changes in de-
mands, due to changes in business processes or application
functionality are best forecast by business units and com-
municated to the operators of the resource pool so that their
impact, e.g., scale demands up or down, can be reflected in
the trace.

2.2 Resource access QoS

The Quartermaster capacity manager is a service that is
used by the resource pool operator to assign workloads to
specific resources and quickly assess the impact of future
demands on the pool. It has an optimizing search method
that supports consolidation (e.g., tight packing) and load
levelling (e.g., load balancing) exercises. The service uses
the traces of demands to assign workloads to specific re-
sources such that when traces are replayed, demands asso-
ciated with the first CoS are guaranteed and demands as-
sociated with the second CoS are offered with an operator
specified resource access probability θ.

A formal definition for a resource access probability θ
is as follows. Let A be the number of workload traces un-
der consideration. Each trace has W weeks of observations
with T observations per day as measured every m minutes.
Without loss of generality, we use the notion of a week as
a timescale for service level agreements. Time of day cap-
tures the diurnal nature of interactive enterprise workloads
(e.g., those used directly by end users). Other time scales
and patterns can also be used. Each of the T times of day,
e.g., 8:00am to 8:05am, is referred to as a slot. For 5 minute
measurement intervals we have T = 288 slots per day. We
denote each slot using an index 1 ≤ t ≤ T . Each day x
of the seven days of the week has an observation for each
slot t. Each observation has a measured value for each of
the capacity attributes considered in the analysis. Without
loss of generality, consider one class of service and one at-
tribute that has a capacity limit of L units of demand. Let
Dw,x,t be the sum of the demands upon the attribute by the
A workloads for week w, day x and slot t. We define the
measured value for θ as follows.

θ = minW
w=1 minT

t=1

∑7

x=1
min(Dw,x,t , L)

∑7

x=1
Dw,x,t

Thus, θ is reported as the minimum resource access prob-
ability received any week for any of the T slots per day.
Furthermore, we define a CoS constraint as the combina-
tion of a required value for θ and a deadline s such that
those demands that are not satisfied are satisfied within the
deadline. Let L′ be the required capacity for an attribute
to support a CoS constraint. A required capacity L ′ is the
smallest capacity value, L′ ≤ L, to offer a probability θ ′
such that θ′ ≥ θ and those demands that are not satisfied
upon request, Dw,x,t − L′ > 0, are satisfied within the
deadline. We express the deadline as an integer number of
slots s.

2.3 Application QoS

The relationship between acceptable application QoS and
system resource usage is complex. We employ an em-
pirical approach that aims to find an acceptable range for
the burst factor that relates workload demand to a sched-
uled allocation for the CPU capacity attribute. Though
access to CPU capacity is not the only issue that can af-
fect application quality of service [10], it is often responsi-
ble [10] and limits a workload’s access to many other ca-
pacity attributes. A stress testing exercise is used to submit
a representative workload to the application in a controlled
environment[11]. Within the controlled environment we
vary the burst factor that governs the relationship between
application demand and allocation. We search for the value
of burst factor nideal ≥ 1 that gives the responsiveness re-
quired by application users (i.e., very good but not better
than necessary), and the value nok: 1 ≤ nok ≤ nideal that
offers adequate responsiveness (i.e., worse responsiveness
would not be acceptable to the application users). These
define an acceptable range of operation for the application
on the resource.

These values for n bound lower and upper values for the
utilization of an allocation:

Ulow = 1
nideal

and

Uhigh = 1
nok

.

Thus, the utilization of the allocation must remain in the
range (Ulow, Uhigh), where Uhigh is acceptable but not
ideal.

2.4 Portfolio Approach

We aim to partition an application’s workload demands
across two classes of service, namely CoS 1 and CoS 2,
to ensure that the application’s burst factor remains within
its acceptable range. CoS 1 offers guaranteed access to ca-
pacity. By associating part of the demands with CoS 1 we
limit the resource access risk to be the demands associated
with CoS 2. CoS 2 has a resource access probability of θ
and a deadline s as chosen by the resource pool operator.
Consider three operating scenarios for a resource: i) it has
sufficient capacity to meet its current demands, ii) demand
exceeds supply but the resource is satisfying its resource
access constraint, and iii) demand exceeds supply and the
resource is not satisfying its resource access constraint. We
consider the first two scenarios here. Planning exercises
aim to avoid the third scenario [7].

