
EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE
POLITECNICO FEDERALE DI LOSANNA
SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE

COMMUNICATION SYSTEMS DIVISION (SSC)
CH-1015 LAUSANNE, SWITZERLAND
http://sscwww.epfl.ch

The Push Model in Web-Based Network Management

Jean-Philippe Martin-Flatin

Version 1: July 1998
Version 2: October 1998

Version 3: November 1998

Technical Report SSC/1998/023

forms,
], we
ges of
n
ented

your
cribe

polling
nager
ach

ent data

telligent
per that
ely, very
our
the
The Push Model in Web-Based Network Management

Jean-Philippe Martin-Flatin
EPFL-ICA, 1015 Lausanne, Switzerland

Email: martin-flatin@epfl.ch Fax: +41-21-693-6610 Web: http://icawww.epfl.ch

Abstract

The management of IP networks is currently based on the SNMP protocol, and the use of
expensive network management platforms designed according to the manager/agent
paradigm of the SNMP framework. It uses two different schemes to transfer management
data: a request/response protocol for data collection and network monitoring (data polling),
and unsolicited push to deliver SNMP notifications. This design is exposed to a number of
problems, with regard to the time-to-market of vendor-specific management software,
versioning, protocol efficiency, security, etc. In this paper, we propose a novel approach to
network management based on the push model. This model is well-known in software
engineering, and encountered a large success on the Web recently with the push technologies.
It relies on the publish/subscribe/distribute paradigm, and uses a single scheme to transfer all
management data. We describe why it is more efficient, in terms of network and systems
resources, than the traditional pull model. We also explain in detail how to implement this
model with Web technologies to deliver SNMP notifications, to handle events, and to
distribute MIB data for network monitoring and data collection.

Keywords: Web-Based Management, IP Network Management, Push, Java, SNMP, HTTP,
RMI.

1. Introduction

Most IP networks are currently managed with dedicated, expensive network management plat
such as HP OpenView, Cabletron Spectrum, IBM Netview or Sun Solstice. In recent work [8
analyzed the problems related to this way of managing networks, and put in light the advanta
going from SNMP-based to Web-based management1. We advocated the use of two desig
paradigms, the pull model and the push model, and showed that they could quickly be implem
and deployed by the industry.

A simple illustration of these models is given by the newspaper metaphor. If you want to read
favorite newspaper everyday, you can either go and buy it every morning (pull model), or subs
to it once and then receive it automatically at home (push model).

The pull model is based on the request/response paradigm. It is a generalization of the data
encountered in traditional SNMP-based network management. At every polling cycle, the ma
(i.e., the client, or the management station2) sends several requests for MIB data to all agents (e
agent runs one server); then, each agent answers separately to each request. The managem

1. The industry clearly favors Web-based management currently, rather than active networks, mobile agents or in
agents. HTTP servers have become a common feature in network equipment. This is why we assume in this pa
all agents have an HTTP server embedded (for legacy systems, we assume we go through a proxy). Convers
few devices have afull JVM embedded (that is, a JVM supporting RMI); we must take this fact into account in
engineering proposals. Whenever possible, we will only rely on a light-weight JVM (e.g., the JVM of
EmbeddedJava platform) that does not support RMI, but allows the execution of simple Java servlets.

2. For the terminology of IP network management, see [7,10,12].
1

fer is

red by
ement
agents
each
/she is
cified.
on a
send

ush
network

cation
notifi-
dling,
on the
ement

d and
tional
1.1;
of the
uire a

h and
y three
MI. In
inally,

IBs,
d

other
TML
minis-
ment

ns and
transfer looks as if the client was “pulling” the data off the server. In this model, the data trans
always initiated by the client.

