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Abstract— Content distribution networks (CDN) have been
increasingly used as the scalable solution to deliver high-quality
multimedia content. However, despite the promising concept,
current self-organizing content distribution networks (using real-
time replica placement) lack placement and retrieval algorithms
that are both intelligent and scalable. In this paper we present
an architecture and relating algorithms for such a scalable, self-
optimizing content delivery service. Contrary to distributed and
centralized CDN architectures, we propose a hybrid approach.
In order to tackle specific problems such as congested network
parts and the occurrence of flash crowds, network monitoring
and multi-source traffic engineering are combined.

I. I NTRODUCTION

In the classical client-server architecture, a single video
server serves multiple clients. This approach however has
some significant drawbacks. The quality of the offered services
often degrades when for example the server cannot handle
the load, the intermediate network gets congested and starts
dropping packets or the experienced latency is too high. To
tackle the performance problems of this classical client-server
approach, Content Distribution Networks [1] have been intro-
duced. In these CDNs, the content is replicated to different
surrogate servers at the edges of the network. This way, the
content only has to pass a few nodes in order to reach the end
user, resulting in better Quality of Service (QoS) and network
usage. The CDN will use a Replica Placement Algorithm
(RPA) [2] to decide which content to replicate on which server.
Likewise, Content Retrieval Algorithms are used to direct
client requests to an optimal server.

However, the main problem in the current CDNs is that
both algorithms rely in most cases on some raw network
measurements such as round-trip-times and hop-counts. These
measurements do not provide information on the available and
used bandwidth, one-way delay and lossrate of network paths.
Existing CDNs only have a limited view on the current state of
the transport network resources and content servers, resulting
in non-optimal decisions of the current algorithms ([3][4]). As
shown in [2] centralized RPAs offer the best placement, while
only distributed algorithms can scale to larger networks. In this
paper we propose a hybrid architecture and complementing
RPA algorithms, called COCOA, which are based on dynamic
and as precise as possible information on the current state
of the network. It will be shown that COCOA achieves a

similar performance as current centralized algorithms, while
maintaining the scalability of distributed heuristics.

The paper is structured as follows. Other work related to
this research is described in section II. Section III briefly
illustrates the developed CDN architecture with respect to the
integrated self-organizing algorithms. Section IV describes the
COCOA RPA, while section V compares its performance to
other algorithms. Finally, section VI presents a conclusion and
future work.

II. RELATED WORK

Distribution and replication of data is used frequently to
improve the availability and performance of various types of
services. L. Dowdy and D. Foster introduced the concept in
the file assignment problem [5]. In [6], the authors use cen-
tralized placement strategies for Web server replicas, while [7]
describes some basic replication techniques in general content
distribution networks. More advanced centralized and distrib-
uted replica placement algorithms are defined and compared
in [2] and [8]. All previous approaches try to optimize the
overall system performance by minimizing the access latency
and/or the required replication resources (i.e. server space).
A slightly different approach in [9] guarantees certain latency
goals while minimizing the replication cost.

Contrary to the scalable distributed and more optimal cen-
tralized placement algorithms, we propose a hybrid system
architecture in which centralized components are combined
with distributed placement algorithms. While previous papers
consider optimization metrics such as access latency, we
minimize the load of the core network in function of the
replication cost. This allows network operators to dimension
their network according to the user demand. To validate our
novel content placement and retrieval algorithms, we compare
them with the algorithms described in [2] and [7].

III. OVERVIEW OF THE CDN ARCHITECTURE

In order to facilitate the distribution of content (constant
bitrate streaming audio/video), a novel architecture is de-
signed. This architecture consists of different functional layers,
each containing autonomous modules in order to provide
portability and extensibility of the framework. Layers and
modules communicate through a predefined interface. Because
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Fig. 1. Snapshot of the CDN Architecture

of the modular design, it is possible to include new platforms,
hardware, placement algorithms etc.

Figure 1 focusses on the part of the architecture that is
relevant for this discussion. The CDN Operation layer hosts
the logic of the CDN platform. Content retrieval and replica
placement algorithms in the modules of this layer use the func-
tionality of the CDN Network Management layer to implement
their decisions in the network. This layer contains modules that
communicate with the individual network components such as
servers, routers and switches in the bottom CDN Hardware
layer. Because RPAs are invoked real-time once every period,
the CDN will self-organize over time.

