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Abstract 
    We describe a system under development that provides the ability to incrementally and pervasively increase the 
robustness of complex systems.  The system is based upon model-based programming tools that enable the high-
level specification of self-deprecating and self-reconfiguring methods along with model-based executives that 
provide safe, optimal dispatching of functionally redundant methods, and that reason from component service 
models to continuously monitor, diagnose, regenerate and optimize function. 
 

Introduction 

         In complex, concurrent critical systems, every component is a potential point of failure.  Typical 
attempts to make such systems more robust and secure are both brittle and incomplete.  That is, the 
security is easily broken, and there are many possible failure modes that are not handled.  Techniques that 
expand to handling component level failures are very expensive to apply, yet are still quite brittle and 
incomplete. This is not because engineers are lazy – the sheer size and complexity of modern information 
systems overwhelms the attempts of engineers, and myriad methodologies, to systematically investigate, 
identify, and specify a response to all possible failures of a system.   
Adding dynamic intelligent fault awareness and recovery to running systems enables the identification of 
unanticipated failures and the construction of novel workarounds to these failures.  Our approach is 
pervasive and incremental.  It is pervasive in that it applies to all components of a large, complex system 
– not just the “firewall” services.  It is incremental in that it coexists with existing faulty, unsafe systems, 
and it is possible to incrementally increase the safety and reliability of large systems. The approach aims 
to minimize the cost, in terms of hand-coded specifications with respect to how to isolate and recover 
from failures. 
 
Approach:  At the heart of our system is a model-based programming language called RMPL that 
provides a language for specifying correct and faulty behavior of the systems software components. The 
novel ideas in our approach include method deprecation and method regeneration in tandem with an 
intelligent runtime model-based executive that performs automated fault management from engineering 
models, and that utilizes decision-theoretic method dispatch.  Once a system has been enhanced by 
abstract models of the nominal and faulty behavior of its components, the model-based executive 
monitors the state of the individual components according to the models.  If faults in a system render 
some methods (procedures for accomplishing individual goals) inapplicable, method deprecation removes 
the methods from consideration by the decision-theoretic dispatch.  Method regeneration involves 
repairing or reconfiguring the underlying services that are causing some method to be inapplicable.  This 
regeneration is achieved by reasoning about the consequences of actions using the component models, 
and by exploiting functional redundancies in the specified methods.  In addition, decision-theoretic 
dispatch continually monitors method performance and dynamically selects the applicable method that 
accomplishes the intended goals with maximum safety, timeliness, and accuracy.    
Beyond simply modeling existing software and hardware components, we allow the specification of high-



level methods.  A method defines the intended state evolution of a system in terms of goals and 
fundamental control constructs, such as iteration, parallelism, and conditionals.  Over time, the more that 
a system’s behavior is specified in terms of model-based methods, the more that the system will be able to 
take full advantage of the benefits of model-based programming and the runtime model-based executive.  
Implementing functionality in terms of methods enables method prognosis, which involves proactive 
method deprecation and regeneration, by looking ahead in time through a temporal plan for future method 
invocations. 
Our approach has the benefit that every additional modeling task performed on an existing system makes 
the system more robust, resulting in substantial improvements over time.  As many faults and intrusions 
have negative impact on system performance, our approach also improves the performance of systems 
under stress.   
Our approach provides a well-grounded technology for incrementally increasing the robustness of 
complex, concurrent, critical applications.  When applied pervasively, model-based execution will 
dramatically increase the security and reliability of these systems, as well as improve overall 
performance, especially when the system is under stress.  

 

Fault Aware Processes Through Model-based Programming 
Recall, to achieve robustness pervasively, fault adaptive processes must be created with minimal 
programming overhead.  Model-based programming elevates this task to the specification of the intended 
state evolutions of each process. A model-based executive automatically synthesizes fault adaptive 
processes for achieving these state evolutions, by reasoning from models of correct and faulty behavior of 
supporting components.   
Each model-based program implements a system that provides some service, such as secure data 
transmission.  This is used as a component within a larger system.  The model-based program in turn 
builds upon a set of services, such as name space servers and data repositories, implemented through a set 
of concurrently operating components, comprised of software and hardware.   

Component Services Model 
The service model represents the normal behavior and the known and unknown aberrant behaviors of the 
program’s component services. It is used by a deductive controller to map sensed variables to queried 
states. The service model is specified as a concurrent transition system, composed of probabilistic 
concurrent constraint automata 1. Each component automaton is represented by a set of component 
modes, a set of constraints defining the behavior within each mode, and a set of probabilistic transitions 
between modes. Constraints are used to represent co-temporal interactions between state variables and 
intercommunication between components. Constraints on continuous variables operate on qualitative 
abstractions of the variables, comprised of the variable’s sign (positive, negative, zero) and deviation 
from nominal value (high, nominal, low). Probabilistic transitions are used to model the stochastic 
behavior of components, such as failure and intermittency. Reward is used to assess the costs and benefits 
associated with particular component modes. The component automata operate concurrently and 
synchronously. 

Self Deprecation and Regeneration Through Predictive Method Dispatch 
In model-based programming, the execution of a method will fail if one of the service components it 
relies upon irreparably fails.  This in turn can cause the failure of any method that relies upon it, 
potentially cascading to a catastrophic and irrecoverable system-wide malfunction.  The control sequencer 
enhances robustness by continuously searching for and deprecating any requisite method whose 
successful execution relies upon a component that is deemed faulty by mode estimation, and deemed 
irreparable by mode reconfiguration.   
 



