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Abstract— In this paper we propose a multi-path routing
scheme based on a biologically inspired attractor selection
model. The advantage of this approach is that it is highly
noise-tolerant and capable to operate in a very robust
manner under varying environmental conditions. Further-
more, the route selection is performed in accordance to
the recommendations given in [1] to reduce the selfishness
in favor of an improved overall system performance.

Index Terms— attractor selection, multi-path routing,
selfish routing, dynamic system

I. I NTRODUCTION

Biologically inspired algorithms are known to be
extremely robust and able to adapt well to different en-
vironment conditions. Imitating biological mechanisms
has often inspired researchers to conceive algorithms that
perform well in uncertain environments. One example
is the application ofswarm intelligence[2] in telecom-
munication networks, cf. [3], [4]. Highly distributed
individuals operate toward a common goal throughstig-
mergy where they interact indirectly by modifying the
environment.

In this paper we propose a “no-rule” multi-path rout-
ing scheme which is based on a biological attractor
selection model. The purpose of our model is to provide
a self-adaptive path selection scheme for multi-path
overlay networks that operates in a robust manner. We
consider application level routing in overlay networks
as most promising application for our model, as this
allows greater flexibility in controlling the routing task
without modifying the underlying IP routing scheme.
This issue has been discussed e.g. for RON [5] as an
overlay architecture which is able to improve the loss
rate and throughput over conventional BGP routing due
to its faster reaction to path outages.

However, end-to-end route selection schemes as em-
ployed in overlay routing are of a highly selfish nature, as
they greedily choose paths that offer the highest perfor-
mance, regardless of the implications on the performance
and stability of the whole system. Several publications

have investigated selfish routing using a game theoretical
approach, cf. [6], [7], [8]. In [1], suggestions are made to
improve the overall stability of the system by imposing
some restraints on the degree of selfishness.

Unlike [9], [10] [11], we will consider in this paper
a generic multi-path network and our intention is to
provide a basic mechanism to improve the robustness of
overlay routing. Since our method uses the noise inherent
in the network to drive the path selection decision, it is
highly resilient to external noise influences. Furthermore,
the routing decisions follow the guidelines given in [1]
to reduce the selfishness of each individual flow, in
order to obtain a better and more stable system-wide
performance.

The remainder of this paper is as follows. We will
discuss our assumption on the network architecture and
multi-path routing in Section II. Section III describes
the underlying theoretical model. In Section IV we show
how we use this model in the framework of multi-path
routing and give some examples with numerical results.
Finally, the paper is concluded with an outlook on future
work.

II. OUTLINE OF THE MULTI -PATH ROUTING

APPROACH

In this section we will discuss the key issues in our
adaptive multi-path routing approach. In the systems we
are considering, no centralized control takes place, i.e.,
path selection is performed entirely based on locally
available information. Furthermore, our method requires
no knowledge of the network topology. The goal is to
distribute the total traffic flow from source to destination
over M routes with transmission ratesmi as shown in
Fig. 1. The flow is split up such that the major part is
routed at a high bitrateRH over theprimary path, while
the remaining parts are equally distributed onsecondary
pathswith lower bitrateRL.

The algorithm we propose in this paper operates in
the following way. When a new flow between source
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Fig. 1. Primary and secondary paths

and destination arrives, the paths are established. Since
we have no knowledge about the topology, the source
must send probing packets which are forwarded to the
destination. This happens with RREQ and RREP packets
similarly to AODV [12]. However, not only a single route
is determined in this way, but theM best feasible paths
are stored. Once the first path is found, the transmission
can begin over it. Subsequently adding and removing
paths imposes no problem to the mechanism as we will
show later it can operate seamlessly when the number
of paths is changed. However, the number of paths
should be kept within certain limitsMmin (not less than
3) and Mmax. Once the number of current pathsM
reachesMmin, the discovery of additional paths is again
activated.

The transmission ratesmi are automatically selected
by our method according to measured values of the path
metric ℓi of each pathi. In order to reduce the overhead
of the routing method itself, we suggest to use an
inline measurement approach for obtaining these values,
e.g. round trip times of packets. These measurements
are updated at regular intervals which we denote as
measurement windowTM . Based on the received metric
values a new best solution is obtained and selected every
TR intervals.

III. A DAPTIVE RESPONSE BYATTRACTOR

SELECTION

We now consider the biological model forAdaptive
Response by Attractor Selection(ARAS) presented in
[13]. ARAS is a model for its hostE. coli cells to adapt
to changes in the availability of a nutrient for which no
molecular machinery is available for signal transduction
from the environment to the DNA. The appealing feature
of this mechanism is that it is highly noise-tolerant and
can even be stimulated by noise. Therefore, in this paper
we will use ARAS as a robust, noise-tolerant algorithm
for multi-path routing in communication networks.