The push model, conversely, is based on the publish/subscribe/distribute paradigm. It is inspi
the way SNMP notifications are delivered to the manager in traditional management. Manag
applications designed according to this model go through three successive phases: first, all
advertise what MIBs they support, and what SNMP notifications they can send; second, for
agent, the administrator subscribes the management station to the MIB data or notifications he
interested in; for MIB data, the frequency at which the agent should send this data is also spe
Later on, each agent individually takes the initiative to “push” the data to the manager, either
regular basis via a scheduler (for network monitoring and data collection), or asynchronously (to
SNMP notifications). In this model, the data transfer is always initiated by the server.

In [8], we showed how to implement network monitoring and data collection with either pull or p
technologies. We also demonstrated why push-based network management generates less
traffic, and requires less CPU time on the management station by delegating1 some of the processing
to the agents.

In this paper, we study the push model in more detail, and show how the same communi
technologies (HTTP, sockets and RMI) can be used by the agents to send unsolicited SNMP
cations or scheduled MIB data to the manager. We also explain to which extent notification han
network monitoring and report generation are decoupled, and what are the constraints put
location of management software when it is distributed over multiple machines (that is, manag
is performed by acollapsed network management platform).

The constraints we will try to satisfy are (i) to propose simple solutions that could be engineere
widely deployed in less than a year; (ii) to address the problems encountered by tradi
SNMP-based network management [8]; (iii) to comply with the applet security model of JDK
(iv) to make it easy to go across firewalls (e.g, when the manager is inside an intranet, but some
agents are outside, behind insecure WAN links); (v) to propose some solutions that do not req
full JVM to be embedded in all agents.

The remainder of this paper is organized as follows. In section 2, we describe the publis
subscribe phases of the push model. In section 3, we present the distribute phase, and stud
communication technologies between the agent and the manager: HTTP, sockets and R
section 4, we show a global picture of push-based network management, integrating all tasks. F
we conclude with some perspectives for future work.

2. Publish and Subscribe Phases

In the first phase, each network device (agent) must publish what MIBs it supports (generic M
such as MIB-II, the ATM MIB, the RMON MIB or the FDDI MIB, or a vendor-specific MIB), an
what SNMP notifications it can send to the manager (e.g., interface down, temperature of the m
board too high...). To implement this, we propose that all agents support two well-known H
pages. The URL of these pages should be standard, in order to simplify the task of network ad
trators, and to allow partial automation of the subscription phase. The first URL lists all manage
applets stored on the agent:

1. For the rationale behind delegation, see Goldszmidt’s Management by Delegation scheme [4], or Welle
Auerbach’s myth of the dumb agent [13]
2

the
elects
s that

(the
ions
notifi-
ach

e,
ect an
M by
<URL:http://agent.domain/mgmt/mibs.html >

whereagent.domain is the fully qualified domain name of the agent. This requires that
directory calledmgmtbe reserved for the sole purpose of network management. The user then s
one of the entries, say MIB-II, and downloads an applet (one of the MIB data subscription GUI
we will see next) to select data from that MIB. The format of URLs is free at this point.

The second well-known URL lists all notifications supported by the agent:

<URL:http://agent.domain/mgmt/notifications.html >

This HTML page is vendor specific, and even device specific. Typically, it would be an applet
notification subscription applet that we will see next), with a nice GUI describing the notificat
supported by the network device, and allowing the administrator to select or unselect each
cation. Alternatively, it could simply be an HTML form with radio buttons or check boxes for e
notification.

As depicted in Fig. 1, themodus operandifor the user (administrator or operator), in this first phas
is to upload the network map applet in a Web browser running on its local machine, then sel
agent on the map, and load from that agent one of the well-known HTML pages stored in EPRO
the agent.

Fig. 1. Publish and subscribe phases

Any machine

Administrator

Web browser

WWW server
(intranet or Internet)

or Operator

MIB data
subscription
GUI (applet)

Data server

Network
map GUI
(applet)

Network
device

MIB data subscription
GUI (applet)

Notification
subscription
GUI (applet)

Notification
subscription
GUI (applet)

Push
scheduler

servlet

Push
definition

servlet

Network map
GUI (applet)

Push definitions and
schedules repository

HTTP
client

HTTP
server

HTTP
server

JDBC
client

General
purpose data
repository

JDBC
server

Firewall
3

notifi-
s
an be

In fact,
h the

sing
sed
tomized
aids

for the
ation,
e data
re, to

for that
s (i) the
f the
the

ay be

nally
agent
ifferent.

