
 1

On Automating the Network Management in
Industrial Automation Systems

Thomas E. Koch, Esther Gelle,
ABB Switzerland Inc., Corporate Research
Segelhof, CH 5405 Baden-Dättwil, Switzerland,
{thomas.koch, esther.gelle}@ch.abb.com

1. Introduction
The installation and administration of large heterogeneous IT infrastructures, for enterprises
as well industrial automation systems, are becoming more and more complex and time
consuming [1][2]. The growing number of interconnections between networks, the
development of new intelligent IT devices, and increasingly sophisticated computer hardware
and software, require in-depth knowledge of IT protocols, interfaces, and standards to
manage such infrastructures. This and the fast technology cycles make it virtually impossible
to manage IT infrastructures centrally. Industrial automation systems present an additional
challenge, in that these control and supervise mission critical production sites, which must be
up and running 24/7. Nevertheless, it is common practice to manually install and maintain
industrial networks and the process control software running on them, which can be both
expensive and error prone. In order to address these challenges, we believe that in the long
term such systems must behave autonomously. In this paper we want to sketch some issues of
such self-managing industrial automation systems.

Figure 1: Example of an Industrial Automation Network (with courtesy of ABB Inc.): It
consists of many heterogeneous devices like (process) controllers, motors, small

machines, routers, switches, servers and client PCs, connected by Ethernet and TCP/IP.

 800xA System Network /
 Ethernet / Fieldbus

 Plant network /
 Ethernet

Workplaces

Firewall /
security
zone

Internet
Workplaces
(Thin clients)

Servers

Controllers

Firewall /
security

zone

Fieldbus

Field devices

 2

2. Industrial Automation Systems
State of the art: Currently ABB provides with its new automation system 800xA an operator
platform for typical automation applications that control and supervise for example a cement
or steel production plant [3]. A typical industrial automation network consists of several
layers: process, field, group control and process control level (Figure 1). The operator
workplace is connected to the control network and shows the operator the current status of
the process online receiving a continuous stream of data from the controllers using OPC [4].
It is critical for continuous and reliable operation that not only the technical process is
supervised but also the control network itself.
In the 800xA system, the application "PC, Network and Software Monitoring" (PNSM)
provides the operator with an overview of the status of the control network and the devices
connected to it. It enables the monitoring of IT assets, e.g. computer nodes, routers, printers
etc. An IT asset comprises all IT items to be measured such as hard disk usage, network load
or number of connections [5]. The IT item as the basic piece of information is retrieved from
Windows Management Instrumentation (WMI) via OPC making use of the fact that 800xA
runs on Windows [6]. WMI provides an interface for network management applications in
Windows and also interfaces to SNMP agents [7].
The 800xA “Network and Device Scanning” tool (NDS) [5] improves the manual and error-
prone configuration process. NDS scans the network using ICMP and SNMP, compiles MIB
files and provides mapping information from SNMP OIDs to WMI paths (Figure 2). The
main benefits of this automation of the former manual configuration steps include reduction
time consuming and complex engineering efforts, improvement of the quality of
configuration data, and faster integration of new Assets into the Windows operating system
repository and PNSM library.
Benefits: The integration of network management of the automation systems' IT
infrastructure into a process control system like ABB's 800xA pays off after a very short time
[8]. The advantages of this integration through PNSM, OPC and WMI are evident; i) One
supervision system for the whole automation system instead of two. Network failures are
shown in PCS. ii) No need for extra IT specialists for network management at run-time.

Figure 2: Current architecture of PNSM and NDS.

 3

Challenges: The new challenges in industrial automation networks are manifold. The
Ethernet on plant level finds more and more usage, replaces or merges proprietary networks
and all the different bus standards (FIELDBUS, PROFINET, etc.). Additionally it connects to
the enterprise networks and thus to the Internet. On the lower Fieldbus/Ethernet level this
setup implies problems of real time delivery versus broadcast and multicast messages,
scheduled clock synchronization and other “unwanted” TCP/IP traffic. Connecting the plant
networks with enterprise networks arise more security issues, even with firewalls. Today, the
monitored control devices itself have limited resources like CPU power and memory. This
complex integration of plant floor to enterprise applications is forced by customers and
competition. Thus, new architectures are needed to meet these challenges.

3. Autonomous Industrial Network Management
Vision: In an approach towards the realization of visions like autonomic or organic
computing [1][2][9], a new device in the network would automatically register and activate
update mechanisms in PNSM. In a first step, this includes scheduled network scans and
analysis of differing information, new devices are scanned and configured automatically.
Concerning the autonomic and organic computing visions, IT networks and its IT assets will
be self-aware. These components will have these "self"-characteristics. From our perspective
presented in this paper, autonomic IT assets such as computers, routers, switches and
controllers, for example ABB's AC800M device controller, could acknowledge, install and
configure them selves. Additionally they may inform neighbor components in the network of
their existence, e.g. by publishing their offered services. In order to achieve these goals, the
components need to talk the same language. Data structures, protocols and services must be
openly standardized and implemented by vendors.
More specifically, in our application we expect each hardware device and each software
component in the architecture to behave like an autonomic component as shown in Figure 3.
An autonomic component will publish the services it requires and provide its own contact
information and services. Its policies describe optimization criteria respected by the
component in its actions throughout the life-cycle. The state of the art in Software
Architecture research is that middleware increasingly includes compositional adaptation
mechanisms which enable software to modify its structure and behavior dynamically in
response to changes in its execution environment [10]. In its ultimate form the component
will learn through interaction with other components as proposed by current research in agent
technology and use adaptive mechanisms to evolve in its behavior [2][11]. We want to apply
such mechanisms and behavior to the industrial automation system and propose the following
architecture.
Proposed architecture implementing autonomic behavior: Let’s assume the following use
case. A component added to the network, for example a router, automatically registers itself
to the directory service. Another service, NDS, discovers the router and informs PNSM about
the new component. If PNSM already has a configuration available for that type of
component, it is instantiated and made available for monitoring. If not, PNSM informs NDS,
which starts retrieving further information from the router using SNMP. If it cannot resolve
all OIDs, it either contacts already known web services to retrieve further MIBs or it searches
for new web services that can provide MIBs. Once a suitable MIB has been located, NDS
installs and tests it. PNSM on the other hand continues its monitoring of all configured and
instantiated devices. If it detects values that do not respect a specified threshold it informs the
diagnostic service, which starts collecting monitoring information from other components

