
Towards self-diagnosing Web Services

Liliana Ardissono, Luca Console, Anna Goy,
Giovanna Petrone, Claudia Picardi, Marino Segnan

Dip. Informatica – Universit̀a di Torino
liliana,lconsole,goy,giovanna,marino,picardi@di.unito.it

Daniele Theseider Dupré
Dip. Informatica

Universit̀a del Piemonte Orientale
dtd@mfn.unimpn.it

Abstract— Distributed software systems would benefit from
autonomous fault management capabilities, but current prac-
tice is only based on handling exceptions without attempts at
identifying causes for them. This paper is a step toward Web
Services with autonomous diagnostic capabilities. It provides a
novel context of application for model-based diagnosis, a contex
which motivates a partially distributed approach. We consider
complex services, built as a composition of simpler ones, and we
associate a diagnoser with each component service, and a global
diagnoser with the complex one. We characterize local diagnosers,
based on abstract models of individual services, and we present
the coordination protocol adopted by the global diagnoser.

I. I NTRODUCTION

Service Oriented Architectures [10] and standard languages
for the publication and invocation of Web Services, such as
WSDL [14], enable the exploitation of heterogeneous software
by abstracting from the features of the deployment environ-
ment of applications. On top of these basic communication
languages, standard Web Service composition languages, such
as BPEL [2], are being defined to support the development of
complex applications based on the orchestration of simpler
ones. Moreover, in the Semantic Web community (see, e.g.,
[6], [9]), languages and frameworks are being defined to
support a suitable specification of services and intelligent
service cooperation (e.g., see [8]). The growing worldwide
acceptance of these standards is an excellent start for a realistic
integration of services in the Web, as well as in Enterprise
Application Integration, which represent two mainstreams of
software development in the next future [1].

However, several issues have to be addressed in order to
enable the effective integration of non trivial applications. In
fact, rather straightforward solutions are currently adopted to
support the reliability of services. The ability to detect and
isolate faults during service execution and to apply recovery
actions in an efficient and effective way would be very
desirable, especially for the creation of complex services from
simpler ones whose implementation is not publicly available.

In this paper we propose a framework for adding diagnostic
capabilities to Web Services, using a model-based perspective
[5]. The goal is to designself-healing services which guar-
antee autonomous diagnostic and recovery capabilities. When
defining a complex service, composed of simpler ones, we pro-
pose to add to each serviceS a local diagnoser which relates
hypotheses about incorrect outputs ofS to a misbehaviour of
S itself, or to incorrect inputs from other services. A global
diagnostic service is then associated with the complex service.
It coordinates the local diagnosers, exchanging messages with

them and, without relying on any information about the
internal structure of the sub-services, it can in turn compute
diagnoses at the level of the global service. The same idea can
be adopted recursively when the global service is used as a
component of a more complex service. In the paper we discuss
a protocol for a global diagnostic service, and we characterize
the operations that local diagnosers must support in order to
comply with such a protocol. The goal is the identification of
the faulty service, not debugging the service itself. In addition,
the local diagnoser may identify a part of the service which
is claimed to be responsible for the fault.

We choose to adopt an approach based on the introduc-
tion of a global diagnostic service because this enables to
recursively partition Web Services into aggregations of sub-
services, hiding the details of the aggregation to higher-level
services. This is in accordance with the privacy principles
which allow to design services at enterprise level (based
on intra-company services) and then use such services in
extranets (with other enterprises) and public internets. The
global diagnostic service only needs to know the interfaces
of local services and share a protocol with local diagnosers.

Section II sets the context of Web Service diagnosis; section
III introduces the approach we adopted to model services;
section IV introduces the protocol for the global diagnostic ser-
vice, and characterizes local diagnosers; section V overviews
existing research and future work on the topic.

II. T HE CONTEXT: WEB SERVICES DIAGNOSIS

Currently, fault handling in Web Services (WSs for short)
is not performed in a satisfactory way as it basically relies
on the handling of exceptions raised by invoked services; no
attempt is made to identify the causes of faults. This may be a
limitation, especially in complex services, composed of several
Web Services where problems might be caused by the inter-
action between services and where the absence of specialized
diagnostic capabilities usually imposes the execution of coarse
grained repair actions when errors occur.

