
Proc. Int. Workshop on Self-* Properties in Complex Information Systems (Self-Star 2004), Bertinoro, Italy, May 2004

Distributed Event Correlation
and Self-Managed Systems

Jean-Philippe Martin-Flatin
CERN, IT Dept.

 1211 Geneva 23, Switzerland
jp.martin-flatin@ieee.org

http://cern.ch/jpmf/

Abstract

The systems that currently provide Internet users with
sophisticated e-business services struggle to offer high
availability guarantees while being managed as regu-
lar systems, because management architectures rely
on the manager-agent paradigm and domain-based
distribution. In this paper, we argue that e-business
information systems should instead be structured as
self-managed systems: they need to detect problems by
themselves, work out the cause of each problem, and
take corrective actions independently of any external
entity. They should not depend on external managers
for their efficiency and robustness. To achieve this, we
propose an organizational model that allows manage-
ment architectures to take into account the specific
requirements of self-managed systems, and investigate
how to distribute event correlation in the presence of
self-managed systems.

Keywords: systems management, event correlation,
dependency graphs, self-managed systems, e-business
services, distributed systems.

1 Introduction

E-business services are now part of day-to-day life for
many Internet users. Leveraging the success of online
retail, and more generally the business-to-customer
(B2C) trade paradigm, which requires interactive cus-
tomers, many companies have recently moved (or are
migrating) to the business-to-business (B2B) para-
digm, whereby distant applications interact directly
without the intervention of any person. It seems likely
that the proportion of business that is done electroni-
cally will continue to grow in the next few years.

As e-business services become increasingly sophisti-
cated, the underlying information systems (i.e., the
physical machines, Web applications, databases, etc.)
also grow in complexity. We have now reached a point
where most service providers want to guarantee highly
available services to their customers, but a number of
them cannot afford full-fledged fault-tolerant systems
to offer such guarantees: they expect management sys-
tems to cater for that. Unfortunately, today’s manage-
ment architectures cannot fulfill this new requirement:
the manager-agent paradigm and domain-based distri-
bution were never meant for that.

To alleviate this problem, we argue that e-business
information systems should evolve into self-managed
systems. They should detect problems by themselves,
work out the cause of each problem, and take correc-
tive actions independently of any external entity.
Occasionally they can still interact with managers
(e.g., when they receive policy updates or end-to-end
monitoring data), but they should not depend on exter-
nal entities for their performance and stability (as
assumed by the manager-agent paradigm). In this
position paper, we propose an organizational model
that allows management architectures to take into
account the specific requirements of self-managed
systems, and study how to distribute event correlation
in the presence of self-managed systems.

The rest of this paper is organized as follows. In
Section 2, we explain why current management archi-
tectures are not suitable for self-managed systems. In
Section 3, we propose a new way to distribute event
correlation in the presence of self-managed systems.
In Section 4, we investigate dynamic dependency
graphs. Last, we conclude in Sectio n5.

2 Problem Statement

Structuring e-business information systems as self-
managed systems poses problems with current man-
agement architectures, especially for distributing
event correlation. Let us highlight the main ones.

2.1 Manager-Agent Paradigm

The cornerstone of today’s management architectures
is the manager-agent paradigm. For scalability rea-
sons, the organization to be managed is split into man-
agement domains (e.g., on a geographic basis). Each
domain is controlled by a manager; this application
(or, by extension, the host running it) performs all the
“smart” tasks that need to be done to manage entities
in its domain, including managing faults, configura-
tions, accounting, performance and security [3].
Domains may overlap but let us ignore this case for
the sake of clarity.

Within each domain, the managed entities are called
agents. They are entirely under the responsibility of
their manager and provide it with mere instrumenta-
tion data: Object IDentifiers (OIDs) in the Simple Net-
work Management Protocol (SNMP), or Common
Information Model (CIM) objects in Web-Based
Enterprise Management (WBEM). SNMP and WBEM
are the two predominant management architectures
used to date in the Internet world.