. The

rmal
tes a
then

f the
a JVM
ose
d with
r that

lator.
ing:
events

d (if a
In the second phase, the administrator subscribes the manager to MIB variables and SNMP
cations. The so-calledMIB data subscription appletsallow him/her to select MIB variables as well a
push frequencies. The push frequency can be different for each individual MIB variable, or it c
the same for a whole MIB, or a whole device. Unlike its counterpart, thenotification subscription
appletdoes not have to specify a push frequency, as notifications are inherently asynchronous.
this notification subscription applet can be considered as a simple filter. Notifications for whic
administrator showed no interest are discarded by the notification generator (see Fig. 2).

We could imagine to use a single applet to subscribe to MIB variables of all MIBs, instead of u
one applet per MIB. But just like people dislike using MIB browsers in traditional SNMP-ba
management platforms because they are too basic, and prefer to use management GUIs cus
for each MIB, people would not be happy if they had to subscribe to MIB data without visual
customized for each MIB.

The subscription phase we described so far is entirely manual. Since it would be very tedious
administrator to enter all over again all this subscription data, if an agent were to lose its configur
it is important to store this data in a persistent data repository. As shown by Fig. 1, we use th
server for that. The details of the different data repositories (see [7]) are not shown on this figu
keep it readable. All repositories are merged into a singlegeneral-purpose data repository. If an agent
loses its push configuration data, the manager can then resend all the definitions and schedules
agent in an unattended mode. The general purpose data repository of the data server include
definitions and schedules of the MIB data subscribed to by the manager, (ii) the definitions o
notifications subscribed to by the manager, and (iii) the network topology definition used by
network map applet to construct its GUI. In practice, these three logical data repositories m
stored into one or several databases.

3. Distribute Phase

In the distribute phase, the handling of data collection and network monitoring is only margi
different from that of notification delivery and events. The communication issues between the
and the manager are the same; only the Java applications running on the manager side are d

Let us consider notification delivery and event handling first. These tasks are depicted in Fig. 2
network device runs a process monitoring its own health (thehealth monitor): its Ethernet interfaces
still sense a carrier, the ventilation of the power supply is still working, etc. When an abno
condition is detected, the health monitor contacts the notification generator, which transla
vendor-specific data structure in memory into a standard SNMP notification. This notification is
sent by the network dispatcher to the manager, where it is handled by thenotification collector. To be
precise, it is not the manager, like in traditional network management, but the host of part o
management application; this application is coded in Java, and runs on any machine supporting
in the intranet. The notification collector passes this notification on to the notification filter, wh
role is to detect misbehaving, misconfigured or malicious agents. If the manager is bombarde
notifications by an agent, this filter silently drops them, and possibly warns the administrato
something is going wrong with this agent.

Once the notification filter has checked an incoming notification, it sends it to the event corre
Like in traditional network management platforms, this is the central point of network monitor
events generated by the pushed data interpreter (as we will see further), on the manager, and
directly received from agents, are analyzed, and the source of the network problem is identifie
4

uld be

work
ent is
r
Event

reful to
eneral
s and
data
pplet
ation
router is down, the hosts behind that router will appear to be down, but no corrective action sho
taken for the hosts: only the router should be repaired).

If the administrator or an operator has registered a network map GUI with thenetwork map registry,
the event correlator forces an update of that GUI (icons will turn red, green, yellow...). If no net
map is registered, that is, no one is monitoring the network right now, and network managem
entirely automated, we entirely rely onevent handlers. These may simply log the problem in a file, o
they may take more drastic actions such as paging the administrator, starting off a siren, etc.
handlers are configured by the administrator via a GUI not displayed here (see [7]).