When the system has sufficient capacity, each applica-
tion workload gets access to all the capacity it needs. In
this case, the application’s resource needs will all be sat-
isfied and the application’s utilization of allocation will be
Uideal. In the case where demands exceed supply, the de-
mands associated with CoS 1 are all guaranteed to be satis-
fied. However, the demands associated with CoS 2 are not

guaranteed and will be offered with a resource access prob-
ability θ. We aim to divide workload demands across these
two classes of services while ensuring that the utilization of
allocation remains in the range (Uideal, Uok) to satisfy the
application’s QoS requirements.

Let p be a fraction of peak demand D for the CPU at-
tribute for the application workload that is associated with
CoS 1. The value p D gives a breakpoint for the appli-
cation workload such that all demand less than or equal to
this value is placed in CoS 1 and the remaining demand is
placed in CoS 2. This breakpoint value is the scheduling
parameter that we automatically compute.

We solve for p such that in the second scenario the ap-
plication workload’s burst factor is no worse than nok. The
range of allocations must be between Aideal = D × nideal

and Aok = D × nok. So the allocation for the lower but
acceptable QoS offered to the application is:

Aok = Aideal × p + Aideal × (1 − p) × θ.

Solving this equation for p, we get:

p =
nok

nideal
− θ

1 − θ
,

where 1 ≥ θ > 0.

3 Case study

Our case study presents some general results regarding the
portfolio approach and the implications of the results on 26
application workloads from a large enterprise order entry
system [7].

Figure 1 presents our general results. Figure 1 (a) shows
the general relationship between resource access probabil-
ity θ for CoS 2, the burst factor range that describes an
application’s QoS requirement (expressed as a range of
utilization of allocation), and the fraction of an applica-
tion’s peak demand that gets associated with CoS 2. Four
curves are shown. These correspond to a utilization of al-
location range of (0.5, 0.6) which is a high QoS through
to (0.5, 0.9) which is a comparatively low QoS. The fig-
ure shows that even a low resource access probability of
θ = 0.55 permits between 30% and 100% of application
demands to be associated with CoS 2. Figure 1 b) presents
similar results in a manner that allows the Quartermaster
capacity manager to automatically map between an appli-
cation’s acceptable utilization range, the operator selected
value for θ, and the percentage value p needed find the
breakpoint used to divide an application’s workload across
the two CoS.

Figure 2 illustrates the impact of this approach on the
26 applications of the large enterprise order entry system.
In this scenario the application utilization of allocation is
in the range (0.5, 0.6). The figure shows the peak num-
ber of CPUs needed by each application, and for θ = 0.8
and θ = 0.7, how many CPUs must be provisioned using

a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
of

 A
pp

s
D

em
an

d
in

 C
oS

2

 θ

Breakpoint Sensitivity to Uhigh (with Ulow=50%)

Uhigh=90%
Uhigh=80%
Uhigh=70%
Uhigh=60%

b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 55 60 65 70 75 80 85 90 95

F
ra

ct
io

n
of

 A
pp

 D
em

an
d

in
 C

oS
2

 Uhigh (%)

Breakpoint Sensitivity to θ (with Ulow=50%)

θ=0.9
 θ=0.8
 θ=0.7
 θ=0.6

Figure 1: Sensitivity: Resource Access Probability, Range for Utilization of Allocation, and Percentage of Demand for CoS 2.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30

N
um

be
r

of
 C

P
U

s

Application (Number)

Number of CPUs per App in CoS1 (Ulow=50%, Uhigh=60%)

App Peak Demand
θ=0.7
θ=0.8

Figure 2: Application Workload Usage of CoS 1.

a)

 50

 52

 54

 56

 58

 60

 0 5 10 15 20 25 30

U
til

. o
f A

llo
ca

tio
n

(%
)

Application (Number)

Allocation Util. Percentile across 26 Apps (Ulow=50%, Uhigh=60%, θ=0.7)

99th
90th
80th

b)

 50

 52

 54

 56

 58

 60

 0 5 10 15 20 25 30

U
til

. o
f A

llo
ca

tio
n

 (
%

)

Application (Number)

Allocation Util. Percentile across 26 Apps (Ulow=50%, Uhigh=60%, θ=0.8)

99th
90th
80th
50th

Figure 3: Distribution of Application Utilization of Allocation.

the guaranteed CoS 1 (as determined by the correspond-
ing breakpoint). As expected, a higher value for θ means
a lower breakpoint so that less demand is associated with
CoS 1 and more with CoS 2. The higher value for θ in-
creases the use of the shared portion of each resource which
may increase the utilization of resources in the pool. How-
ever, there are diminishing returns. A value of θ = 0.9 puts
virtually all application workload demands in CoS 2.