To meet the advantages of the scalable distributed and
more optimal centralized content distribution networks, this
CDN architecture uses a hybrid approach. In this hybrid
CDN, the Content Retrieval (CR) module is centralized, while
the Content Distribution (CD) module is distributed. Because
centralized replica placement algorithms can take more infor-
mation on the state of the network into account (e.g. global
topological view), their produced placement is closer to the
exact solution than the one produced by distributed heuristics.
Based on this observation, the centralized CR module in
the presented architecture provides additional network state
information to the distributed CD modules, resulting in a more
accurate content placement. For each content request, the CDN
needs to find a server and a path to the client, independently
whether the RPA runs centralized or distributed1. The CR
module reuses the computed path cost and passes it to the
participating content servers. This way, the overhead of the
centralized module is limited to the distribution of the obtained
information.

Both the CR and CD modules obtain network state informa-
tion from the CDN monitoring module. This module feeds the
different algorithms in the upper layers with measured network
state such as topology information and available bandwidth,
delay, loss and jitter on the core edges. In order to obtain this
state information, multiple observation points are configured in

1This can be compared to dynamic DNS request routing [1].

the network. The monitoring platform and implemented CDN
monitoring module are fully addressed in [10].

IV. REPLICA PLACEMENT AND CONTENT RETRIEVAL

ALGORITHMS

The most vital parts of the architecture are the algorithms
that place the content and direct clients to the most optimal
replica. These algorithms will determine the performance of
the CDN architecture. In the next sections different placement
algorithms are covered and compared to the exact solution.
A novel algorithm that combines the advantages of existing
RPAs will be described and evaluated.

A. Reference solution by means of an ILP formulation

In order to determine the optimal placement of the content
replicas in a given situation (known requests), an Integer
Linear Program (ILP) can be evaluated off-line. Because our
replica placement ILP is proven to be NP-complete, it is
not suited for real-time CDN environments. The following
formulation will be used as a reference to evaluate the RPA
heuristics.

For a set of edgesE, usersU and filesF , we define the
bitratebf of file f and the number of requestsru,f from useru
for file f . In is the set of all incoming edges, whileOn defines
the set of all outgoing edges of noden. A noden belongs to
the set of usersU , serversS or core nodesC. We minimize
the average link load in order to serve as much requests as
possible:

min (

∑
e∈E(

∑
u∈U

(
∑

f∈F
(he,u,f×bf×ru,f ))

capacity e

)

#E
) (1)

he,u,f is 1 if edge e is used to deliver filef to useru, 0
otherwise.
zs,f is 1 if file f is stored on servers, 0 otherwise.

The ILP is subject to the flow conservation constraints:∑
e∈Ic

he,u,f =
∑

e∈Oc
he,u,f ∀u ∈ U, f ∈ F, c ∈ C

zs,f ≥ he,u,f ∀s ∈ S, u ∈ U, f ∈ F, e ∈ O∑
e∈Iu

he,u,f = ru,f ∀u ∈ U, f ∈ F

The previous constraints ensure that a flow starts at a server,
flows through the network and reaches a client. Depending on
the scenario, other constraints that limit the edge, server or
access capacity, limit the number of replicas and enable/disable
traffic engineering are applied as well.

B. General real-time replica placement heuristics

The most simple on-line RPA algorithm israndomlydistrib-
uting content replicas. Despite the fact that this algorithm is
very easy to implement, it will not make an optimal decision
on the number and location of the replicas. Thepopularity-
local (pop-L) algorithm will store the content that is locally
most popular. Each content server stores the most popular
content among its clients. Thepopularity-global(pop-G) RPA
on the other hand extends the popularity-local algorithm by
putting a (probabilistic) limit on the number of replicas of the



most popular content in favor of other content. This way, not
all servers are filled with the same most popular content.

The pop-L algorithm makes a decision based on the number
of received requests independently of the distance to other
replicas. Greedy algorithms do take this distance into account.
The greedy-singleRPA (gre-S) for example places its content
based on the popularity and the cost of retrieving content from
the origin server, while thegreedy-global(gre-G) algorithm
depends on the popularity and the cost of retrieving content
from other servers [7]. Optimizing the placement even further,
greedy-all(gre-A) computes the optimal position of the con-
tent based on the local popularity and the cost of retrieving
content from other servers by all clients.

C. Co-Operative Cost Optimization Algorithm (COCOA)

COCOA is a heuristic for replica placement designed to
fit the presented CDN architecture. It aims to combine the
benefits of both the popularity en greedy algorithms. COCOA
relies on the co-operation between both the CR and CD mod-
ules, i.e. the CR module will aid the decision-making process
of the CD module. Furthermore, servers will co-operate when
retrieving content. Unlike the greedy alternatives, COCOA is a
progressive RPA, which means that not all replica placements
are recomputed at each RPA iteration. When the RPA is
executed, only the best placements are computed and stored
in favor of already present content. This calls for the need of
a content removal strategy.

a) The CR Module:For each request, the CR algorithm
computes the cost (e.g. hopcount) of the best or second best
(in case a replica is stored on the local server) path from a
candidate streaming server to the client2.