Some events may also be stored in the data repository, although administrators should be ca
keep only relevant data. Event statistics may be more useful than the actual events. The g
purpose data repository depicted in Fig. 2 includes seven different repositories: (i) the definition
schedules of the notifications subscribed to by the manager; (ii) the definitions of the MIB
subscribed to by the manager; (iii) the network topology definition used by the network map a
to construct its GUI; (iv) the event handler definitions repository; (v) the event handlers invoc

Fig. 2. Distribute phase for notification delivery

Any machine

Administrator

Event
handler Notification

dispatcher

Firewall

How?
Network
device

Event
correlator

Web browser

Network
map GUI
(applet)

client

server

Any machine

Java
appl.

Notification
collector

JDBC
client

Data server

General
purpose data
repository

JDBC
server

Administrator
or Operator

Pager Email Telephone

Network map
registry

Notification
filter

Siren

Notification
generator

Health
monitor
5

ly, in
ases.

vent
arly by

tion
the

ekly or

ally its
vent

in bulk.
log; (vi) the pushed data repository; and (vii) the pushed notifications repository. Like previous
real life, all these logically different data repositories may actually reside in one or more datab

If we consider network monitoring and data collection instead of notification delivery and e
handling, the main difference is in the Java application running on the manager, as we see cle
comparing Fig. 2 and Fig. 3. This time, instead of a notification collector, we have apushed data
collector, that collects data related to network monitoring or data collection. Instead of the notifica
filter, we have apushed data filter, which plays a similar role and increases the robustness of
system. For data collection, that is, data whose sole purpose is to build statistics and daily, we
monthly reports, the pushed data filter sends the data directly to the data server, via JDBC1. For
network monitoring, we go via an extra level of indirection, thepushed data interpreter, which can
generate events when, for instance, a network device no longer sends a heart beat — typic
sysObjectID (MIB-II). Events generated by the pushed data interpreter are sent to the e
correlator, where they are mixed with notifications and processed as described earlier.

1. Since the execution speed of Java code is slow, the performance may be significantly increased by storing data
Depending on how tables of the RDBMS are organized, this can lead to small or very significant speed-ups.

Fig. 3. Distribute phase for network monitoring and data collection

Any machine

Administrator

Event
handler

Firewall

How?
Network
device

Event
correlator

Web browser

Network
map GUI
(applet)

client

server

Any machine

Java
appl.

Pushed data
collector

Pushed data
interpreter

JDBC
client

Data server

General
purpose data
repository

JDBC
server

Administrator
or Operator

Pager Email Telephone

Network map
registry

ne
tw

or
k

m
on

ito
rin

g

Pushed data
filter

data collection

Siren

MIBs

Push
scheduler

Push definitions and
schedules repository

MIB data
dispatcher
6

other.
o they
en the
ll, this
m the
t we
is now
mains

een the
wrong

ust be

s [11]:
istent

ssions

re
de
the
is
an
en-

his
d
to

the
ger;
SNMP

n
ut for
agent,

ecially
ng the
priate.
cy of

ge the
etwork
tions
agent,
One point we did not mention so far is how the agent and the manager communicate with each
Both scenarios have a dispatcher on the agent and a collector on the manager, but how d
exchange data? We showed in [8] the advantages of using a persistent connection betwe
manager and the agent. For security reasons, especially if we need to go across a firewa
persistent connection must be initiated by the manager, not by the agent. But when we go fro
pull model, which underlies traditional SNMP-based management, to the push model tha
advocate in this paper, the client/server roles are swapped. The transfer of management data
initiated by the agent, instead of the manager; but the client side of the persistent connection re
on the manager, and the server side on the agent. Compared to the usual mapping betw
manager/agent paradigm and a client/server architecture, the client and the server are on the
sides! Somehow, we want the server to initiate the communication, whereas communication m
initiated by the client in a client/server architecture.

To address this issue, distributed Web programming gives us three communication technologie
HTTP, sockets and RMI. For each of them, let us now study how to ensure some kind of pers
connection between the client and the server. In particular, we will pay attention to the repercu
when we need to go across a firewall.

