
Autonomic administration of clustered J2EE applications

Sara Bouchenak1, Noel De Palma2, Daniel Hagimont3
1 University of Grenoble I

Grenoble, France
2 INPG

Grenoble, France
3 INRIA

Grenoble, France

{Sara.Bouchenak, Noel.Depalma, Daniel.Hagimont}@inria.fr

1 Introduction

Today's computing environments are becoming
increasingly sophisticated. They involve numerous
complex software that cooperate in potentially large
scale distributed environments. These software are
developed with very heterogeneous programming
models and their configuration facilities are generally
proprietary. Therefore, the administration of these
software (installation, configuration, tuning, repair
…) is a much complex task which consumes a lot of
resources:

- human resources as administrators have to
react to events (such as failures) and have to
reconfigure (repair) complex applications,

- hardware resources which are often reserved
(and overbooked) to anticipate load peaks or
failures.

A very promising approach to the above issue is to
implement administration as an autonomic software.
Such a software can be used to deploy and configure
applications in a distributed environment. It can also
monitor the environment and react to events such as
failures or overloads and reconfigure applications
accordingly and autonomously. The main advantages
of this approach are:

- Providing a high-level support for deploying
and configuring applications reduces errors
and administrator's efforts.

- Autonomic administration allows the required
reconfigurations to be performed without
human intervention, thus saving
administrator's time.

- Autonomic administration is a means to save
hardware resources as resources can be
allocated only when required (dynamically
upon failure or load peak) instead of pre-
allocated.

This paper presents Jade, an environment for
developing autonomic administration software. Jade
mainly relies on the following features:

- A component model. Jade models the
administrated environment as a component-
based software architecture which provides
means to configure and reconfigure the
environment. The same model is also used for
developing the administration software itself.

- A system representation which provides a
consistent and reliable view of the whole
administrated system.

- Control loops which link probes to
reconfiguration services and implement
autonomic behaviors.

We implemented a first prototype of the Jade
environment and used it for deployment and repair
management of a clustered J2EE application.

In section 2, we introduce clustered J2EE
applications. Section 3 presents an overview of Jade.
Section 4 describes its application to the deployment
and repair management of a J2EE server. We
conclude the paper in section 5.

2 Clustered J2EE applications
2.1 J2EE applications

Java 2 Platform, Enterprise Edition (J2EE) defines
a model for developing distributed applications in a
multi-tiered architecture, e.g., e-commerce
applications [7]. As illustrated by Figure 1, such
applications are composed of the following tiers:
Web, Servlet, EJB and Database. Upon an HTTP
client request, either the request targets a static web
document, in which case the web server directly
returns that document to the client; or the request
refers to a dynamic document, in which case the web
server forwards the request to the servlet tier. A
servlet is a Java program responsible for the Web
page generation. The servlet may invoke EJB objects
in order to compute data to be included in this page.
Since EJBs may be persistent, they are backed up in
the database.

2.2 Clustering
 To face high loads and provide higher scalability

of J2EE applications, a commonly used approach is
the replication of tiers on a cluster of machines. This
approach defines a particular component in front of
each tier, which dynamically balances the load
among the replicas. Here, different load balancing
algorithms may be used, e.g., Random, Round-Robin,
etc. In addition to providing scalability, each load
balancer also has the role of providing higher service
availability. Indeed, it monitors liveness of the
replicated servers and in case of a failure of a replica
it simply ignores it and redirects the incoming
requests to living servers. Among the existing
clustering solutions, we can cite c-jdbc for a cluster
of replicated database servers [3], cmi for a cluster of
replicated Jonas EJB servers [4], mod_jk for a cluster
of replicated Tomcat servlet servers [5], and the L4
switch for a cluster of replicated Apache Web servers
 [6] (see Figure 1).

2.3 Problem statement
 In this context, the problem we are addressing is

the administration of a clustered J2EE application.
First, the deployment and configuration of an

application on a cluster is a much complex and time
consuming task. We observed that settling such an
application takes between one and two weeks for an
experienced administrator.