We show our viewpoint on an example adapted from [13]. A
bookshop offers a Web-based catalog whose user interface is
implemented as a Web Service (Catalog WS) interacting with
the main backoffice Web Service of the bookshop (Bookshop
WS). When a customer selects a book, the Web Services
exchange the following messages (see Figure 1):

• The Catalog WS sends an order of a book to the Book-
shop WS (message 1).

Catalog
WS

Bookshop
WS

Publisher
 WS

Shipper WS

1-sendOrder(bookInf, custInf) 2-sendQuery(ordId,isbn,custInf)

3-inStock(ordId,retrBookInf,cost)6-sendBill(ordId, bill, cost)

7-handleBill(ordId, money)
4-reqSendBook(ordId,
 retrBookInf,custInf)

5-sendNotify(ordId,
 sentBookInf,custInf)

Fig. 1. Collaboration diagram for a book sales scenario.

• The Bookshop WS retrieves the ISBN number of the
book. Then it sends a request to the Publisher WS to
deliver a copy of the book to the customer (message 2).

• The Publisher WS retrieves book details from the ISBN
number and notifies the Bookshop WS that the book is
available (3). Then, the Publisher WS asks the Shipper
WS to carry one copy of the book to the customer and
gets back the delivery acknowledgment (messages 4 and
5). The physical delivery of the book is not shown in the
figure because it is not an electronic operation.

• The Bookshop WS sends the bill to the Catalog WS (6).
• Finally, the customer pays through the Catalog WS that

notifies the Publisher WS (7).
Now, suppose the customer receives the wrong book. Which
service provider is responsible and should be charged with
the extra delivery costs? The problem might be caused by
errors occurring during the execution of different Web Services
and the identification of the faulty one is not obvious, unless
suitable diagnostic reasoning is employed.

In the paper we develop a framework for tackling such a
problem. Although we consider complex services based on the
cooperation of other services, we do not make assumptions
on how the cooperation is orchestrated. We will see that the
global diagnostic service needs not know in advance how the
individual services interact. This means that the cooperation
could be based on the adoption of a workflow, or that Semantic
Web descriptions of the services and interaction protocols [9]
may be exploited for intelligent composition (see Section V).

III. F RAMEWORK

We propose a partially distributed approach, where several
local diagnosersA1, . . . , An cooperate with aglobal diag-
nostic serviceD. Each local diagnoserAi is responsible for
a Web ServiceWi (or a set of Web Services), whileD, as
we shall describe later, puts together information from local
diagnosers and selects which local diagnosers to question
further in order to diagnose problems.

Following the Model-Based Diagnosis paradigm, inferences
of each local diagnoserAi are based on a modelMi of the
service(s) it is responsible for. Such a model is an abstraction
of the computation carried on by the service.

In particular, as it is common in workflow modelling [13],
such a computation is represented as a set ofactivities with
input andoutput variables (in this paper we limit the discus-
sion to stateless systems). The activities invoked on different
service providers correspond to sending WSDL messages [14];

custInf

ordId

isbn

FW

EL
SRC

custInf

bookInf

Fig. 2. Dependencies for an activity.

variables contained in these messages will be calledinterface
variablesof the sender and receiver WSs.

Input variables of activitya represent information used
by a; output variables represent information propagated to
another activityb, and which could have been produced by
a. As proposed in [3], the model could be given in terms
of three templates,forward (FW for short),source(SRC) and
elaboration(EL), which distinguish whether an output variable
is a copy of an input variable (i.e. the information is used by
a and b, but not modified bya), or it is created bya, e.g.
retrieved from an internal database, or it is computed bya
depending on some of its input variables. Figure 2 illustrates,
for the example in figure 1, the activity of the Bookshop WS
which receives message 1 and sends message 2.

From the representation described above, a diagnostic model
Mi is provided as follows for each Web ServiceWi. Each
activity is, at least for the local diagnoser,1 a smallest diag-
nosable unit, i.e. it corresponds to a component in Model-
Based Diagnosis [5]. For each WS variablev represented in
the model (as input or output of an activity), a corresponding
binary variablev′ is introduced in the diagnostic model. The
ok (resp.,ab) value for v′ represents the fact that in a given
execution of the service,v has the expected value (resp. a
different value with respect to the expected one). For each
activity we consider anokand afail behaviour, and, for each of
them, a relation constraining values of variables in the model
under the assumption that the activity is ok or not.

