
A Model-Based System Supporting Automatic

Self-Regeneration of Critical Software

Paul Robertson and Brian Williams {paulr,williams}@csail.mit.edu

MIT CSAIL, 32 Vassar Street, Building 32-272 Cambridge, MA 02139

Abstract
 We describe a system under development that provides the ability to incrementally and pervasively increase the
robustness of complex systems. The system is based upon model-based programming tools that enable the high-
level specification of self-deprecating and self-reconfiguring methods along with model-based executives that
provide safe, optimal dispatching of functionally redundant methods, and that reason from component service
models to continuously monitor, diagnose, regenerate and optimize function.

Introduction

 In complex, concurrent critical systems, every component is a potential point of failure. Typical
attempts to make such systems more robust and secure are both brittle and incomplete. That is, the
security is easily broken, and there are many possible failure modes that are not handled. Techniques that
expand to handling component level failures are very expensive to apply, yet are still quite brittle and
incomplete. This is not because engineers are lazy – the sheer size and complexity of modern information
systems overwhelms the attempts of engineers, and myriad methodologies, to systematically investigate,
identify, and specify a response to all possible failures of a system.
Adding dynamic intelligent fault awareness and recovery to running systems enables the identification of
unanticipated failures and the construction of novel workarounds to these failures. Our approach is
pervasive and incremental. It is pervasive in that it applies to all components of a large, complex system
– not just the “firewall” services. It is incremental in that it coexists with existing faulty, unsafe systems,
and it is possible to incrementally increase the safety and reliability of large systems. The approach aims
to minimize the cost, in terms of hand-coded specifications with respect to how to isolate and recover
from failures.

Approach: At the heart of our system is a model-based programming language called RMPL that
provides a language for specifying correct and faulty behavior of the systems software components. The
novel ideas in our approach include method deprecation and method regeneration in tandem with an
intelligent runtime model-based executive that performs automated fault management from engineering
models, and that utilizes decision-theoretic method dispatch. Once a system has been enhanced by
abstract models of the nominal and faulty behavior of its components, the model-based executive
monitors the state of the individual components according to the models. If faults in a system render
some methods (procedures for accomplishing individual goals) inapplicable, method deprecation removes
the methods from consideration by the decision-theoretic dispatch. Method regeneration involves
repairing or reconfiguring the underlying services that are causing some method to be inapplicable. This
regeneration is achieved by reasoning about the consequences of actions using the component models,
and by exploiting functional redundancies in the specified methods. In addition, decision-theoretic
dispatch continually monitors method performance and dynamically selects the applicable method that
accomplishes the intended goals with maximum safety, timeliness, and accuracy.
Beyond simply modeling existing software and hardware components, we allow the specification of high-

level methods. A method defines the intended state evolution of a system in terms of goals and
fundamental control constructs, such as iteration, parallelism, and conditionals. Over time, the more that
a system’s behavior is specified in terms of model-based methods, the more that the system will be able to
take full advantage of the benefits of model-based programming and the runtime model-based executive.
Implementing functionality in terms of methods enables method prognosis, which involves proactive
method deprecation and regeneration, by looking ahead in time through a temporal plan for future method
invocations.
Our approach has the benefit that every additional modeling task performed on an existing system makes
the system more robust, resulting in substantial improvements over time. As many faults and intrusions
have negative impact on system performance, our approach also improves the performance of systems
under stress.
Our approach provides a well-grounded technology for incrementally increasing the robustness of
complex, concurrent, critical applications. When applied pervasively, model-based execution will
dramatically increase the security and reliability of these systems, as well as improve overall
performance, especially when the system is under stress.

Fault Aware Processes Through Model-based Programming
Recall, to achieve robustness pervasively, fault adaptive processes must be created with minimal
programming overhead. Model-based programming elevates this task to the specification of the intended
state evolutions of each process. A model-based executive automatically synthesizes fault adaptive
processes for achieving these state evolutions, by reasoning from models of correct and faulty behavior of
supporting components.
Each model-based program implements a system that provides some service, such as secure data
transmission. This is used as a component within a larger system. The model-based program in turn
builds upon a set of services, such as name space servers and data repositories, implemented through a set
of concurrently operating components, comprised of software and hardware.