Figure 3 provides insight into how the selected break-
point affects each of the applications. By choosing a break-
point based on an application’s peak CPU demand we are
provisioning for the scenario where the application requires
its peak demand. Figure 3 (a) and (b) illustrate the distribu-
tion of utilization of allocation for each application for the
θ = 0.7 and θ = 0.8 scenarios, respectively. Figure 3 (a)
shows that 11 of 26 applications spend 80% of their time at
50% utilization of their allocation, i.e., U low. For much of
the time the application’s demands are less than the break-
point so all of its demands are satisfied by CoS 1. These
11 applications spend 99% of their time below the 59%
utilization of allocation. Figure 3 (b) has θ = 0.8, which
introduces greater opportunity for sharing. In this scenario
only 2 of 26 applications spend 80% of their time at 50%
utilization of their allocation. It is interesting to note that
increasing the resource access probability for CoS 2 puts
more application demands in CoS 2 and therefore puts the
application at greater risk of operating closer to the higher
end of its utilization of allocation, Uhigh.

Finally, recall that an application will only operate near
the high end of its allocation when it is both at risk of doing
so, as illustrated in Figure 3, and aggregate demand from
the many application workloads assigned to the same re-
source exceeds the capacity of the resource. From our pes-
simistic definition of θ, and our use of the capacity manager
to assign workloads in an appropriate manner, we therefore
expect the application to operate near Uhigh infrequently.

4 Summary

This paper presented a method motivated by portfolio the-
ory for selecting application workload specific scheduling
parameters for resource pool environments. The approach
lets an application owner specify application QoS require-
ments using a range for a burst factor for the CPU demand
attribute. This range along with resource pool resource
access QoS determine how much of the application’s de-
mands must be associated with a guaranteed CoS and how
much with a second CoS that offers resources with prob-
ability θ. The more workload that is associated with the
second CoS the greater the opportunity for the resource
pool to overbook resources. Case study results demon-
strate the technique and illustrates the risks of sharing for
applications in a large enterprise order entry system. Fu-
ture work includes completing the characterization of ap-
plication risks of sharing based on aggregate application
demands on a resource and using this information to fur-
ther manage the resource pool.

References
[1] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

I. Pratt, A. Warfield, P. Barham, and R. Neugebauer.
Xen and the Art of Virtualization. Proc. of ACM
SOSP, October 2003.

[2] A. Whitaker, M. Shaw, S.Gribble. Scale and Perfor-
mance in the Denali Isolation Kernel. Proc of the
Fifth Symposium on Operating System Design and
Implementation (OSDI 2002), Boston, MA, Decem-
ber 2002.

[3] G. Banga, P. Druschel, J. Mogul. Resource contain-
ers: a new facility for resource management in server
systems. Proc of the Third Symposium on Operat-
ing System Design and Implementation (OSDI 1999),
New Orleans, Louisiana, 1999.

[4] VMware VirtualCenter 1.2.
URL: http://www.vmware.com/products/
vmanage/vc_features.html

[5] HP-UX Workload Manager.
http:www.software.hp.com/portal/
swdepot/displayProductInfo.do?
productNumber=T1302AA

[6] IBM Enterprise Workload Manager.
http://www.ibm.com/developerworks/
autonomic/ewlm/

[7] J. Rolia, L. Cherkasova, M. Arlitt, and A. Andrzejak,
A Capacity Management Service for Resource Pools,
HP Labs Technical Report, HPL-2005-01, 2005.

[8] S. Singhal, S. Graupner, A. Sahai, V. Machiraju, J.
Pruyne, X. Zhu, J. Rolia, M. Arlitt, C. Santos, D.
Beyer, and J. Ward, Quartermaster: A Resource Util-
ity System, HP Labs Technical Report, HPL-2004-
152. To appear in the proceedings of IM 2005.

[9] E. J. Elton and M. J. Gruber, Modern Portfolio Theory
and Investment Analysis, John Wiley & Sons, 1995.

[10] I. Cohen, M. Goldszmidt, T.P. Kelly, J. Symons, and
J. Chase, Correlating Instrumentation Data to System
States: A Building Block for Automated Diagnosis
and Control, 6th Symposium on Operating Systems
Design and Implementation (OSDI ’04), December,
2004.

[11] D. Krishnamurthy, Synthetic Workload Generation
for Stress Testing Session-Based Systems, Ph.D. The-
sis, Carleton University, January 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