If the model of an activity is given in terms of FW/SRC/EL
blocks, its model can be derived from a default model of each
template. For EL blocks (and SRC, which are ELs with no
input) a default modelELdfl is the following:

• In the ok mode, if all inputs areok, the output isok.
Otherwise, the output is unconstrained.

• In the fail mode, the behaviour is unconstrained.
FW blocks can be distinguished from EL blocks assuming,

as a default model, that they cannot fail, i.e. that their
behaviour in thefail mode is the same as in theok mode.

More specific models can be provided. E.g., knowing that
an EL activity computes an injective function would exclude,
in the ok mode, the output to beok if a single input isab.

Each WS is endowed with a set of alarms that may be
triggered depending on certain conditions. Each local diag-
nostic agentAi is informed about the alarms inWi and their
triggering conditions, expressed in a way that can be related
to the model. A typical triggering condition for an alarma
is a mismatch of two WS variablesx and y (e.g. in the
book sales scenario the Bookshop WS may check whether the
information on the book provided by the Catalog WS matches
the information on the book found by the Publisher WS).

1As we shall discuss later, the local diagnoser may want to hide the internal
architecture of the corresponding WS.

In the corresponding part of the diagnostic model, a binary
variable a′ is introduced to represent whether the alarm is
raised (a′ = ab) or not; a′ is related tox′ andy′ as follows:

• a′ is ok if both x′ andy′ areok.
• a′ is ab if one of x′ andy′ is ab.
• a′ can beok or ab if both x′ andy′ areab.
A Web ServiceWi may have been designed with a set of

alarms that make it diagnosable as much as possible. If this
is not the case, in order to enhance diagnosability without
modifying its implementation with additional alarms, the local
diagnoserAi records messages sent and received byWi, and
possibly those internal actions that correspond to messages
(in caseWi is in turn a composition of services).Ai can be
designed (possibly after diagnosability analysis on its model
of Wi) to perform predefined checks on such messages; such
checks will not be performed byWi when it runs (Wi could
therefore remain unchanged); they will be performed byAi

if and when it is awakened. These predefined checks will
be calledcheckpoints. Similarly to alarms, a checkpointc
provides a binary piece of informationc′, that can be related
to the WS model in the same way.

IV. T HE DIAGNOSTIC PROTOCOL

We first give an informal description of the interaction be-
tween local diagnosers and the Diagnostic ServiceD (section
IV-A). Then we formalize a protocol forD (section IV-B). As
to local diagnosers, we characterize their operations, without
providing specific algorithms (section IV-C).

A. Interaction among diagnosers

The global Diagnostic ServiceD does not initially have any
information on the individual Web Services. Its main job is to
put together information coming from local diagnosers and to
select which local diagnosers to question further in order to
obtain the desired result.

When an alarm is raised in a Web ServiceWi, the local di-
agnoserAi receives it.Ai must explain it, and provideD with
the results. Each explanation may ascribe the malfunction to
failed internal activities and/or abnormal inputs. It may also be
endowed with predictions of additional output values, which
can be exploited byD in order to validate the explanation by
acquiring new observations that may falsify the hypothesis.
When D receives the output of a local explanation from a
local diagnoserAi, it can proceed as follows:2

• If a Web ServiceWj has been blamed of incorrect
outputs, thenD can ask its local diagnoserAj to explain
them.Aj can either reject the blame, explain it with an
internal failure or blame it on someone else.

• If a fault hypothesis byAi has provided additional
predictions on output values sent to a Web ServiceWk,
thenD can askAk to validate the hypothesis by checking
whether the predicted symptoms have occurred, or by
making further predictions.

2We assume that each interaction among Web Services is identified by a
conversation idwhich is mentioned in each information exchange between
local diagnosers andD, in order to identify a diagnostic session.

Hypotheses are maintained and processed by diagnosers as
partial assignmentsto interface variables and behaviour modes
of the involved local models. Unassigned variables represent
parts of the overall model that have not yet been explored, and
possibly do not need to be explored, thus limiting invocations
to local diagnosers. Local diagnosers explain blames and
validate symptoms by means of an EXTEND operation, which
provides extensions to partial assignments by assigning values
to relevant unassigned variables; we will characterize the
operation in section IV-C. Thus the partial assignments we
will consider will assignok/ab values to interface variables
andok/fail modes to internal activities.