3.1. Sockets

Sockets present a very interesting property: they a
bidirectional. When a socket is created, the client si
of the socket contacts the server side, as usual in
client/server architecture. But once this socket
established, be it a TCP or a UDP socket, the client c
send data to the server, but the server can also indep
dently send data to the client via the same socket. T
property solves our problem of server-initiate
communication: the manager can create a socket
each agent, that is, create a virtual pipe between
manager and all the agents managed by this mana

but later on, only the agents will use these pipes to send data across. This data can either be
notifications or MIB data: everything goes across the same virtual pipe.

To ensure that this connection remains persistent, the collector, on the manager side, must set a
infinite time-out value on the socket when it creates it. If the underlying TCP connection times o
whatever reason, it is the responsibility of the manager (i.e., the collector) to reconnect to the
by creating a new socket.

This solution presents a big advantage: simplicity. Programming with sockets is very easy, esp
in Java. But it also has some drawbacks. First, if the operating system of the machine hosti
manager or the agent keeps timing out the connection, then this solution is clearly inappro
Typically, this would happen if the time-out value of the socket was lower than the push frequen
the agent, and if the operating system of this agent would not allow the administrator to chan
time-out value. In this case, not only do the repeated socket creations and time-outs cause n
and CPU overhead, but even worse, it is not reasonable to take the risk of making notifica
delivery depend on such a versatile type of persistent connection; there must be a way for the
not the manager, to create a new connection if the previous times out.

Fig. 4. Distribution via sockets

Network
device

Any machine

socket

Java
appl.

serverclient

Firewall

dispatcherCollector
7

nager
a few
t let

ewall
e they
afford
lack

from
ed the
ed by
done

RMI
ecause
work
sier to
The second problem is related to firewalls. if we need to go across a firewall between the ma
and the agent, there is a potential issue with sockets. Most firewalls filter out UDP, and let only
TCP ports go through [1]. So whether we use TCP or UDP sockets, firewalls will generally no
sockets go through by default. Thus, in order for this socket-based solution to work, the fir
system needs to be modified. This may not be a problem for large organizations, becaus
generally have in-house expertise to set up UDP relays or update TCP filtering rules, or can
consultants to do the job if necessary. But it is likely to be a problem for SMEs, who generally
such expertise, and for whom expensive external consultants are only a last resort option.

We might face a third problem with persistent TCP sockets if the number of agents to monitor
a single manager is large: the number of concurrent TCP descriptors required might exce
maximum allowed by the operating system. On many Unix systems, this problem can be solv
modifying a single configuration parameter of the kernel and rebuilding it—something routinely
on servers running very busy WWW servers.

3.2. Java RMI

Like sockets, Java RMI offers a bidirectional association: once an RMI client has bound to an
server, both of them can send data to the other. RMI is an elegant solution in terms of design, b
it gives a fully object-oriented view of network management. It offers semantics to the net
management application designer that are higher than mere MIB variables, and makes it ea
design complex applications [6].

Fig. 5. Distribution via RMI for notification delivery

Fig. 6. Distribution via RMI for data collection and network monitoring

Network
device

Any machine

RMI
client

Java
appl.

Java
appl.

RMI
server

Firewall

Notification
dispatcher server

Notification
generator

Health
monitor

client
socketNotification

collector

Network
device

Any machine

RMI
client

Java
appl.

Pushed data
collector

Java
appl.

RMI
server

Push
scheduler

MIBs Push definitions and
schedules repository

Firewall

MIB data
dispatcher
8

we
ava and
erator
ded in
or data
Java:
s) are
ess the

JVM.
ge,

ow to
ment is
RMI
ct that
ms,

niche
ween
again,

nger
if RMI

nt and
across
re, if

r future,

tions
to the

strict
t have

del of
(

nitely
erver
HTTP

se, we
With RMI, things are slightly different for notification delivery and data collection. This time,
have a Java application running on the agent, thus we must decide what should be coded in J
what should not. In Fig. 5, we show a solution where the health monitor and the notification gen
are non-Java programs, compiled and executing fast, while the notification dispatcher is co
Java. The notification generator and dispatcher exchange data via a socket. Conversely, f
collection and network monitoring (see Fig. 6), the solution we propose is to code everything in
only the data repositories (be they virtual, like MIBs, or real, like push definitions and schedule
non Java. To improve the efficiency, the agent-side Java application can use native code to acc
data repositories.