2.2 Monitoring

To ensure the smooth operation of their businesses,
most organizations regularly monitor their systems,
networks, applications and services in order to detect
system/network faults or application/service failures

(reactive management) and anticipate problems (pro-
active management). A simple example of network
monitoring consists in regularly polling the network
interfaces of all devices within a management domain.
Service Level Agreement (SLA) monitoring consists
in regularly checking that customers get the quality of
service they pay for (e.g., by impersonating a cus-
tomer, sending a fake service request and measuring
the time it takes for this request to be honored).

When a problem is detected, an event (i.e., the soft-
ware representation of an alarm) is generated. Some
software or hardware entities are capable of automati-
cally sending events to a management application.
Others require an external monitor to check their
health on a regular basis and send events on their
behalf. Today’s monitors usually pull instrumentation
data off the agents (this is known as polling), but they
can also rely on a push model for receiving data [10].

2.3 Event Correlation

When they reach the domain manager, all these events
are processed by a component called the event corre-
lator. Event correlation is an automated process that
enables administrators to find, among many events,
those revealing critical problems that cannot be
ascribed to other issues (root cause analysis). Of par-
ticular importance is the detection of the few problems
that have an adverse effect on the stability and perfor-
mance of critical services (e.g., an e-business applica-
tion server for an online retail shop).

Event correlation is the “smart” part of a management
application. It can rely on a number of techniques [8]:
state transition graphs (finite state machines), rule-
based reasoning, binary coding (codebooks), case-
based reasoning, probabilistic dependency graphs
(Bayesian networks, belief networks), model-based
reasoning, neural networks, etc. In today’s manage-
ment platforms, several techniques are often used in
conjunction.

Event correlators interact with other components that
take corrective actions (e.g., restart an application or
reboot a network device), inform customer care that a
given problem has been solved, update trouble-ticket
systems, etc.

2.4 Distributed Event Correlation

Event correlation becomes particularly complex (thus
interesting) in environments where all management
applications are integrated. The number of system-,
network-, application- and service-related events to
correlate can grow very large, beyond a million per
day, which poses challenging scalability problems.

Several people proposed to address this issue by dis-
tributing event correlation (see Section 5). The most
popular approach is to distribute it hierarchically, with

one event filter per management domain (these filters
operate very fast and are resilient to event bursts) and
one event correlator for the entire organization (this
correlator receives only filtered events and can per-
form complex computations).

2.5 Event Flooding Problem

The main problem of this type of distribution is event
flooding. For instance, Mansouri-Samani [9] assumes
that an event filter is in charge of at most thousands of
managed objects (OIDs in the SNMP world, CIM
objects in the WBEM world). This assumption is fine
when the managed entities (hosts, devices) within the
event filter’s domain are mostly network devices: a
single network device rarely requires the monitoring
of more than 10 managed objects, and we seldom find
more than hundreds of managed entities in a given
domain. But this assumption does not hold anymore
for sophisticated e-business information systems.

For instance, let us consider an e-business server con-
sisting of a single physical machine. The service pro-
vider is committed to delivering a certain quality of
service with this server, which requires detecting and
correcting problems at an early stage. To determine
the causes of problems occurring on this server, it is
necessary to monitor the status of all well-known
sources of problems, that is, most physical resources
(CPU, memory, RAID disks, etc.) and most software
resources (middleware, components, applications,
etc.). A summary of the current business activity is
also needed: number of service requests received per
second, honored per second, etc. As a result, a single
e-business server often requires the monitoring of
hundreds (sometimes thousands) of managed objects.
This processing can take up all the resources of an
event filter.

Now, let us assume that this e-business server actually
consists of a cluster of 10 powerful machines all
located at the same site, within the same domain (and
thus under the responsibility of a single manager). If
each machine requires the monitoring of hundreds or
thousands of managed objects, the total flow of events
to the manager could easily overwhelm a standard
management platform in the Internet world.

Last, let us consider the case of an e-business server
that consists of 10 powerful geographically distant
machines. Problems occurring within this server may
be intertwined with network problems between any
two parts of this distributed system. Service-, system-
and network-level monitoring systems therefore have
to be thoroughly integrated. Many (all?) management
platforms in the Internet world would struggle to
manage such a demanding distributed system in paral-
lel to the other agents in the domain.