B. A protocol for the global diagnoserD

During a diagnostic session,D keeps track of the progress
by means of a listH of current partial assignments. Values
are only assigned by local diagnosers, thusD becomes aware
of the existence of a variablex only when a local diagnoser
assigns a value to it. We will denote withα(x) the value of
variablex in assignmentα. We will write α(x) = ∗ to denote
that α does not assign any value tox.

For each assignmentα ∈ H and for every interface variable
x such thatα(x) 6= ∗ we assume that the identities of the
senderSND(x) and the receiverRCV(x) of the messages
wherex is specified are known toD: one is the local diagnoser
Ai who first assigned a value tox, the identity of the other is
provided byAi itself. Notice that the receiver and sender of
a message only need to be known at run-time. Moreover,D
associates with eachα ∈ H a list Lα of local diagnosers that
should extendα.

Given a partial assignmentα ∈ H we denote byα(Mi)
its restriction to interface variables and behaviour modes of
Mi, and by α(Mi) its restriction to interface variables and
behaviour modesnot in Mi.

Local EXTEND operations work on partial assignments
restricted to the local model they are invoked on. EXTEND

will be characterized precisely in the following section; for
now it suffices to know that, for eachα(Mi) it receives in
input, it returns a set of extensionsExt(α(Mi)) which relate
values assigned inα(Mi) to values of other interface variables
of Mi or to behaviour modes of activities inMi; if the set
of extensions is empty the assignment is considered to be
rejected, because (as we will see in the next section) this means
that the assignment is inconsistent withMi and/or observations
performed by its local diagnoser. The diagnostic process is
started by a local diagnoser which is awakened by an alarm,
and calls EXTEND to explain it. The result is provided toD
as the initial value forH. D then executes a loop with the
following steps.
Step 1: select the next request to a local diagnoserAi.
D finds a local diagnoserAi that belongs toLα for some
α ∈ H; if there is none, exits the loop. From the point of view
of correctness, how the choice is performed is ininfluent. In
section V we will discuss policies.
Step 2: invoke EXTEND on Ai. If Ai has never been invoked
before in this diagnostic process, then the input to EXTEND is

{α(Mi) | α ∈ H} (that is, the restrictions toMi of the whole
setH). Otherwise the input is the set of assignments{α(Mi) |
α ∈ H andAi ∈ Lα} (that is, the restrictions toMi of those
assignments that have changed from the last invocation).
Step 3: updateH and the Lα lists. This receives the output
of EXTEND from Ai. For eachα(Mi) in input, EXTEND has
returned a setExt(α(Mi)) of extensions. Thenα is replaced
in H by the set of assignments

{β | β = α(Mi) ∪ γ andγ ∈ Ext(α(Mi))}.

This implies that rejected assignments, having no extensions,
are removed fromH. For each assignmentβ = α(Mi) ∪ γ
added in this wayLβ is built as follows:

• For eachj 6= i, if Aj ∈ Lα thenAj ∈ Lβ ;
• If there is an interface variablex such thatRCV(x) = Ai,

α(x) = ∗ andβ(x) = ab thenSND(x) ∈ Lβ . Intuitively,
if Ai has blamedAj for an abnormal value on its inputs,
thenAj is asked to give an explanation.

• If there is an interface variabley such thatSND(y) = Ai,
α(y) = ∗ andβ(y) 6= ∗ then RCV(y) ∈ Lβ . Intuitively,
if Ai has predicted a symptom for an output sent toAj ,
thenAj is asked to validate it.

Notice that the diagnostic process terminates: new requests
for EXTEND are generated only if assignments are properly
extended, but assignments cannot be extended indefinitely.

At the end of the diagnostic process we can extract minimal
consistency- based diagnoses fromH as follows. We associate
a diagnosis∆(α) to everyα ∈ H:

∆(α) = {x | x is an internal activity andα(x) = failed}

It can be proved that, if EXTEND behaves as defined in the
next section, the set{∆(α) | α ∈ H} contains all the minimal
diagnoses for the observations provided during the process.

C. A characterization of local diagnosers

As described in the previous sections, the input to EXTEND

is a set of partial assignments ofok/ab values to interface
variables inMi and of ok/fail modes to internal activities.
A local diagnoserAi regardsα as an assignment toall of its
variablesand behaviour modes, although internal variables are
all unassigned. The output of EXTEND is a set of extensions
Ext(α) for every assignmentα received in input. Given an
extended assignmentβ computed internally, EXTEND only
returns its restrictionpub(β) to public variables, which, as
explained before, in this section we assume to be interface
variables and behaviour modes of internal activities.