Without additional action, a deprecated method will cause the deprecation of any method that relies upon 
it, potentially cascading to catastrophic system-level malfunction.  Model-based programmers specify 
redundant methods for achieving each desired function.  When a requisite method is deprecated, the 
control sequencer attempts to regenerate the lost function proactively, by selecting an applicable 
alternative method, while verifying overall safety of execution.   
 
More specifically, predictive method selection will first search until it finds a set of methods that are 
consistent and schedulable.  It then invokes the dispatcher, which passes each activity to the deductive 
controller as configuration goals, according to a schedule consistent with the timing constraints.  If the 
deductive controller indicates failure in the activity’s execution, or the dispatcher detects that an activity’s 
duration bound is violated, then method selection is reinvoked.  The control sequencer then updates its 
knowledge of any new constraints and selects an alternative set of methods that safely completes the 
RMPL program. 

Self-Optimizing Methods Through Safe, Decision-Theoretic Dispatch 
In addition to failure, component performance can degrade dramatically, reducing system performance to 
unacceptable levels.  To maintain optimal performance, predictive method dispatch utilizes decision-
theoretic method dispatch, which continuously monitors performance, and selects the currently optimal 
available set of methods that achieve each requisite function.   
 

Results 
 
Initial testing of the described system has been performed by augmenting the MIT MERS rover test bed.  
The rover test bed consists of a fleet of ATRV robots within a simulated Martian terrain.  By way of 
example we describe one mission whose robustness has been enhanced by the system.  
 
Two rovers must cooperatively search for science targets in the simulated Martian terrain.  This is done 
by having the rovers go to selected vantage points looking for science targets using the rovers stereo 
cameras.  The rovers divide up the space so that they can minimize the time taken in mapping the 
available science targets in the area.  The paths of the rovers are planned in advance given existing terrain 
maps.  The plan runs without fail.  Between them the rovers successfully find all of the science targets 
that we have placed for them to find.  The scenario is shown below in Figure 1. 

 
Figure 1: Rover test bed experimental platform 

 



In the test scenario two faults are introduced by placing a large rock that blocks rover #1’s view of one of 
the designated areas.  When rover #1 gets into its initial position to look for science targets its stereo 
cameras detect the unexpected rock obscuring its view.  This results in an exception that disqualifies the 
current software component from looking for targets.  Since the failure is external to the rover software 
the plan itself is invalidated. The exception is resolved by replanning which allows the both rovers to 
modify their plans so that the second rover observes the obscured site from a different vantage point.  The 
rovers continue with the new plan but when rover #2 attempts to scan the area for science targets the 
selected vision algorithm fails due to the deep shadow being cast by the large rock.  Again an exception is 
generated but in this case a redundant method is found – a vision algorithm that works well in low light 
conditions.  With this algorithm the rover successfully scans the site for science targets.  Both rovers 
continue to execute their plan without further failure. 
 

Figure 2: The TPN for the two-rover exploration plan.  Failure due to an obscuration (rock) 
results in automatic online replanning so that the mission can continue. 

 
 

Comparison with Current Technology  
Model-based Programming of Hidden States  
The reactive model-based programming language (RMPL) is similar to reactive embedded synchronous 
programming languages like Esterel.  In particular, both languages support conditional execution, 
concurrency, preemption and parameter less recursion. The key difference is that in embedded 
synchronous languages, programs only read sensed variables and write to controlled variables. In contrast, 
RMPL specifies goals by allowing the programmer to read or write ``hidden'' state variables. It is then the 
responsibility of the language's model-based execution kernel to map between hidden states and the 
underlying system’s sensors and control variables.     

Predictive and Decision-theoretic Dispatch 
RMPL supports nondeterministic or decision theoretic choice, plus flexible timing constraints.  Robotic 
execution languages, such as RAPS, [2], ESL[4] and TDL[3], offer a form of decision theoretic choice 
between methods and timing constraints.  In RAPS, for example, each method is assigned a priority.  A 
method is then dispatched, which satisfies a set of applicability constraints while maximizing priority.  In 
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contrast, RMPL dispatches on a cost that is associated with a dynamically changing performance 
measure.  In RAPS timing is specified as fixed, numerical values.  In contrast, RMPL specifies timing in 
terms of upper and lower bound on valid execution times.  The set of timing constraints of an RMPL 
program constitutes a Simple Temporal Network (STN).  RMPL execution is unique in that it predictively 
selects a set of future methods whose execution are temporally feasible. 

Probabilistic Concurrent Constraint Automata  
Probabilistic Concurrent Constraint Automata (PCCA) extend Hidden Markov Models (HMMs) by 
introducing four essential attributes. First, the HMM is factored into a set of concurrently operating 
automata. Second, probabilistic transitions are treated as conditionally independent. Third, each state is 
labeled with a logical constraint that holds whenever the automaton marks that state. This allows an 
efficient encoding of co-temporal processes, which interrelate states and map states to observables. 
Finally, a reward function is associated with each automaton, and is treated as additive.   

Constraint-based Trellis Diagram  
Mode estimation encodes PHCA as a constraint-based trellis diagram, and searches this diagram in order 
to estimate the most likely system diagnoses.  This encoding is similar in spirit to a SatPlan/Graphplan 
encoding in planning.  
 

Conclusions 
We have extended a system capable of diagnosing and reconfiguring redundant hardware systems so that 
instrumented software systems can likewise be made robust.  Software systems are more complex than 
hardware systems and modeling software components and their interconnections poses a higher modeling 
burden. Much work remains to extend the current experimental system to cover the full range of software 
practice. 
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