To make sure they can offer guarantees of service
availability, service providers sometimes use dedi-

cated management platforms for managing their most
complex e-business information systems; but this
approach defeats the purpose of integrated manage-
ment. We need a better solution.

2.6 Latency Problem

Another problem associated with the type of distribu-
tion described in Section 2.4 is latency. Correlating
cross-domain user complaints or SLA failures with
temporary instabilities in the network or faults in geo-
graphically dispersed applications is difficult enough
to distribute. But the problem is even worse for e-busi-
ness information systems, which have strict SLA con-
straints and sometimes cannot cope with the latency of
today’s event correlators when the latter run on remote
managers.

3 New Organizational Model

To alleviate this problem, we propose to distribute
event correlation down to the level of self-managed
systems. The idea is to view e-business servers as
autonomous systems capable of taking independent
corrective actions, just like autonomous robots or
intelligent agents in distributed artificial intelligence.

This requires a change in the organizational model that
currently underlies both SNMP and WBEM. In a man-
agement architecture, the organizational model
defines the way different entities interact and share the
management work load [10].

As usual with hierarchically distributed management,
we have one Top-Level Manager (denoted TLM on
Figure 1) for the entire organization and an arbitrary
number of layers of Sub-Level Managers (SLMs),
each in charge of a management domain within the
organization [10]. For the sake of clarity and without
undermining the generality of our approach, let us
assume that we have only one layer of sub-level man-
agers.

The top-level manager is in charge of enforcing orga-
nization-wide policies and solving cross-domain prob-

lems (especially boundary problems). It runs an event
correlator called the TLM event correlator.

Within each management domain, we have one sub-
level manager, a number of “dumb agents” as they are
called in the Internet world (remember that the man-
ager does everything “smart” in the manager-agent
paradigm), and optionally some self-managed systems
(which need not necessarily be e-business servers).

Each sub-level manager runs its own event correlator
(called the SLM event correlator). On one side, it com-
municates with the top-level manager (e.g., to receive
new rules). On the other side, it interacts with dumb
agents, polling them for monitoring data and/or
receiving events (e.g., SNMPv1 traps, SNMPv2 noti-
fications or CIM events). Dumb agents are entirely
controlled by their sub-level manager.

So far, we have described a fairly standard organiza-
tional model in case management is hierarchically dis-
tributed. The novelty of our proposal stems from the
fact that each Self-Managed System (denoted SMS on
Figure 1) runs its own event correlator (called the SMS
event correlator), which is in charge of correlating all
the events generated within this system.

If all the constituents of the self-managed system are
located inside a single management domain, this
system is under the responsibility of the sub-level
manager in charge of this domain (this is the case
depicted in Figure 1). Otherwise, it is directly under
the responsibility of the top-level manager. This con-
vention determines which manager sends it input from
customer care, new rules, etc.

When performing cross-domain event correlation or
triggered investigations (e.g., in case the execution of
a rule requires the retrieval of more management data
via polling), the top-level manager does not distin-
guish between sub-level managers and self-managed
systems directly under its responsibility. Self-managed
systems therefore need to be able to answer requests
from the TLM and SLM event correlators.

One advantage of letting a self-managed system corre-
late its own events is locality: most events need not be
propagated upward to the sub-level manager because
their impact is limited to the self-managed system.
Another advantage is that latency is significantly
reduced (see next).

4 Dynamic Dependency Graphs

To perform root-cause analysis on the events that
occur within it, a self-managed system needs to have
an internal “model of the world”, that is, a model of its
own subsystems, coarse-grained components and fine-
grained components. Ideally, it should know the states
of all its constituents and all the hardware and soft-
ware dependencies between them, at any time.

Figure 1: Hierarchical Management with Self-Managed Systems

TLM

SLM SLM SLM

SMS

SLA
Monitoring

Helpdesk

Customer
Care

component component

agent

Unfortunately, this is not possible. States are updated
in pseudo real-time (e.g., every 10 minutes in case of
polling), not in real-time, so its knowledge of the
states of its constituents may be obsolete. Dependen-
cies change over time, some of them frequently, so
keeping an up-to-date model of all dependencies is
wishful thinking. Last but not least, the purpose of a
self-managed system is to deliver a service, not to
manage itself, so the amount of resources dedicated to
self-management should remain reasonable.