Define: Servers ∈ S with contentCs; Requestsrs,f for
contentf from servers; Costs′,s

f in order to stream content
f from servers′ to s; Local CostLCs,f of contentf in
servers; Local ProfitLPs,f of contentf in servers

Find s′ so that Costs′,s
f ≤ Costs′′,s

f , with
f ∈ (Cs′ ∩ Cs′′),∀s′ 6= s, ∀s′′ 6= s, ∀rs,f

If no suchs′ can be found, thenCosts′,s
f = CostMAX

If (f /∈ Cs), thenLCs,f = LCs,f + Costs′,s
f

elseLPs,f = LPs,f + Costs′,s
f

If the content is not present locally, we increase the cost
with the cost we want to avoid by storing a replica on the
local server. If the content on the other hand is present locally,
we increase the profit with the hypothetical cost we would
experience when the content is removed locally. The smaller
this cost, the fewer the profit of this copy increases and the
faster the content will be removed in favor of other content
(i.e. the content is replicated in the vicinity of this server, so
it can be removed without any severe performance hits). If
the content is not stored on other servers, i.e. the content can
not be removed, the profit is increased with the maximum

2Note that finding a server and path is necessary for every request,
independently of the used RPA.

TABLE I

CHARACTERISTICS OF VARIOUSRPA HEURISTICS

RPA Requests Topo Process Complexity

Random None None Distr O(CsS)
Pop-L Local None Distr O(CsSF )
Pop-G Global None Hybrid O(CsSF )
Gre-S Local Origin Distr O(CsSF )
Gre-G All Entire Centr O(CallS

2F )
Gre-A All Entire Centr O(CallS

3F )
COCOA CR Mod None Hybrid O(CsSF )

cost possible (e.g. max hopcount). Depending on the different
simulations, the cost will be expressed as distance (hopcount)
or path/network load. For each request the CR algorithm needs
to find at maximum one server-path pair, i.e. the optimal path
in case the content is not present locally, the semi-optimal path
in case the content is present locally and somewhere else or
none.

b) The CD Module:Executing the COCOA RPA on a
single servers will search for expensive contentfin (i.e.
content that is not present and has the highest local cost
LCs,fin ). If the server has spare storage capacity, this content
is stored. In the case the server is already fully loaded, we
search for other contentfout that can be removed (i.e. content
that is locally present and has the lowest profitLPs,fout). If
the profit of this latter contentfout is lower than the cost
of the prior contentfin, fout is removed in favor offin

(we assume all content has the same size). When storing or
removing content, the values for local profitLP and costLC
are swapped. When evaluating the COCOA RPA, only the cost
functions for different files need to be compared. This results
is a high performance and allows more content and bigger
networks.

V. EVALUATION OF THE RPA HEURISTICS

A. Complexity and scalability

Table I illustrates the characteristics of the various con-
sidered RPA heuristics. When executing an RPA only local
or all requests are taken into account. In addition to the
local requests, the pop-G algorithm needs to know the global
number of all generated requests. Because COCOA is part
of the developed CDN architecture, it depends on the CR
module to present the required request information. Popularity
algorithms do not need any topological information, while the
2 greediest RPAs need to know the cost of every network
path. The gre-S RPA only considers the cost from the origin
server. Both previous characteristics define whether an RPA
runs distributed or centralized. A hybrid RPA on the other hand
combines both approaches. The complexity of an algorithm
reflects the time of a single execution.S defines the number
of servers, whileF is the total amount of different content.
The average number of files that can be stored on a single
server is defined byCs, the total amount of storage space by
Call. For distributed and hybrid algorithms,S can be omitted
from the processing time because of parallel execution.



Ignoring the parallelism which is inherent to distributed
algorithms, the processing times of the various RPAs even
differs in orders of magnitude. Using our developed Java finite-
state simulator (S = 28, F = 2800, Cs = 200, Call = Cs×S),
running the pop-L or COCOA RPA lasts about 0.2 seconds,
where the gre-G RPA takes an average of 38 seconds. Even
worse, to calculate all new replica positions using the gre-A
heuristic, an average time of 15.9 minutes is required.

The presented CDN architecture would benefit most from
the greedy algorithms because they result in the best content
placement. However, these algorithms are not suited to run
in a large CDN. Computing greedy algorithms is very time
and processor consuming and scales very bad with the size
(i.e. number of servers, content and requests) of a CDN. Each
time a greedy algorithm runs, it recomputes the position of
every replica, which is impossible in a CDN with a large
number of files. Ideally, we need an RPA that gives a solution
as optimal as a greedy algorithm, but with the complexity of
the popularity algorithm.

B. Performance analysis of the replica placement algorithms

To evaluate the performance of the various placement algo-
rithms, they were implemented in a Java finite-state simulator.