Second, to provide scalability and availability,
servers have to be replicated at the level of each tier.
But when the replication policy has to be
reconsidered (upon failure or server overload), a
human intervention is required.

Our contribution with Jade is to provide an
environment for developing autonomic
administration software. Jade simplifies the
configuration and deployment of a clustered J2EE
application and it allows defining autonomic
reconfiguration behaviors.

3 JADE
3.1 Component model

Jade relies on a component model, both for the
administrated entities and for the implementation of
the administration software. We used a Java-based
and free open source implementation of a general
component model called Fractal [2].

The use of a component model for building the
administration software is motivated by the need to
administrate the administration software itself, i.e.
reconfigure it when required.

The administrated entities are encapsulated in
components in order to allow their deployment and
dynamic reconfiguration. The software resources that
we encapsulated (as Fractal components) are all those
involved in a J2EE multi-tier architecture. In our
experiments, we chose free legacy software such as
the Apache Web server, the Jakarta Tomcat servlet
engine, the MySQL database server, and the RUBiS
J2EE application that we used in our experiments
(see section 4). Each encapsulated software provides
its own implementation of Fractal’s configuration
interfaces. These interfaces allow managing
components’ attributes and in-coming and out-going
bindings. Modifications of attributes or bindings are
reflected on legacy software mechanisms. For
instance, modification of the port attribute of the
encapsulated Apache component is reflected in the
httpd.conf file. Similarly, modification of out-going
bindings of this Apache component is reflected in the
worker.properties file.

Thus, reconfiguring a J2EE architecture consists
in a component-based reconfiguration, instead of
complex ad-hoc operation on legacy software
configuration files.

3.2 Deployment
An application is described using an Architecture

Description Language (ADL), which is one of the
basic features of the Fractal component model. This
description is an XML document which details the
architectural structure of the application to deploy on
the cluster: which software resources compose the

Internet

Database server
(MySQL, Oracle)

c-jdbc

EJB server
(Jonas, JBoss)

cmi

Web server
(Apache)

L4

Client

Client

Client

Servlet server
(Tomcat)

mod_jk

Figure 1. Clustered J2EE application

multi-tier J2EE application, how many replicas are
created for each tier, how are the tiers bound
together, etc …

A Software Resource Repository component (a
component of Jade) allows retrieving the
encapsulated software resources involved in the
multi-tier J2EE application (e.g., Apache Web server
software, MySQL database server software, etc.).

A Cluster Manager component is responsible for
the allocation of nodes (from a pool of available
nodes) which will host the replicated servers of each
tier.

The deployment of an application is the
interpretation of an ADL description, using the
Software Resource repository and the Cluster
Manager to deploy application’s components on
nodes.

The autonomic administration software is also
described using this ADL and deployed in the same
way. However, this description of the administration
software is separated from that of the application.

3.3 Self-repair
One important autonomic administration behavior

we consider in Jade is self-repair1. Whenever a
replicated tier fails, the service is still available
thanks to replication. However, we aim at
autonomously repairing the application by
introducing a new replica in the application
architecture in replacement of the faulting one.

In this purpose, Jade introduces three components:
System Monitoring, System Representation and
Control Loop.

The System Monitoring component monitors
liveness of the cluster nodes through probes installed
on nodes; those probes are implemented using
heartbeat techniques.

The System Representation component maintains
a representation of the current architectural structure
of the application. Indeed, in order to tolerate a node
crash, we need to manage a safe copy of the
configuration of the components instantiated on that
node (which would be lost otherwise). This
representation is consistent in the sense that it reflects
the current architectural structure of the application
(which may evolve); and it is reliable in the sense
that it is itself replicated to tolerate faults. The
System Representation is implemented as a
photography of the whole component architecture.
This photography reproduces the whole architecture,
but with empty encapsulated components (e.g.

1 But many different behaviors may be defined.

Apache, Tomcat …). It only captures the attributes
and bindings of components in order to allow repairs.