Each local diagnoser should extend partial assignments so
that unassigned variables are only those that do not provide
relevant information with respect to the current diagnostic
process. The notion ofadmissibilityof an assignment captures
this idea: an assignment isadmissiblein a given model if it
does not allow to infer anything more than the model alone
on unassigned variables.
Def. Let us denote byDOM(α) the set of all variablesx
in a given model such thatα(x) 6= ∗, and byDOM(α) the

x
y1

a

Mi

y2

a: (y1,y2)=ELdfl (x)

Fig. 3. A simple modelMi

set of unassigned variables. We say that an assignmentα is
admissiblein Mi if (i) it is consistent withMi and (ii) the
restriction ofMi ∪α to variables inDOM(α) is equivalent to
the restriction ofMi alone toDOM(α): (Mi ∪ α) |DOM(α)≡
Mi |DOM(α).

Requirement(i) (consistency) is actually implied by require-
ment (ii) for all but total assignments, for whichDOM(α) is
empty. As an example, let us look at the simple modelMi in
figure 3, where we assume that activitya is modelled with a
single ELdfl block, i.e. its model is the defaultEL model in
section III. Let us consider the following partial assignments:

a x y1 y2

α1 ∗ ∗ ∗ ab
α2 ok ok ∗ ab
α3 fail ∗ ∗ ab

Assignmentα1 is consistent withMi but it is not admissi-
ble: in fact, Mi is consistent witha, x and y1 being all ok,
while Mi ∪ α it is not, since when botha andx are ok also
y1 and y2 must be ok. For the same reason, assignmentα2

is both inconsistent ad unadmissible wrtMi. On the contrary,
α3 is admissible: in fact, it is consistent with all combinations
of values forx andy1.

Given an input setS of partial assignments, for eachα ∈
S, EXTEND computes a (possibly empty) set of extensions
Ext(α), defined as follows:
Def. Let Ai be a local diagnoser with modelMi, and let
α be a partial assignment received byAi as input to an
EXTEND operation. Let moreoverω denote the assignment
corresponding to internal observations (if any). The setExt(α)
computed by EXTEND is the set of assignments:

{pub(γ) | γ is a minimal admissible extension ofα ∪ ω}

Let us consider again the example of figure 3, and the
assignmentα1 mentioned above. We haveExt(α1) = {γ1, γ2}
where:

a x y1 y2

γ1 fail ∗ ∗ ab
γ2 ∗ ab ∗ ab

In this case, all possible extensions ofγ1 and γ2 are
admissible in the model. However, this is not true in gen-
eral: an admissible assignment may have extensions that are
inconsistent in the model. For example, the empty assignments
is always admissible in any model.

Notice that EXTEND performs both aconsistency-based
explanation and aconsistency-based prediction. Given an input
assignmentα, an observations assignmentω and a minimal
admissible extensionγ of α ∪ ω, we have that:

• newly-assigned values inγ to input variables or behaviour
modes can be seen asexplanationsof observations or

output values assigned inα;
• newly-assigned values inγ to output variables can be seen

as additional symptomspredictedby the above mentioned
explanations.

V. CONCLUSIONS

In this paper we proposed a partially distributedmodel-
basedapproach to diagnosis of complex Web Services. Web
Services are modelled in acomponent-orientedfashion, in
the style of model-based diagnosis [5]; internal service ac-
tivities correspond tocomponents, in the sense of smallest
diagnosable units. For individual activities we adoptedgrey
box models: we do not model the internal behaviour of an
activity, but only the correlation between inputs and outputs.
From this information we can infer how the correct/incorrect
status of input parameters and of the activity itself affects
the correct/incorrect status of output parameters. In this sense
our models are close to those in [12], where, however, the
focus is not on the diagnosis of composed Web Services,
with its specific requirements on distribution of knowledge and
reasoning. Their approach is purely distributed; in the context
of WSs, we motivated the adoption of a global diagnostic
service for the composed service, which allows to reduce the
communication flow between services. Moreover, [12] makes
some restrictive assumptions on models. Another advantage
of our approach is that it makes selected predictions for dis-
criminating candidates, but, by exploiting partial assignments,
it avoids investigating those parts of the model that are not
directly involved by blames or predicted symptoms.