Unfortunately, RMI presents severe drawbacks. First, it requires that all agents embed a full
Very few do today, and the large footprint of a full JVM makes it unlikely that bottom-of-the-ran
price-sensitive devices will offer one before long. Second, current RMI implementations are sl
execute, and use much CPU and memory; as it currently stands, RMI-based network manage
not scalable. Things may improve in future implementations, especially if we keep in mind that
is a fairly recent technology, which has not gone through many upgrade cycles yet. But the fa
other distributed object-oriented platforms, like CORBA or DCOM, suffer from the same proble
incites us to believe that fully object-oriented IP network management will remain, at best, a
market for the years to come. The third and last problem with RMI is that the communication bet
RMI clients and RMI servers is based on sockets, which are transparent to applications. So once
we have a problem with firewalls. Actually, things are even worse with RMI, because we no lo
control what ports are used by sockets. RMI sockets are transparent to the application, so even
servers run on a well-known port (1099/tcp or 1099/udp [5]), RMI clients may bind to any port
(whereas in the previous solution, the administrator was in control of the ports used by the clie
the server). As a result, specific software must be added to the firewall system in order to go
it; and RMI relays are not widely supported by firewall systems today (they may be in the futu
RMI proves successful over time).

For all these reasons, we cannot reasonably base IP network management on RMI in the nea
although it is a neat solution on paper.

3.3. HTTP

HTTP does not exhibit the property that we exploited for sockets and RMI. With HTTP, connec
are oriented: it is not possible to create a persistent connection in one direction, from the client
server, and later send data in the opposite direction. All HTTP methods rely on a
request/response protocol: for an HTTP server to send a response to an HTTP client, it mus
received a request from this client beforehand. It cannot send unsolicited messages.

In this respect, SNMP and HTTP behave differently. Both are based on the client/server mo
communication. But SNMP implements a request/response protocol for some of its operationsget ,
set , inform ...), and a one-way asynchronous transfer protocol for others (snmpv2-trap). HTTP,
conversely, implements a strict request/response protocol for all of its methods (get , post ,
head ...).

How can we work around this design limitation? How can we have an HTTP server send an infi
large number of replies to a single request from an HTTP client? The trick is to make the s
pretend that it is sending a single endless reply, and to embed separators in the payload of the
messages. To do that, Netscape proposed to use themultipart type of MIME [3, 9] as early as
1995, in the context of the Web. We propose to use it in IP network management too. In our ca
9

TTP
unity,
t. The

lready
lues, or

cation
nitiated
P/1.1

which
on the
n times

ds time
ected to
cation
ange

Java
ement
int on

gement
e, for
show
ed by
send one MIME part at each new time interval, and the MIME boundary is interpreted as anend of
time intervalmarker. The main issue here is to control the time-out value of the embedded H
server: persistent HTTP/1.1 connections are assumed to be short-lived by the Web comm
typically a few seconds, whereas we typically need several minutes in IP network managemen
second issue is that of the operating system timing out inactive TCP sockets, which we a
presented in section 3.1. Either vendors allow their customers to change these two time-out va
we need another solution.

Let us suppose that we need to find another solution. In order to allow HTTP-based communi
between the manager and the agent, we must find a new answer to the challenge of server-i
communication. The one we propose is to add an HTTP/1.1 client on the agent, and an HTT
server on the manager, so as to re-establish a normal client/server communication.