The Control Loop component implements the
autonomic behaviour, which is the repair
management in our case. It receives notifications
from the System Monitoring component and upon a
node failure, makes use of the System Representation
to retrieve the necessary information about the failed
node (i.e., software resources that were running on
that node prior to the failure and their bindings to
other resources), contacts the Cluster Manager to
allocate a new available node, contacts the Software
Resource Repository to retrieve the necessary
software resources, redeploys those software
resources on the new node. In the particular case of
the clustered J2EE application, the algorithm acts as
follows:

- Say NC is the component deployed in
replacement of OC

- Configure NC’s out-going bindings (the same
as OC)

- Start NC
- Configure the in-coming bindings (for each

component X that was bound to OC)
- Restart each component X (generally required

to take into account bindings updates)
The System Representation is then updated

according to this new configuration.

Notice that different Monitoring Systems or

Control Loops can be implemented according to the
autonomic administration services that have to be
defined. In particular, Control Loops can be defined
to repair any faulting component of Jade (including
Monitoring Systems or Control Loops themselves).

4 Experiments
In the following, we consider an experimental

scenario that exhibits self-repair of a muti-tier J2EE
application, the RUBiS auction site (modeling eBay-
like sites) [1]. Here, we consider a multi-tier J2EE
architecture consisting of a one Apache server as the
Web tier, four Tomcat servers as the servlet tier, and
one MySQL database server as the database tier.
Mod_jk is used as a module (i.e., a library)
interfacing the Apache Web server with the Tomcat
servlet servers. All the used software systems, in
addition to the RUBiS J2EE application, were
deployed on the J2EE architecture using the JADE
deployment mechanism (section 3.2).

Deployment
This application architecture is described using

Fractal’s ADL. The ADL description is given in
Figure 2.

<definition name="fr.jade.test.J2EE">
...
<component name="apache"
definition="fr.jade.resources.ApacheResource">
 <attributes
 signature="fr.jade.api.GenericAttributeController">
 <attribute name="resourceName"
value="apache"/>
 <attribute name="dirLocal" value="/tmp/apache"/>
 <attribute name="user" value="depalma"/>
 <attribute name="group" value="sardes"/>
 <attribute name="port" value="8080"/>
 <attribute name="jkMounts" value="servlet"/>
 </attributes>
 <virtual-node name="node1"/>
</component>

<component name="tomcat1" ... </component>
<component name="tomcat2" ... </component>
<component name="tomcat3" ... </component>
<component name="tomcat4" ... </component>
<component name="mysql" ... </component>
...
<binding client="apache.out0" server="tomcat1.in"/>
<binding client="apache.out1" server="tomcat2.in"/>
<binding client="apache.out2" server="tomcat3.in"/>
<binding client="apache.out3" server="tomcat4.in"/>
<binding client="tomcat1.out" server="mysql.in"/>
<binding client="tomcat2.out" server="mysql.in"/>
<binding client="tomcat3.out" server="mysql.in"/>
<binding client="tomcat4.out" server="mysql.in"/>
</definition>

Figure 2. ADL description of the J2EE
application

Each component creation includes the

initialization of key attributes which are reflected in
the encapsulated software configuration files before
the software are launched (for instance, the dirLocal
attribute of each component indicates the place where
the software should be installed on the local host). At
the end of this ADL description, the bindings
between the created components are defined.

The high level of abstraction of this definition and
the automatic deployment of the application, reduce
configuration errors and simplify the task of
administrators.

Moreover, the application being structured in
terms of Fractal components, it benefits from all the
interfaces defined in Fractal for managing
components, especially managing component
attributes and bindings. The repair procedure relies
on these interfaces to update the application
architecture.

Repair
In this experimental scenario, the deployed J2EE

application is victim of 2 successive failures,
respectively affecting two nodes hosting a Tomcat
servlet server. When the System Monitoring
component detects a failure, an event is delivered to
the Control Loop. The Control Loop reallocates a
new node and redeploys the necessary software
resources on that node (i.e., a servlet server) and
rebinds the involved components. The
implementation of this reconfiguration in the Control
Loop component is quite simple. It exploits the
Fractal interfaces to:

- inspect the software architecture and
determine what has to be repaired. This
inspection is made on the System
Representation, which is a (reliable)
photography of the application (before
failure).