Component Services Model
The service model represents the normal behavior and the known and unknown aberrant behaviors of the
program’s component services. It is used by a deductive controller to map sensed variables to queried
states. The service model is specified as a concurrent transition system, composed of probabilistic
concurrent constraint automata 1. Each component automaton is represented by a set of component
modes, a set of constraints defining the behavior within each mode, and a set of probabilistic transitions
between modes. Constraints are used to represent co-temporal interactions between state variables and
intercommunication between components. Constraints on continuous variables operate on qualitative
abstractions of the variables, comprised of the variable’s sign (positive, negative, zero) and deviation
from nominal value (high, nominal, low). Probabilistic transitions are used to model the stochastic
behavior of components, such as failure and intermittency. Reward is used to assess the costs and benefits
associated with particular component modes. The component automata operate concurrently and
synchronously.

Self Deprecation and Regeneration Through Predictive Method Dispatch
In model-based programming, the execution of a method will fail if one of the service components it
relies upon irreparably fails. This in turn can cause the failure of any method that relies upon it,
potentially cascading to a catastrophic and irrecoverable system-wide malfunction. The control sequencer
enhances robustness by continuously searching for and deprecating any requisite method whose
successful execution relies upon a component that is deemed faulty by mode estimation, and deemed
irreparable by mode reconfiguration.

Without additional action, a deprecated method will cause the deprecation of any method that relies upon
it, potentially cascading to catastrophic system-level malfunction. Model-based programmers specify
redundant methods for achieving each desired function. When a requisite method is deprecated, the
control sequencer attempts to regenerate the lost function proactively, by selecting an applicable
alternative method, while verifying overall safety of execution.

More specifically, predictive method selection will first search until it finds a set of methods that are
consistent and schedulable. It then invokes the dispatcher, which passes each activity to the deductive
controller as configuration goals, according to a schedule consistent with the timing constraints. If the
deductive controller indicates failure in the activity’s execution, or the dispatcher detects that an activity’s
duration bound is violated, then method selection is reinvoked. The control sequencer then updates its
knowledge of any new constraints and selects an alternative set of methods that safely completes the
RMPL program.

Self-Optimizing Methods Through Safe, Decision-Theoretic Dispatch
In addition to failure, component performance can degrade dramatically, reducing system performance to
unacceptable levels. To maintain optimal performance, predictive method dispatch utilizes decision-
theoretic method dispatch, which continuously monitors performance, and selects the currently optimal
available set of methods that achieve each requisite function.

Results

Initial testing of the described system has been performed by augmenting the MIT MERS rover test bed.
The rover test bed consists of a fleet of ATRV robots within a simulated Martian terrain. By way of
example we describe one mission whose robustness has been enhanced by the system.

Two rovers must cooperatively search for science targets in the simulated Martian terrain. This is done
by having the rovers go to selected vantage points looking for science targets using the rovers stereo
cameras. The rovers divide up the space so that they can minimize the time taken in mapping the
available science targets in the area. The paths of the rovers are planned in advance given existing terrain
maps. The plan runs without fail. Between them the rovers successfully find all of the science targets
that we have placed for them to find. The scenario is shown below in Figure 1.

Figure 1: Rover test bed experimental platform

In the test scenario two faults are introduced by placing a large rock that blocks rover #1’s view of one of
the designated areas. When rover #1 gets into its initial position to look for science targets its stereo
cameras detect the unexpected rock obscuring its view. This results in an exception that disqualifies the
current software component from looking for targets. Since the failure is external to the rover software
the plan itself is invalidated. The exception is resolved by replanning which allows the both rovers to
modify their plans so that the second rover observes the obscured site from a different vantage point. The
rovers continue with the new plan but when rover #2 attempts to scan the area for science targets the
selected vision algorithm fails due to the deep shadow being cast by the large rock. Again an exception is
generated but in this case a redundant method is found – a vision algorithm that works well in low light
conditions. With this algorithm the rover successfully scans the site for science targets. Both rovers
continue to execute their plan without further failure.

Figure 2: The TPN for the two-rover exploration plan. Failure due to an obscuration (rock)
results in automatic online replanning so that the mission can continue.