This solution presents several advantages. First, it does not rely on non-intuitive designs,
stretch the client/server architecture to its limits: the client is on the agent side, and the server
manager side. Second, the agent can reconnect immediately in case the persistent connectio
out: it does not have to count on the manager to do that; this improves the robustness, and avoi
windows when the agent wants to send data to the manager, but the manager has not reconn
the agent yet. Third, no change at all is required on the firewall system, if the management appli
runs on the external Web server of the organization; if it runs on a different machine, a minor ch
in the setup of the firewall system is needed.

The main drawback of this solution is that it requires an HTTP server to be included in the
application running on the manager side. This makes a large program (the network manag
application) even larger, more difficult to debug, slower to execute, and induces a larger footpr
the machine where it is running.

4. Push-Based Network Management: the Global Picture

In the previous sections, we presented different snapshots of a push-based network mana
application. But we did not show how the different Java applications coexist on the manager sid
event handling and network monitoring. In this section, we integrate all these partial views, and
that a coherent Web-based design model can deal with all the management tasks perform
traditional network management platforms [7].

Fig. 7. Distribution via HTTP

Network
device

Any machine

HTTP
serverCollector

Java
appl.

HTTP
client

Firewall

Dispatcher
10

Fig. 8. The collapsed network management platform

Any machine

Administrator

Web browser

WWW server
(intranet or Internet)

or Operator

MIB data
subscription
GUI (applet)

Data server

Network
map GUI
(applet)

Network
device

MIB data subscription
GUI (applet)

Notification
subscription
GUI (applet)

Notification
subscription
GUI (applet)

Push
scheduler

servlet

Push
definition

servlet

Network map
GUI (applet)

Push definitions and
schedules repository

HTTP
client

HTTP
server

HTTP
server

JDBC
client

General
purpose data
repository

JDBC
server

Firewall

Any machine

Administrator

Event
handler

Event
correlator

server
Java
appl.

Pushed data
collector

Pushed data
interpreter

JDBC
client

Pager Email Telephone

Network map
registry

Pushed data
filter

Siren

server

client

server

server

client

Notification
collector

Notification
filter

Java
appl.

Java
appl.

JDBC
client

JDBC
client

Notification
dispatcher

MIB data
dispatcher

client

client

client
11

ad over
ncur-
ically
divided

on a
chines

e first,
one we
MI for

twork
cies in
gement
w to
mework
ring.

hoc
tomatic

s send
on this
s could
tabase.

grant
ication
This leads us to the concept ofcollapsed network management platform[8], whereby the network
management platform no longer exists per se. Instead, the management application is spre
several machines, each fulfilling a particular task. Several network map GUIs can be viewed co
rently by Web browsers running on different machines; logical data repositories can be phys
stored in one or several databases in the intranet; the core of the management application is
into three different modules, which can be integrated into one large Java application running
single machine, or than can run separately as three different applications on three different ma
(in Fig. 8, they communicate via sockets).

Among the three communication technologies presented in the previous section, we selected th
based on sockets, to make Fig. 8 more readable. This is not to say that this technology is the
advocate: depending on site-specific needs, administrators may select HTTP instead, or even R
top-of-the-range devices.

5. Conclusion

In this paper, we presented the engineering details of a new design paradigm for IP ne
management applications: the push model. This model addresses a number of deficien
traditional SNMP-based network management, and does not require expensive network mana
platforms. We explained how to go across firewalls, how to use existing RDBMSs, and ho
distribute the management application across several machines. We described a coherent fra
integrating SNMP notification delivery, event handling, data collection and networking monito
In a companion paper [8], we describe how to integrate the pull model, better suited for ad
management (manual mode), and the push model, better adapted for regular management (au
mode).

For future work, it would be worth investigating active databases. In our current proposal, agent
data to the collector object of the Java application running on the manager side, and then rely
application to take some actions if needed, and to store data in a repository. Instead, agent
directly send data to an active database, and then rely on trigger-based actions taken by this da

Acknowledgments

This research was partially funded by the Swiss National Science Foundation (FNRS) under
SPP-ICS 5003-45311. The author wishes to thank G. Madhusudan for discussions on commun
in distributed Java applications, and L. Bovet on MIME multipart.