Consequently, just as a manager with the agents in its
domain, a self-managed system can only afford to
maintain a limited knowledge of the states of its con-
stituents and the dependencies between them.

The good news is that self-managed systems can
exploit the locality of their event correlator to refine
their internal models as they progress during the
investigation of a given problem. The reduced latency
that results from local polling makes it possible to
refine a dependency graph or capture dynamic depen-
dencies on demand—something that is rarely achiev-
able when event correlation is performed by a remote
manager.

Another advantage of locality is that it is easier to
cope with event bursts. If a hardware or software com-
ponent supports a debugging mode to temporarily pro-
vide very detailed information to the event correlator,
the self-managed system may decide to temporarily
switch on this mode. This is much more risky with an
external domain manager.

A potential drawback of having event correlation per-
formed by a self-managed system is that we lose the
end-to-end vision of a sub-level manager. This prob-
lem can be overcome by configuring a monitor to send
end-to-end service monitoring statistics to the self-
managed system that offers this service (e.g., on
Figure 1, the SLA monitor for the self-managed
system is the sub-level manager one level up). An
alternative to configuration is publish-subscribe.

5 Related Work

A number of authors have already investigated the dis-
tribution of event correlation. Some proposals focus
on correlating network events with the network topol-
ogy [4] or intrusion detection [7]. Others propose gen-
eral-purpose languages [2][9]. Some people split the
fault management engine into components that can
run on different hosts, but none of these components
can itself be split and distributed [1][2]. Others claim
to support distributed monitoring but only have a
single event correlator fed by multiple monitors or
hosts [6].

One of the most advanced proposals published to date
is GRACE [5]. This event correlation service is more
mature than ours, but it does not address the specific
issue of self-managed systems.

6 Conclusion

In this paper, we have proposed to structure e-business
information systems as self-managed systems. To
make it possible, we have described how to modify the
organizational model of current management architec-
tures. We have also showed how to distribute event
correlation in the presence of self-managed systems.

In the future, we plan to implement this proposal and
demonstrate its potential. It would be interesting to
quantify the latency reduction when a self-managed
system correlates its own events, but also the latency
increase when a higher-level manager performs cross-
domain event correlation.

Acknowledgments

The author thanks Emil Lupu and Joe Sventek for
their feedback on early versions of this paper.

References
[1] E. Akbas, “System Independent and Distributed Fault

Management System”, in Proc. ISCC 2003.
[2] E. Al-Shaer, A Hierarchical Filtering-Based Monitor-

ing Architecture for Large-Scale Distributed Systems,
Ph.D. thesis, Old Dominion University, USA, 1998.

[3] CCITT (now ITU-T), Recommendation M.3400. TMN
management functions, ITU, October 1992.

[4] C.S. Chao, D.L. Yang and A.C. Liu, “An Automated
Fault Diagnosis System Using Hierarchical Reasoning
and Alarm Correlation”, Journal of Network and Sys-
tems Management, Vol. 9, No. 2, June 2001.

[5] G. Jakobson, M. Weissman, L. Brenner, C. Lafond and
C. Matheus, “GRACE: Building Next Generation Event
Correlation Services”, in Proc. NOMS 2000.

[6] J. Joyce, G. Lomow, K. Slind and B. Unger, “Monitor-
ing Distributed Systems”, ACM Transactions on Com-
puter Systems, Vol. 5, No. 2, May 1987.

[7] C. Kruegel, T. Toth and C. Kerer, “Decentralized Event
Correlation for Intrusion Detection”, in Proc. ICISC
2001.

[8] L. Lewis, Managing Business and Service Networks,
Kluwer, 2001.

[9] M. Mansouri-Samani, Monitoring of Distributed Sys-
tems, Ph.D. thesis, Imperial College, UK, 1995.

[10] J.P. Martin-Flatin, Web-Based Management of IP Net-
works and Systems, Wiley, 2002.