A. Sketch of the Basic Idea

The basic idea of ARAS is that attractors form so-
lutions for the optimal assignment of output valuesmi

to certain input valuesℓi at which the system is stable.
The locations of these attractors in the phase space are
entirely determined by the differential equation system
describing the dynamics of the output valuesmi. Further-
more, the differential equations ofmi are stochastic since
they contain an influence from a Gaussian random term.
The selection of the appropriate attractor (i.e. solution) of
the system is performed based on the current input values
ℓi and changes are triggered by anactivity term 0 ≤
α ≤ 1. The activityα tunes the degree of randomness
controlling the dynamic system. Ifα = 0, the system
performs a random walk, whereas forα > 0, the noise
influence is reduced and the system converges to one of
the attractors, which appears as the best solution.

The basic principle of attractor selection is shown in
an example in Fig. 2. Until timet = 500 the system is
stable with no particular reaction toward any input value.
When 500 < t ≤ 1000 we introduce some external
influence by modifying the input vectors. This causes
that activityα drops to 0 and a random walk is performed
for the output valuesmi. After t > 1000 a new stable
condition is found withm2 > m1 and it is maintained
until another external influence occurs. This is reflected
by an activity term0 < α < 1.
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Fig. 2. Basic principle of attractor selection

B. Features of the Biological Model

The original attractor selection model for a biological
system was introduced in [13]. The biological model
describes two mutually inhibitory operons wherem1 and
m2 are the concentrations of the mRNA that react to
certain changes of nutrient in a cell. The basic func-
tional behavior is described by the following differential
equation system.

dm1

dt
=

syn(α)

1 + m2
2

− deg(α)m1 + η1

dm2

dt
=

syn(α)

1 + m2
1

− deg(α)m2 + η2

(1)
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The functionssyn(α) anddeg(α) are the rate coeffi-
cients of mRNA synthesis and degradation, respectively.
They are both functions ofα, which represents cell
activity or vigor. The termsηi are independent white
noise inherent in gene expression.

The dynamic behavior of the activityα is given as:

dα

dt
=

pro
M
∏

i=1

[(

nutr threadi

mi+nutrienti

)ni

+ 1
]

− cons α, (2)

where pro and cons are the rate coefficients of the
production and consumption ofα. The termnutrienti
represents the external supplementation of nutrienti and
nutr threadi and ni are the threshold of the nutrient
to the production ofα and the sensitivity of nutrienti,
respectively.

A crucial issue is the definition of the propersyn(α)
and deg(α) functions. In our case, the ratio between
syn(α) anddeg(α) must be greater than 2 to have two
different solutions of Eqn. (1) when there is a lack of
one of the nutrients. When it is equal to 2, there is only
a single solution form1 = m2 = 1. The functions are
defined in [13] as given in Eqn. (3).

syn(α) =
6 α

2 + α
deg(α) = α (3)

The system reacts to changes in the environment in
such a way that when it lacks a certain nutrienti, it
compensates for this loss by increasing the correspond-
ing mi value. This is done by modifying the influence
of the random termηi throughα, see Fig. 3. Whenα is
near one, the equation system operates in a deterministic
fashion. However, whenα approaches 0, the system is
dominated by the random termsηi and it performs a
random walk.
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Fig. 3. Biological attractor selection model

In Fig. 3 we can recognize the following behavior.
When bothmi values are equal, the activity is highest
and equal to 1. As soon as there is a lack of the first

nutrient (2000 ≤ t < 8000), m1 compensates this by
increasing its level. When both nutrient terms are fully
available again (8000 < t ≤ 10000), activity α becomes
1 again. An interesting feature can be observed after
t = 10000. Here, the random walk causes the system
to search for a new solution, however, it first follows
a wrong direction until aboutt = 12000, causingα to
become nearly 0. As soon as the system approaches the
direction toward the correct solution again,α recovers
and the system gets stable again.

C. Extension of the Mathematical Model

The basic biological model from [13] is not directly
applicable as it only considers a two-dimensional system,
whereas the multi-path problem is of a higher dimension.
Let M > 2 denote the number of paths among which
we split up the traffic from the source to destination. Let
us define the following notation.

m = [m1, . . . , mM ]T m̃ = max
j

mj

Here, m is the vector over allmi and m̃ is their
maximum value. The dynamic behavior of eachmi is
determined by the following system ofM equations,
cf. Eqn. (4).

dmi

dt
=

syn(α)

1 + m̃2 − m2
i

− deg(α)mi + (γ − α)ν ηi (4)

Beside the inclusion of the maximum ofmi in (4),
it differs from the original equations by controlling the
activity α with the parametersγ andν. Furthermore, for
the sake of simplicity we define

ϕ(α) =
syn(α)

deg(α)
.

Solving equation system(4) for its equilibrium, i.e.
dmi

dt
= 0, yields results of the type

x(k) =
[

x
(k)
1 , . . . , x

(k)
M

]T

with k = 1, . . . , M and the components of the vector are

x
(k)
i =

{

1
2

(

√

4 + ϕ(α)2 − ϕ(α)
)

if i = k,

ϕ(α) otherwise.

Since the transmission ratemk for a certain pathk is
higher than the other ratesmi, i 6= k, we distinguish the
paths intoprimary andsecondary paths.