A decentralized approach to diagnosis has been proposed in
[11]. The application (telecommunication networks) is signif-
icantly different from ours, posing a very different problem.
In our case, an alarm may be raised in a point that is far
away from the failure source. In their case, a failure causes a
chain of alarms, the first of which points to the failure source.
However, due to the distributed nature of the network, the
order in which alarms are received is not the same in which
they are raised, thus the problem of finding the failure source.

A similar approach has been proposed for component-
based software in [4], where chains of software exceptions are
considered instead of alarms. Although the field of application
is close to Web Services, the analysed problem remains
different from the one tackled in this paper. Moreover, software
components are modelled in black-box fashion, considering
only their alarm-raising capability and not the correlations
between input and output parameters.

In [7] Web Services are modeled in DAML-S, a Semantic
Web ontology with a situation calculus semantics; the model is
translated to Petri Nets for simulation and verification. Due to
the different goals, their models provide a different abstraction
of the Web Services with respect to the models proposed in this
paper, with different implications from the computational point
of view: for example, our models do not require reasoning
on state changes. In principle, simulation/verification and
diagnosis of systems (including software systems) could be
based on a unified modeling approach.

Before such a goal can be pursued for Web Services, some
more computational issues can be developed for the diagnosis
approach in this paper. First of all, we did not specify which
strategyD exploits in order to schedule EXTEND invocations
on local diagnosers. Such a strategy would strongly depend on
whetherD knows in advance something about the interaction
between the composed WSs. In fact, as we noticed in Section
II, the diagnostic framework we define does not make any
assumption on how the services coordinate (so that, initially,
the global diagnostic service has no information on how the
services are composed). Several approaches to coordination
have been proposed in the Web Service community; e.g.,
cooperation either based on a workflow orchestrated by a
service or based on intelligent invocation strategies relying on
rich Semantic Web descriptions of service specifications. The
availability of information about the network of cooperation
between services or about semantic specifications of services
could be used to focus the diagnostic process, and to define
scheduling policies for the invocations to local diagnosers.

As to local diagnosers, we proposed a characterization of
their operations (which, like most diagnostic tasks, can be
computationally expensive in the worst case) without a specific
algorithm. Precompilation and approximation techniques can
be used to achieve diagnostic results efficiently for at least
some classes of models: in particular, using templates and their
default models should allow to use precompiled results.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Services -
Concepts, architectures and applications. Springer, 2004.

[2] T. Andrews, et al. Business Process Execution Language for
Web Services version 1.1. http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel/, 2003.

[3] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan,
and D. Theseider Dupré. Advanced fault analysis in web service com-
position. InWWW 2005 Posters & Industrial and Practical Experience
Track Papers Publication, Chiba, Japan, 2005.

[4] I. Grosclaude. Model-based monitoring of component-based software
systems. InProc. 15th Int. Work. on Principles of Diagnosis, pages
155–160, 2004.

[5] W. Hamscher, L. Console, and J. de Kleer, editors.Readings in Model-
Based Diagnosis. Morgan Kaufmann, 1992.

[6] S. McIlraith, T.C. Son, and H. Zeng. Semantic Web Services.IEEE
Intelligent Systems, 16(2):46–53, 2001.

[7] S. Narayanan and S. McIlraith. Simulation, verification and automated
composition of web services. InProc. 11th Int. WWW Conf., 2002.

[8] OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html, 2004.

[9] M. Paolucci, K. Sycara, T. Nishimura, and N. Srinivasan. Toward a
Semantic Web e-commerce. InProc. of 6th Int. Conf. on Business
Information Systems (BIS’2003), Colorado Springs, Colorado, 2003.

[10] M.P. Papazoglou and D. Georgakopoulos, editors.Service-Oriented
Computing, volume 46. Communications of the ACM, 2003.

[11] Y. Pencoĺe and M.-O. Cordier. A formal framework for the decentralised
diagnosis of large scale discrete event systems and its application to
telecommunication networks.Artificial Intelligence, 2005.

[12] N. Roos, A. ten Teije, and C. Witteveen. A protocol for multi-agent
diagnosis with spatially distributed knowledge. In J. Rosenschein and
M. Wooldridge, editors,2nd Int. Joint Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS-2003), 2003. ACM.

[13] W. van der Aalst and K. van Hee.Workflow Management - Models,
Methods, and Systems. The MIT Press, 2002.

[14] W3C. Web Services Definition Language Version 2.0. http://
www.w3.org/TR/wsdl20/, 2004.