 4

and from log files, and analyzes system-wide data. Each component monitors the availability
of new upgrades. If a new upgrade is available the upgrade service downloads and tests the
new version against the component’s specifications. If a problem occurs, the component is
reverted back to its old version.
In order to implement this type of architecture, the components will have to be categorized
into classes of middleware components providing compositional adaptation. Basic services
provided by each autonomic component will be part of the first middleware layer (Figure 3)
whilst more specialized services such as a network or a diagnose service will be part of the
next layer of system management. The NDS and PNSM component should be seen in an
application-specific context such as network management. Let’s look at the services discover,
configure, and alarm of Figure 3 in more detail distinguishing the current implementation in
800xA from future more autonomous behavior we envision.
Alarm: Today we use the simple network management protocol (SNMP) to monitor devices
on the network. SNMP OIDs are retrieved periodically in a fixed time interval through
Windows Management Instrumentation (WMI) and delivered to the network management
system PNSM. In a more autonomic setting the device would monitor itself and send an
alarm to PNSM when a given threshold for the particular information item is reached. In
architectural terms this would result in pushing the intelligence down to the device level. A
more modest improvement would be to change the retrieval interval based on historical
values of an information item. On small changes the interval would grow whilst a sudden
change in value would result in shrinking the interval again. Such an adaptation algorithm
would improve the additional bandwidth required by the monitoring function.
Architecturally, a distributed algorithm, e.g. using control-theory concepts [12], could be
used for implementation.
Discover: Currently a new device in the network is discovered by NDS scanning the entire
network explicitly. A bunch of information items are sent in form of OIDs to NDS and
proposed to the user for selection. A more autonomic behavior would be that a new device
installed in the network sends registering information to a directory service (Figure 3). The

Figure 3: This figure shows different levels of autonomic services. All services register
themselves at the directory service. PNSM and NDS services manage and monitor network

devices such as a router using diagnosis and network services.

 5

directory service would then register the device and its services and also publish its services
to NDS and PNSM and perhaps to neighbor devices.
Configure: Currently, NDS presents a configuration string for each information item found,
once the information could be identified through a MIB which needs to be compiled into
WMI. This then allows the user to configure the specific information in PNSM by setting up
a new device type for example. In the future, the NDS component could for example
maintain rules on which Web services to contact for further MIBs and how to choose MIBs
relevant for the device to be monitored. Based on higher-level policies typical information
would be considered for each device type to be monitored. Based on a kind of type template a
new device type could be defined in the library of PNSM which a set of standard information
items and the corresponding configuration strings could be extracted from NDS.
The issues of how to identify suitable MIBS automatically or how to identify which
information items should be selected form monitoring will be tackled in further research in
this area. As new devices are added to the system, such policies might have to be updated and
adapted to the new environment. The issue of decision making and self-learning becomes a
major research area if the vision of autonomic computing is to be realized in all its
consequences [10].

4. Conclusion
In this paper we discussed the complex problems of configuration and execution of network
management of industrial automation systems, especially for monitoring purposes. We
showed how we solve this nowadays with our process control system 800xA (including
PNMS and NDS tools). We pointed out the advantages of combining process control and
network management in the domain of industrial automation technology. Furthermore we
suggested an architecture of self-managed autonomic components for network management
of industrial automation systems.

References
[1] Horn, P., 2001. Autonomic Computing: IBM’s Perspective on the state of Information Technology.
[2] Kephart, J. O., Chess, D.M., 2003. The Vision of Autonomic Computing. IEEE Computer. 41-50.
[3] Industrial IT System 800xA, System Architecture. 3BUS092080R0001. ABB Automation

Technologies. http://www.abb.com - Products & Services – ABB Product Guide – 800xA.
[4] OPC. OPC Foundation, http://www.opcfoundation.org.
[5] Gelle, E., Koch, T.E., Sager, P., 2005. IT Asset Management of Industrial Automation Systems,

Proceedings of 12th IEEE International Conference on ECBS, 123-128
[6] Policht, M., 2001. WMI Essentials for Automating Windows Management. Sams.
[7] Stallings, W., 1996, SNMP, SNMPv2 and RMON – Practical Network Management. Addison-

Wesley, 2nd Ed..
[8] Seufert, F., 2003. Netzmangement der Zukunft, megalink, 27-29 (In German).
[9] Müller-Schloer, C., von der Malsburg, C., Würtz, R.P. 2004, Organic Computing. Informatik

Spektrum, 332-336.
[10] McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C., 2004, Composing Adaptive

Software. IEEE Computer. 56-64.
[11] Preiss, O., Naedele, M., 2002. Architectural Support for Reuse: A Case Study in Industrial

Automation. In Building Reliable Component-Based Software Systems. Eds: Crnkovic, I., Larsson,
M., Artech House Publishers.

[12] Diao, Y., Hellerstein, J.L., Parekh, S., 2005. Self-Manging Systems: A Control Theory
Foundation, Engineering of Autonomic Systems (EASe), Proceedings of 12th IEEE International
Conference and Workshops on the Engineering of Computer-Based Systems ECBS, 441-448