The eigenvalues of the Jacobian matrix of (4) at
the solutionsx(k) always reveal negative values, thus,
leading to stable attractors [14]. Note that atϕ∗ = 1/

√
2

we have a special point, as the solutionsx(k) are only
defined whenϕ(α) ≥ ϕ∗. For ϕ(α) = ϕ∗ we obtain a
single solutionx with the same entries∀M

i=1 xi = ϕ(α).
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To fully define the model, we need to give the basic
dynamic behavior of the activityα and the functions
syn(α) and deg(α). Based on the above mentioned
constraints, the quotientϕ(α) should be a decreasing
function with ϕ(1) = ϕ∗.

syn(α) = α

(

β
√

1 − α +
1

ϕ∗

)

deg(α) = α (5)

The parameterβ in Eqn. (5) is used to scale the output
values to a given co-domain.

The functionα maps the input valuesℓi to the activity
and is the driving function for the whole routing oper-
ation as it controls the influence of randomness on the
Eqn. (4). To characterizeα, we map it to three discrete
valuesα∗ based on certain conditions. If all paths should
be treated equally, we setα∗ = 1. However, if the current
primary path is not the best path anymore, we choose a
fixed value smaller than 1, e.g.α∗ = 0.85. Otherwise,
no suitable solution has been found and the search for
a more appropriate solution is performed with a random
walk, i.e. α∗ = 0. The dynamic behavior of functionα
simply follows

dα

dt
= σ (α∗ − α) (6)

with the adaptation rate ofσ. In our experiments we use
a value ofσ = 0.5.

IV. A PPLICATION OFATTRACTOR SELECTION TO

MULTI -PATH ROUTING

In this section we adapt the activity functionα to
the specific case of multi-path routing. Themi values
represent the (normalized) transmission data rates for
each pathi. If each mi is chosen entirely selfishly, it
leads to a significant decrease in the overall system-wide
performance. For this reason, [1] suggests three restraints
on this greedy behavior: (i) randomization in the route
selections, (ii ) route changes performed with a hysteresis
threshold, and (iii ) increase of the time interval between
route changes.

To include such conditions in our model, we propose
the following activity function. Letk be the index of
the currently chosen primary path andℓmax and ℓmin

be the maximum and minimum of all link metric values
ℓi ∈ [0, 1], respectively. We consider normalized metric
values, with higher values being preferred for choosing a
path, e.g. available bandwidth. We perform these routing
updates after an interval ofTR and measurements are
taken during the measurement windowTM . The updates
of the targetα∗ are only performed after everyTR or if

the system has not yet converged.

α∗ =











1 ℓmax − ℓmin < ∆

0.85 ℓk + H ≥ ℓmax

0 otherwise

(7)

When allℓi lie within a margin∆, i.e.,ℓmax−ℓmin < ∆,
we setα∗ = 1 and have no special preference for a path.
On the other hand, whenℓk + H ≥ ℓmax the current
solution is still valid andα∗ = 0.85, otherwiseα∗ = 0.
Here,H is the hysteresis threshold. The randomization of
the paths implicitly takes place, as the system sometimes
converges to a suboptimal solution.
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Fig. 4. Example scenario withM = 5 paths

An example scenario is depicted in Fig. 4. In this
example we selected∆ = 0.1 andH = 0.2, TR = 200,
and γ = 1.5. We varied the normalized link metricsℓi

such that they have high values during certain periods
shown in Fig. 4(a) and low (zero) values else. The
resulting normalized transmission rates are depicted in



IFIP/IEEE INTERNATIONAL WORKSHOP ON SELF-MANAGED SYSTEMS& SERVICES (SELFMAN 2005) 5

Fig. 4(b). It can be seen that whenever the environment
changes due to better available paths, the system adapts
in an appropriate way. Note that sometimes a short time
is required until the system converges to a new solution.
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Fig. 5. Removal of paths 4 and 5 att = 5000

An example for the robustness of the method is shown
in Fig. 5. Here we artificially caused paths 4 and 5 to
be removed due to outage conditions att = 5000. The
mechanism, however, continues in its usual operation and
the primary and remaining secondary paths are nearly
unaffected by this influence. The only evidence pointing
to the removal of paths is that the level for the secondary
pathsRL is slightly raised.

V. CONCLUSION AND OUTLOOK

In this paper we introduced a new biologically in-
spired method for multi-path routing based on adaptive
response by attractor selection. This method takes mea-
surements of the path metrics, e.g. available bandwidth,
and automatically selects the appropriate bandwidths for
each path. The selection of the paths is done with no
explicit rules, but only by letting the system converge to
an attractor solution. Since it uses random variables to
find the optimal solutions, it is highly tolerant to noise
and capable to operate in a very robust manner under
varying environmental conditions. Outages and temporal
loss of paths can be easily compensated.

The attractor selection method is a self-organizing
scheme, which is driven by the formulation of the activ-
ity function. While we have introduced a method for the

implementation as path selection scheme in this paper,
a lot of research issues remain open. We concentrated
in this paper on the mathematical formulation of the
attractor selection method itself and only briefly outlined
the path set-up phase. A more detailed discussion of
mechanism to search for new paths and the evaluation of
the overall network stability are required. Furthermore,
the investigation of mappings based on different input
values and their combinations, as well as the application
of this scheme in an ad-hoc/sensor network environment
is subject to future work.
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