Acronyms

ATM Asynchronous Transfer Mode MIB Management Information Base

CORBA Common Object Request Broker Architecture MIME Multipurpose Internet Mail Extensions

CPU Central Processing Unit RDBMS Relational DataBase Management System

DCOM Distributed Common Object Model RFC Request For Comment

EPROM Electrically erasable Programmable Read-Only Memory RMI Remote Method Invocation

FDDI Fiber Distributed Data Interface RMON Remote MONitoring

GUI Graphical User Interface SME Small or Medium-sized Enterprise
12

.

,

s

tems

,

,

r

with
worked
. From

86, he
st is
References

[1] D.B. Chapman and E.D. Zwicky.Building Internet Firewalls. O’Reilly & Associates, Sebastopol, CA, USA, 1995
[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk and T. Berners-Lee (Eds.).RFC 2068. Hypertext Transfer Protocol --

HTTP/1.1. IETF, January 1997.
[3] N. Freed and N. Borenstein (Eds.).RFC 2046. Multipurpose Internet Mail Extensions(MIME) Part Two: Media

Types. IETF, November 1996.
[4] G. Goldszmidt.Distributed Management by Delegation. Ph.D. thesis, Columbia University, New York, NY, USA

December 1995.
[5] IANA. Protocol Numbers and Assignment Services. Available at <URL:http://www.iana.org/numbers.html>. Thi

Web site updates RFC 1700 which is now obsolete.
[6] J.P. Martin-Flatin, S. Znaty and J.P. Hubaux. “A Survey of Distributed Enterprise Network and Sys

Management”. To appear inJournal of Network and Systems Management, vol. 7, no. 1, March 1999.
[7] J.P. Martin-Flatin.IP Network Management Platforms Before the Web. Technical Report SSC/1998/021, SSC

EPFL, Lausanne, Switzerland, July 1998.
[8] J.P. Martin-Flatin.Push vs. Pull in Web-Based Network Management. Technical Report SSC/1998/022, version 2

SSC, EPFL, Lausanne, Switzerland, October 1998.
[9] Netscape.An Exploration of Dynamic Documents. 1995. Available at

<URL:http://home.mcom.com/assist/net_sites/pushpull.html>.
[10] M.T. Rose.The Simple Book: an Introduction to Networking Management. Revised 2nd edition. Prentice Hall, Uppe

Saddle River, NJ, USA, 1996.
[11] P. Sridharan.Advanced Java networking. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.
[12] W. Stallings.SNMP, SNMPv2 and CMIP: the Practical Guide to Network Management Standards. Addison-Wesley,

Reading, MA, USA, 1993.
[13] C. Wellens and K. Auerbach. “Towards Useful Management”. InThe Simple Times, 4(3):1-6, 1996.

Biography

J.P. Martin-Flatin is currently preparing for a Ph.D. thesis at EPFL. From 1990 to 1996, he was
the European Centre for Medium-Range Weather Forecasts in Reading, England, where he
in network and systems management, security, Web management and software engineering
1988 to 1990, he worked on the Geographic Information System of a large city in France. In 19
received an M.Sc. in a mix of EE and ME from ECAM, Lyon, France. His main research intere
in distributed network management. He is a member of the IEEE and the ACM.

HTML HyperText Markup Language SNMP Simple Network Management Protocol

HTTP HyperText Transfer Protocol TCP Transmission Control Protocol

IETF Internet Engineering Task Force UDP User Datagram Protocol

IP Internet Protocol URL Uniform Resource Locator

JDBC Java DataBase Connectivity WAN Wide-Area Network

JDK Java Development Kit WWW World-Wide Web

JVM Java Virtual Machine
13

	The Push Model in Web-Based Network Management
	1.�� Introduction
	2.�� Publish and Subscribe Phases
	3.�� Distribute Phase
	3.1.�� Sockets
	3.2.�� Java RMI
	3.3.�� HTTP

	4.�� Push-Based Network Management: the Global Picture
	5.�� Conclusion