- reconfigure the actual application architecture
and replace the faulting component.

Figure 3. CPU usage on Tomcat nodes
(without Jade)

Figure 3 shows the evolution of CPU usage on

each Tomcat node, without repair by the Jade
administration tool. In order to simulate the failures,
we simply killed the Tomcat servers on the relevant
machines. We observe that the CPU usage on the
faulting machines falls down to zero, and that the
CPU usage on the two remaining Tomcat servers

increases consequently, as the mod_jk connection
between Apache and Tomcat distributes the load
among the Tomcat servers which are still alive.

Figure 4. CPU usage on Tomcat nodes

(with Jade)

Figure 4 shows the evolution of CPU usage on

each Tomcat node, with the Jade repair policy
previously described. For these measurements, the
faulting machines are returned to the pool of free
nodes and reallocated by the repair procedure.
Therefore, the Tomcat servers are restarted on the
same nodes. We observe a CPU peak on the faulting
machines due to server restarts. After the repair
period, the CPU level stabilizes at the same level as
before the failures.

5 Summary and future work
This paper is a summary of our on-going work on

Jade, an environment for implementing autonomic
administration software.

The main motivation of this project is to deal with
the difficult issues that administrators have to face in
today’s distributed computing environments. The
important issues we identified are:

- Reduce the complexity of configuration and
deployment

- Limit human intervention for administrating
software

We address these issues in Jade with:
- A component model which provides a high

level of abstraction for deploying, configuring
and reconfiguring the administrated software.

- Autonomic administration which can be used
to autonomously administrate software
without human intervention.

Our experiments show the potential of this
approach.

We are currently experimenting with more
elaborated autonomic administration services which
aim at repairing a wider spectrum of failures
(software faults, network partitions …). We are also
exploring the definition of an autonomic QoS
manager which would be able to dynamically
reconfigure the application (e.g. the number of
replicas in a clustered J2EE application) according to
the observed load.

Acknowledgment. Special thanks to Adrian Mos

for the first measurements on Jade. This work has
been partly supported by the European Community
through the CoreGrid Network of Excellence.

6 References
[1] C. Amza, E. Cecchet, A. Chanda, A. Cox,

S. Elnikety, R. Gil, J. Marguerite, K. Rajamani and
W. Zwaenepoel. Specification and Implementation of
Dynamic Web Site Benchmarks. IEEE 5th Annual
Workshop on Workload Characterization (WWC-5),
Austin, TX, USA, Nov. 2002.
http://rubis.objectweb.org

[2] E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive
and Dynamic Software Composition with Sharing.
Seventh International Workshop on Component-
Oriented Programming (WCOP02), Monday, June
10, 2002, Malaga, Spain. http://fractal.objectweb.org/

[3] E. Cecchet, J. Marguerite, W. Zwaenepoel. C-JDBC:
Flexible Database Clustering Middleware. FREENIX
Technical Sessions, USENIX Annual Technical
Conference, Boston, MA, Etats-Unis, jui. 2004.
http://c-jdbc.objectweb.org/

[4] JOnAS Project. Java Open Application Server
(JOnAS): A J2EE Platform.
http://jonas.objectweb.org/current/doc/JOnASWP.ht
ml

[5] G. Shachor. Tomcat Documentation. The Apache
Jakarta Project.
http://jakarta.apache.org/tomcat/tomcat-3.3-doc/

[6] S. Sudarshan, R. Piyush. Link Level Load Balancing
and Fault Tolerance in NetWare 6. NetWare Cool
Solutions Article, mar. 2002.
http://developer.novell.com/research/appnotes/2002/
march/03/a020303.pdf

[7] Sun Microsystems. Java 2 Platform Enterprise
Edition (J2EE). http://java.sun.com/j2ee/