Comparison with Current Technology
Model-based Programming of Hidden States
The reactive model-based programming language (RMPL) is similar to reactive embedded synchronous
programming languages like Esterel. In particular, both languages support conditional execution,
concurrency, preemption and parameter less recursion. The key difference is that in embedded
synchronous languages, programs only read sensed variables and write to controlled variables. In contrast,
RMPL specifies goals by allowing the programmer to read or write ``hidden'' state variables. It is then the
responsibility of the language's model-based execution kernel to map between hidden states and the
underlying system’s sensors and control variables.

Predictive and Decision-theoretic Dispatch
RMPL supports nondeterministic or decision theoretic choice, plus flexible timing constraints. Robotic
execution languages, such as RAPS, [2], ESL[4] and TDL[3], offer a form of decision theoretic choice
between methods and timing constraints. In RAPS, for example, each method is assigned a priority. A
method is then dispatched, which satisfies a set of applicability constraints while maximizing priority. In

Start End
Rover1.goto(p1)

Rover2.goto(p5)

Rover1.findTargetsRover1.goto(p2) Rover1.goto(p3)

Rover2.goto(p6)Rover2.findEggs Rover2.goto(p3)

Rover2.goto(p6) Rover2.goto(p3) Rover2.findTargets

Rover1.findTargets Rover1.goto(p2) Rover1.goto(p3)

Failure

Start End
Rover1.goto(p1)

Rover2.goto(p5)

Rover1.findTargetsRover1.goto(p2) Rover1.goto(p3)

Rover2.goto(p6)Rover2.findEggs Rover2.goto(p3)

Rover1.findTargetsRover1.goto(p2) Rover1.goto(p3)

Rover2.goto(p6)Rover2.findEggs Rover2.goto(p3)

Rover2.goto(p6) Rover2.goto(p3) Rover2.findTargets

Rover1.findTargets Rover1.goto(p2) Rover1.goto(p3)

Failure Failure

contrast, RMPL dispatches on a cost that is associated with a dynamically changing performance
measure. In RAPS timing is specified as fixed, numerical values. In contrast, RMPL specifies timing in
terms of upper and lower bound on valid execution times. The set of timing constraints of an RMPL
program constitutes a Simple Temporal Network (STN). RMPL execution is unique in that it predictively
selects a set of future methods whose execution are temporally feasible.

Probabilistic Concurrent Constraint Automata
Probabilistic Concurrent Constraint Automata (PCCA) extend Hidden Markov Models (HMMs) by
introducing four essential attributes. First, the HMM is factored into a set of concurrently operating
automata. Second, probabilistic transitions are treated as conditionally independent. Third, each state is
labeled with a logical constraint that holds whenever the automaton marks that state. This allows an
efficient encoding of co-temporal processes, which interrelate states and map states to observables.
Finally, a reward function is associated with each automaton, and is treated as additive.

Constraint-based Trellis Diagram
Mode estimation encodes PHCA as a constraint-based trellis diagram, and searches this diagram in order
to estimate the most likely system diagnoses. This encoding is similar in spirit to a SatPlan/Graphplan
encoding in planning.

Conclusions
We have extended a system capable of diagnosing and reconfiguring redundant hardware systems so that
instrumented software systems can likewise be made robust. Software systems are more complex than
hardware systems and modeling software components and their interconnections poses a higher modeling
burden. Much work remains to extend the current experimental system to cover the full range of software
practice.

References

1. D. Bernard, G. Dorais, E. Gamble, B. Kanefsky, J. Kurien, G. Man, W. Millar, N. Muscettola, P.
Nayak, K. Rajan, N. Rouquette, B. Smith, W. Taylor, Y. Tung, Spacecraft Autonomy Flight
Experience: The DS1 Remote Agent Experiment, Proceedings of the AIAA Space Technology
Conference & Exposition, Albuquerque, NM, Sept. 28-30, 1999. AIAA-99-4512.

2. R. Firby, “The RAP language manual,” Working Note AAP-6. University of Chicago, 1995.
3. R. Simmons, “Structured Control for Autonomous Robots,” IEEE Transactions on Robotics and

Automation, 10(1), 94.
4. E Gat, “ESL: A Language for Supporting Robust Plan Execution in Embedded Autonomous

Agents,” In Proceedings of the AAAI Fall Symposium on Plan Execution, 1996.
5. B. Williams and P. Nayak. A Reactive Planner for a Model-based Execution. In Proceedings 15th

International Joint Conference AI, Nagoya, Japan, August 1997. IJCAI-97.