Fig. 2. Pan-European fiber-optic network topology

Figure 2 shows the used topology of a realistic pan-
European fiber-optic network [11], where each edge has a
throughput of 1Gb. The popularity of the content is distributed
zipf-like (α = 0.7) [12] andF = 105 (streamed at a rate of
2Mbit/s for 120’). In this scenario approximately 2 movies are
requested each minute (R = 2). The parameters are considered
reasonably low in order to be able to use them in the ILP
solution.

Figure 3 depicts the increased load of the various RPA
heuristics relative to the exact solution in function of the
replication factorRF , i.e. total additional storage capacity
as a percentage of the available content. In all scenarios the
RPA is executed every 50 minutes. Clearly, the placement
provided by the COCOA algorithm is much better than the
pop-L heuristic. The solution from COCOA comes very close

   25% 50% 75% 100% 125% 150% 175% 200%
0%  

50%  

100%  

150%  

200%  

250%  

Replication Factor

O
ve

rh
ea

d 
of

 A
V

G
 lo

ad
 to

 IL
P

Random
Popularity Local
Popularity Global
Greedy Single
COCOA
Greedy Global
Greedy All

Fig. 3. Comparison of the average load of the heuristics with the ILP

to the one offered by gre-G, but only for a fraction of the
cost. The gre-A RPA reduces the load even further, however
its computational complexity makes it unscalable to larger
networks.
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Fig. 4. Comparison of the standard deviation of the heuristics with the ILP

In Figure 4 the spread of the load in the network is con-
sidered for the various algorithms. A low standard deviation
means that the load is equally spreaded over the network,
resulting in a more efficient use of the available bandwidth.
Again COCOA performs almost as good as the gre-G RPA.

Each time the RPA is executed (every 50 minutes), content
will be removed in favor of other content, resulting in network
overhead. For both the popularity and COCOA algorithms,
the number of replacements is similar. AnRF of 200% for
example, results in 200 to 300 replacements when the RPA
is executed 200 times over a period of 7 days. For the same
number of executions the greedy algorithms will replace about
950 files, resulting in a much higher network overhead.

C. Using traffic engineering for load balancing

A major issue in CDN networks is the occurrence of flash
crowds and congestion. In a flash crowd, the current request
rate raises far above the predicted or historical rate. Flash
crowds drastically change the popularity of certain content
globally as well as locally. This has severe repercussions on the
load and can cause congestion in certain parts of the network.
Because flash crowds are difficult to anticipate, preemptive
measures need to be taken. In order to be as resilient as



possible the RPA and CR algorithm can be tuned to spread the
load over the entire network. Instead of directing the client to
the closest replica, the client is directed to the replica that has a
path to the client resulting in the lowest overhead on all edges
of that path, i.e. pick a server and path so that the maximum of
the load on all edges of the path is lower than the maximum
load of all other server-path combinations [13]. Using this
multi-source traffic engineering (TE), the CR module avoids
all links that are heavily loaded.
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Fig. 5. Average load and STDEV without TE

Without the use of TE, all flows are mapped to the shortest
path from server to client. For a CDN with the same para-
meters as before, exceptF = 2800 and R = 15, figures 5
(a) and (b) plot the average load and standard deviation of
all edges for various RPAs. Again COCOA scores better than
pop-L and slightly worse than gre-G. Figure 5 (b) shows that
the more intelligent algorithms not only reduce the load, but
also spread it more equally over all edges.
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Fig. 6. Effect of TE on the load (COCOA withRF = 200%)

When flows are mapped to paths other than the shortest
path, the average path length will increase, but all edges will
be loaded more equally. Figure 6 clearly shows the effect of
this preemptive TE.

Figure 7 illustrates the results of the same experiments as
figure 5 with the use of multi-source TE. Even though the
average link load increases, the load on the most loaded core
edges drops up to 30%. By diverting traffic from these links to
other network paths, congestion is reduced. With preemptive
TE, again COCOA scores better than pop-L. Because the
COCOA algorithm takes the edge load into consideration
(by means of the CR module), it can optimize the content
placement even further. This results in a placement that is as
optimal as the one obtained by gre-G.
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VI. CONCLUSION AND FUTURE WORK

This paper briefly presented a novel hybrid CDN architec-
ture and related COCOA placement and retrieval algorithms.
Because centralized components are mixed with distributed
algorithms, COCOA is as scalable as the popularity-local al-
gorithm, while providing a similar performance as the greedy-
global RPA. Up until now it is assumed that the number
of content replacements has no influence on the load of the
network. In a realistic situation, these replacements need to
be kept to a minimum. In future work, we will investigate the
effect of the frequency of consecutive RPA executions and the
number of content replacements and search for algorithms in
order to optimize this even further.
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